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Abstract: Protein pupylation is a type of post-translation modification, which plays a crucial role in
cellular function of bacterial organisms in prokaryotes. To have a better insight of the mechanisms
underlying pupylation an initial, but important, step is to identify pupylation sites. To date,
several computational methods have been established for the prediction of pupylation sites which
usually artificially design the negative samples using the verified pupylation proteins to train the
classifiers. However, if this process is not properly done it can affect the performance of the final
predictor dramatically. In this work, different from previous computational methods, we proposed
an enhanced positive-unlabeled learning algorithm (EPuL) to the pupylation site prediction problem,
which uses only positive and unlabeled samples. Firstly, we separate the training dataset into
the positive dataset and the unlabeled dataset which contains the remaining non-annotated lysine
residues. Then, the EPuL algorithm is utilized to select the reliably negative initial dataset and then
iteratively pick out the non-pupylation sites. The performance of the proposed method was measured
with an accuracy of 90.24%, an Area Under Curve (AUC) of 0.93 and an MCC of 0.81 by 10-fold
cross-validation. A user-friendly web server for predicting pupylation sites was developed and was
freely available at http://59.73.198.144:8080/EPuL.

Keywords: positive-unlabeled learning algorithm; pupylation sites; prediction; web server; support
vector machine

1. Introduction

Prokaryotic ubiquitin-like proteins (Pup) are the first identified post-translational small modifier
in prokaryotes [1,2]. They are disordered proteins, including 64 amino acids and an important signal
for the protein’s selective degradation [3]. Pup usually attaches to substrate lysine via isopeptide bonds,
and this process is called pupylation. Although the function of pupylation and ubiquitylation is similar,
the enzymology participating in these processes is not the same [4]. Ubiquitylation requires three types
of enzymes, including activating enzymes, ligases, and conjugating enzymes [5–7]. Pupylation only
requires two types of enzymes (proteasome accessory factor A and deamidase of Pup).

Accurate identification of pupylation sites is an essential first step to better understand the
underlying mechanism of protein pupylation. Though some large-scale proteomics technologies
have been adopted to find the pupylation sites, they are usually time-consuming and laborious,
especially for large-scale protein samples. Thus, computational methods were needed to effectively
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and accurately identify the potential pupylation sites in protein sequences. Lin et al. [8] developed
the first pupylation site predictor, named GPS-PUP, the GPS means Group-based Prediction System.
Tung et al. [9] constructed a predictor, iPup, in which the composition of k-spaced amino acid pairs
feature (CKSAAP) was used. Zhao et al. [10] created a predictive model with five features and
adopted feature selection methods to find the optimal feature set. Chen et al. [11] proposed a
predictor, PupPred, which is based on the SVM and some sequence-derived features. Hasem et al. [12]
introduced a profile-based CKSAAP to encode the pupylation sites and built a predictor called pbPUP.
Wand et al. [13] employed the non-annotated lysine sites as unlabeled training samples and then used
a two-class SVM to expand reliable negative set at each iteration. More recently, Jiang et al. [14] applied
the positive-unlabeled learning technique to the prediction of pupylation sites, which combined the
SVM and CKSAAP to construct the predictor PUL-PUP.

However, most of these computational methods artificially constructed the negative samples
which included all the remaining non-annotated lysine residues. This negative samples dataset
may contain some pupylation sites which were not validated. Then the classifiers trained on the
experimentally-verified positive samples and such negative samples may be problematic and biased,
and the final prediction performance was unsatisfactory. In this paper, we proposed an enhanced
positive unlabeled learning algorithm to identify pupylation sites, EPuL, which enhanced the reliability
of initial negative samples and then iteratively identified the non-pupylation sites from the unlabeled
samples. Experimental results showed that our method achieved better performance when compared
with other existing methods. Meanwhile, a user-friendly webserver of our proposed predictor was
freely accessible at reference [15].

