Next Article in Journal
Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231
Previous Article in Journal
Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research
Previous Article in Special Issue
Chemical Synthesis of Sulfated Yeast (Saccharomyces cerevisiae) Glucans and Their In Vivo Antioxidant Activity
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(9), 1553; doi:10.3390/molecules22091553

Cytotoxic Evaluation of (2S)-5,7-Dihydroxy-6-prenylflavanone Derivatives Loaded PLGA Nanoparticles against MiaPaCa-2 Cells

1
Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico
2
Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus of Cartuja s/n, University of Granada, 18071 Granada, Spain
3
Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Avenue, 08028 Barcelona, Spain
4
Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 27-31 Joan XXIII Avenue, 08028 Barcelona, Spain
5
Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Avenue, 08028 Barcelona, Spain
*
Author to whom correspondence should be addressed.
Received: 22 August 2017 / Revised: 13 September 2017 / Accepted: 14 September 2017 / Published: 15 September 2017
(This article belongs to the Special Issue Synthesis and Modification of Natural Product)
View Full-Text   |   Download PDF [4868 KB, uploaded 20 September 2017]   |  

Abstract

The search for new alternatives for the prevention and treatment of cancer is extremely important to minimize human mortality. Natural products are an alternative to chemical drugs, since they are a source of many potential compounds with anticancer properties. In the present study, the (2S)-5,7-dihydroxy-6-prenylflavanone (semi-systematic name), also called (2S)-5,7-dihydroxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one (CAS Name registered) (1) was isolated from Eysenhardtia platycarpa leaves. This flavanone 1 was considered as the lead compound to generate new cytotoxic derivatives 1a, 1b, 1c and 1d. These compounds 1, 1a, 1b, 1c, and 1d were then loaded in nanosized drug delivery systems such as polymeric nanoparticles (NPs). Small homogeneous spherical shaped NPs were obtained. Cytotoxic activity of free compounds 1, 1a, 1b, 1c, and 1d and encapsulated in polymeric NPs (NPs1, NPs1a, NPs1b, NPs1c and NPs1d) were evaluated against the pancreatic cancer cell line MiaPaCa-2. The obtained results demonstrated that NPs1a and NPs1b exhibited optimal cytotoxicity, and an even higher improvement of the cytotoxic efficacy was exhibited with the encapsulation of 1a. Based on these results, NPs1a were proposed as promising anticancer agent candidates. View Full-Text
Keywords: flavanone; Eysenhardtia; cytotoxic activity; MiaPaCa-2 flavanone; Eysenhardtia; cytotoxic activity; MiaPaCa-2
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.C.; García, M.L.; Garduño-Ramírez, M.L. Cytotoxic Evaluation of (2S)-5,7-Dihydroxy-6-prenylflavanone Derivatives Loaded PLGA Nanoparticles against MiaPaCa-2 Cells. Molecules 2017, 22, 1553.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top