2. Results and Discussion

2.1. The Development of EPuL

The training dataset consisted of two kinds of subsets: (1) the positive dataset P and (2) the unlabeled
dataset U. Positive-unlabeled learning has been used in bioinformatics and obtains satisfactory
performance [16–18]. In this study, we proposed an enhanced positive-unlabeled learning algorithm
called EPuL to predict pupylation sites. The detailed process of the algorithm is described as follows
(Stage 1 is our proposed part. Stage 2 and Stage 3 are the same as PUL-PUP [14]):

Stage 1: Select the reliably negative initial set
The reliably negative dataset RN is initialized to an empty set and we use a vector Vsi to represent

each sample in P and U by using the CKSAAP encoding scheme. By summing up all the vectors in P,
we built the ‘positive representative vector (pr)’ and normalized it by using the formula below:

pr = ∑|P|
i Vsi /|P| (1)

Then, maximum distance rule is adopted, and the Euclidean distance was utilized to compute the
average distance of each sample si in U to pr:

Avg_dist+ = ∑|U|
i dist(pr, Vsi )/|U| (2)

For each sample si in U, the likely initial negative set LN was selected from U by Avg_dist; that is,
if dist(pr,Vsi ) is more than Avg_dist × ∂ (∂ = 1.05), we regard si as a likely negative sample and put it
into LN: LN = LN ∪ {si}.

To select the reliably negative initial set RN0 and enhance the reliability of RN0, we randomly
divide LN into five likely negative subsets and each of them builds a model with P, which is based on
the SVM. Subsequently, the remaining dataset U − RN is classified by the five models, respectively.

The common sequences cs which are predicted by five models and the negative support vectors Nsv

of the five models are all used to represent the reliably negative initial set RN0, in which, RN0 = cs + Nsv.
Stage 2: Expand the reliably negative set
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After the selection of reliably negative initial set, the reliable negative set was expanded by
iteratively adding the negative examples from U using a series of two-class SVM classifiers. Specifically,
at the ith iteration, the SVM classifier fi is firstly trained using dataset P + RNi; then, fi was used to
classify the Ui and each sample xi in Ui, and each sample was obtained a decision value f (xi). To insure
the reliability, samples belonging to the negative set need to satisfy:

f
(

xi
)
≤ T

Here, we set T = −0.50.
To overcome the problem of imbalance at each iteration, the negative support vectors Ni

sv and
the newly-predicted negative samples Ni

pred are used to represent the existing negative set RNi,

and we control the size of Ni
pred less than 2 × |P|. Then, at the i + 1th iteration, Ui+1 = Ui−Ni

pred;

RNi+1 = Ni
pred ∪ Ni

sv. Classifier fi+1 is trained on P and current reliable negative training set RNi+1.
With the expansion of negative set, the size of the remaining unlabeled set becomes less and less.

Thus, iteration should be terminated at some point. When the number of the remaining unlabeled sets
goes below the threshold 5 × |P|, the unlabeled data with the positive data would correspond to the
maximum MCC.

Stage 3: Return the final classifier
After the extraction of the reliably negative set, a final SVM classifier is trained on P and the

reliable negative set RN.
Algorithm 1 summarizes the detailed procedures of the proposed method EPuL.

2.2. The Performance of EPuL on the Training Dataset

To evaluate the effectiveness of the proposed method for pupylation site prediction, we compare
EPuL with other methods, including PUL-PUP [14], PSoL [13], and SVM balance on the training
dataset. In PSoL [13] algorithms, a two-class SVM is applied to filter the negative set from the
non-annotated lysine sites and expand the negative set at each iteration. Additionally, in PUL-PUP [14]
algorithms, the non-annotated lysine sites are treated as unlabeled samples and positive-unlabeled
learning technique is used to predict of pupylation sites. The difference for us is on the selection of the
initial negative set. As for SVM_balance, the negative training dataset is randomly selected from the
non-annotated lysine sites. The ratio of the positive and negative training datasets is 1:1, which can
avoid the imbalanced problem. The 10-fold cross-validation is performed on the positive set P and the
reliably negative set RN, the results are shown in Table 1. We can see from Table 1 that EPuL yielded
the best performance, a Sn of 84.21%, Sp of 95.45%, ACC of 90.24, and MCC of 0.81. EPuL achieves an
improvement on the training dataset. Among this, the results of PSoL and SVM_balance are taken from
PUL-PUP. To further demonstrate the superiority of EPuL, we also draw the ROC curve, as shown in
Figure 1.

Table 1. Ten-fold cross-validation performance of EPuL, PUL-PUP, PSoL and SVM_balance.

Method Sn (%) Sp (%) ACC (%) MCC AUC

EPuL 84.21 95.45 90.24 0.81 0.93
PUL-PUP 82.24 91.57 88.92 0.74 0.92

PSoL 67.50 73.60 70.55 0.42 0.80
SVM_balance 76.71 63.65 69.88 0.40 0.77
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Algorithm 1. An enhanced positive-unlabeled learning algorithm.

Input

P—Positive training set; U—Unlabeled training set;
∂—The distance coefficient; Vsi —Sequence si in P and U;
Model1,2,3,4,5 —Five models trained by five subsets with P respectively;
N1,2,3,4,5 —Five negative sets predicted by Model1,2,3,4,5 on the remaining unlabeled
training set respectively;
cs—Common sequences of five negative sets N1,2,3,4,5
Nsv—Negative support vectors of five Model1,2,3,4,5

Output F—Final classifier.

Stage 0: Initialization

l←0; Avg_dist = 0; LN = ∅; RN = ∅; i

Stage 1: Select the reliably negative initial set

pr = ∑
|P|
i Vsi /|P|;

Avg_dist + = ∑
|U|
i dist(pr, Vsi )/|U|;

FOR i from 1 to |U|

IF dist(pr,Vsi ) > Avg_dist * ∂

LN = LN∪{Si};

END IF

END FOR

Randomly divide the LN into five subsets D1, D2, D3, D4, D5.

FOR i from 1 to 5

Modeli = SVM(P, Di);
Ni = Modeli(U − LN);

END FOR

The common sequence are represented to reliably negative initial set
cs = N1 ∩ N2 ∩ N3 ∩ N4 ∩ N5; RN0 = RN0 ∪ cs;
then the negative support vectors Nsv of five models are included in RN0 = RN0 ∪ Nsv.

Stage 2 Expand the reliably negative set

WHILE TRUE

IF Ul > 5∗|P|
Ul+1 = Ul−Nl

pred;

RNl+1 = Nl
pred ∪ Nl

sv;

ELSE IF Ul < 5 ∗ |P|
Go to Stage 3

END IF

Train a SVM classifier fl+1 on the P∪RNl+1 with optimal parameter C and γ.

Each sequence xi in Ul+1 would have a decision value f (xi) through the obtained fl+1,
use the threshold T to get the reliably negative set.

l← l + 1

Stage 3 Return the final classifier

Return F = (P, RN)
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2.3. The Performance Evaluation on the Independent Testing Dataset

In order to further evaluate the performance of the proposed predictor, the independent testing
dataset was utilized, which was completely blind to the training dataset. Table 2 presents the
comparison of the results among EPuL, PUL-PUP, PSoL, and SVM-balance. Although SVM_balance
can avoid the imbalanced problem, its prediction performance was the lowest, because the negative
set of SVM_balance is randomly selected and are not the reliably negative samples. The PUL-PUP,
which also uses the positive-unlabeled learning technique, mainly improves the performances through
containing more information in RN at each iteration. However, the performance of PUL-PUP was not
better than EPuL because the contained points are only based on the distance and not very precise.
Especially, the stage 2 of EPuL is similar to PSoL, but we select the reliably negative initial set at stage 1,
enhancing the positive-unlabeled learning at the beginning which would contribute to the selection of
a more accurate negative set and make our algorithm more effective than PSoL.

Table 2. Independent test performance of EPuL, PUL-PUP, and PSoL.

Method Sn (%) Sp (%) ACC (%) MCC AUC

EPuL 72.41 71.57 71.63 0.24 0.78
PUL-PUP 68.97 70.83 70.71 0.22 0.77

PSoL 51.72 73.14 71.62 0.13 0.74
SVM-balance 62.07 67.4 67.05 0.15 0.7

We also compare our method with four existing predictors: iPUP, GPS-PUP, pbPUP, and PUL-PUP.
We predefined three thresholds according to the SVM scores; that is, high (0.9672), medium (0.4032),
and low (0.1088). Table 3 presents the detailed prediction performances on the independent testing
dataset. The performance of our algorithm outperforms the existing predictors. For example,
at the threshold low, the MCC of EPuL is 0.24, which is higher than that of GPS-PUP with an MCC of
0.1, iPUP with MCC of 0.15, pbPUP with MCC of 0.07, and PUL-PUP with MCC of 0.23. Moreover,
our method obtains the best AUC value (0.78). Our classifier is iteratively trained on P and RN.
Only with the reliable initial negative set can was obtain a more reliable negative set in the subsequent
iterations. Thus, our method is more accurate and suitable for predicting pupylation sites than
other methods.
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Table 3. The performance of EPuL and four exiting pupylation sites predictors on the independent
testing dataset.

Predictors Thresholds Sn (%) Sp (%) ACC (%) MCC AUC

GPS-PUP
High 31.03 89.46 85.62 0.16

Medium 34.48 85.54 82.19 0.14 0.6
Low 41.38 76.72 74.43 0.1

iPUP
High 48.28 82.84 80.55 0.2

Medium 51.72 76.47 74.83 0.16 0.66
Low 55.17 72.06 70.94 0.15

pbPUP
High 17.24 88.48 83.75 0.04

Medium 31.03 80.15 76.89 0.07 0.6
Low 41.38 69.85 67.96 0.07

PUL-PUP
High 51.72 83.33 81.24 0.22

Medium 65.52 76.72 75.97 0.24 0.77
Low 68.97 72.79 72.54 0.23

EPuL
High 37.93 89.46 86.04 0.21

Medium 58.62 79.90 78.49 0.23 0.78
Low 68.97 74.02 73.68 0.24

2.4. Feature Analysis

Through the feature selection method, we can find the ranked features generated by the CKSAAP
encoding scheme in Figure 2. The importance of these features was also clearly and intuitively shown
in Figure 3. For example, the feature ExE which represents the EE residue pair spaced by any amino
acid, is enriched in the positive pair and not in the negative pair. From Figure 2, we can see that the
features frequently appeared in the top 25 amino acid pairs, which also frequently occurred in Figure 3.
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2.5. Case Study

To further verify the generalization of our model, we adopted EPuL for a total of 1116 pupylated
proteins, which are identified by high-throughput proteomics methods [19] and have unknown
pupylation sites. Among the total proteins, EPuL successfully identified 2102, 3265, and 3899 pupylation
sites at the threshold of ‘high’, ‘medium’ and ‘low’, respectively. The result of the predicted pupylation
sites is available in Supplementary File 1.

3. Materials and Methods

3.1. Datasets

In this paper, the training dataset and the independent testing dataset of iPup [9] were used.
The training dataset included 162 proteins, which consisted of 183 experimentally-validated pupylation
sites and 2258 artificial generated non-annotated pupylation sites. The former were regarded as positive
samples, and the latter were regarded as unlabeled samples. The independent testing dataset included
20 proteins, including 29 experimentally-verified pupylation sites and 408 non-annotated pupylation
sites. Though the independent testing dataset was highly imbalanced, it can reflect the real effectiveness
of different methods. Similar to the current pupylation site prediction methods [8–14], the sliding
window method was adopted to encode each sample in the dataset. The window size was set to 21
here, in accordance with [9].

3.2. Construction of Feature Vectors

In this study, the composition of the k-spaced amino acid pairs (CKSAAP)-based encoding
scheme was applied to encode each sample. CKSAAP could show the association of the residues
surrounding pupylation sites and it has been successfully applied to other kinds of PTM site prediction
problems [20–22]. Taking k = 0 as an example, for a sequence fragment including 2n + 1 amino acids,
there are 441 0-spaced residue pairs (i.e., AA, AC, . . . ). Then a 441-dimensional feature vector can be
defined as: (

NAA
Ntotal

,
NAC
Ntotal

, . . . . . . .,
N__

Ntotal

)
441

The value of each component is the probability of each amino acid pair. When there are n AA
pairs in the sequence fragment, the value of Ntotal is 441 for any window size, and the value of n

Ntotal
is

the probability of the corresponding AA pair.
With the increase of k, the accuracy and the sensitivity increase, while the computational

complexity and the required time also increase. In this paper, the value of parameter k in CKSAAP
was set to 0, 1, 2, 3, and 4. Thus, each sample is represented by 2205 dimension features. For example,
for the pair A and D, the k-spaced amino acid pairs for k = 0, 1, 2, 3, and 4 are represented as AD, AxD,
AxxD, AxxxD, AxxxxD.
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3.3. Feature Selection

In order to remove the irrelevant and redundant features, we utilized the chi-square test and
sequential backward feature elimination algorithm, which was the same as iPUP [9]. Each feature
would have a value by chi-square test and sequential backward feature elimination algorithm was used
to select optimal feature subset. Firstly, we ranked the 2205 dimension features according to the value
of chi-square. Then, we iteratively removed 10 features with the lowest value in a sequential backward
feature elimination algorithm. Finally, the feature subset with the highest performance was used as
the optimal feature subset to train the model. Figure 2 shows the top 25 CKSAAP features ranked by
using the chi-square test and we used the top 150 features as the optimal feature subset, which was the
same as iPUP [9]. The complete list of the optimal feature subset is shown in Supplementary File 2.

3.4. Support Vector Machine

A support vector machine with the kernel radial basis function (RBF) was the core learning
algorithm of EPuL. The LibSVM [23] package widely used in the area of bioinformatics [24–26] was
used to train the final prediction model. A grid search strategy based on 10-fold cross-validation was
utilized to find the optimal parameters.

3.5. Performance Evaluation of EPuL

Five measurements were employed to evaluate the performance of our proposed predictor [21].
These measurements included sensitivity (SN), specificity (SP), accuracy (ACC), and Matthews’
correlation coefficient (MCC). These measurements are defined as the following formulas:

SN =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP + TN

TP + TN + FP + FN

MCC =
TP × TN − FN × FP√

(TP + FN)× (TP + FP)× (TN + FP)× (TN + FN)

where TP, FP, TN, and FN denote the number of true positives, false positives, true negatives, and false
negatives, respectively. Matthews’ correlation coefficient (MCC) provides an overall performance of
binary classification.

4. Conclusions

In this paper, we proposed a new predictor, EPuL, to identify the protein pupylation sites. We aim
to make the initial selected negative set reliable, and then a more and more reliable negative set will be
selected in later iterations. As this process continues, the final negative set will be as reliable as possible.
The proposed enhanced positive-unlabeled learning algorithm outperforms the existing predictors.
Moreover, the most likely pupylation and non-pupylation sites can be predicted in non-annotated
lysine sites by using EPuL. We are confident that the proposed method could also be applied in
the identification of other types of PTMs sites. A user-friendly web server is freely available at
reference [15]. In our future research, except for the predictor EPuL proposed in this paper, we will
use some state-of-the-art metaheuristic algorithms to identify the protein pupylation sites, such as
monarch butterfly optimization (MBO) [27], earthworm optimization algorithm (EWA) [28], elephant
herding optimization (EHO) [29], moth search (MS) algorithm [30], and krill herd (KH) [31–35].

Supplementary Materials: The following are available online. Supplementary File 1: The result of the predicted
pupylation sites, Supplementary File 2: The complete list of the optimal feature subset.
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