
molecules

Article

Asymmetric Michael Addition Organocatalyzed by
α,β-Dipeptides under Solvent-Free
Reaction Conditions

C. Gabriela Avila-Ortiz 1 ID , Lenin Díaz-Corona 1, Erika Jiménez-González 1 ID and
Eusebio Juaristi 1,2,* ID

1 Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN 2508, Ciudad de
México 07360, Mexico; gabriela@relaq.mx (C.G.A.-O.); lenindc8@relaq.mx (L.D.-C.); erika@relaq.mx (E.J.-C.)

2 El Colegio Nacional, Luis González Obregón 23, Centro Histórico, Ciudad de México 06020, Mexico
* Correspondence: juaristi@relaq.mx; Tel.: +52-55-5747-3722

Received: 7 June 2017; Accepted: 27 July 2017; Published: 10 August 2017

Abstract: The application of six novel α,β-dipeptides as chiral organocatalysts in the asymmetric
Michael addition reaction between enolizable aldehydes and N-arylmaleimides or nitroolefins is
described. With N-arylmaleimides as substrates, the best results were achieved with dipeptide
2 as a catalyst in the presence of aq. NaOH. Whereas dipeptides 4 and 6 in conjunction with
4-dimethylaminopyridine (DMAP) and thiourea as a hydrogen bond donor proved to be highly
efficient organocatalytic systems in the enantioselective reaction between isobutyraldehyde and
various nitroolefins.
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1. Introduction

Organocatalysis has become a powerful method in organic synthesis as can be appreciated by the
rapidly increasing number of publications on this topic [1–14]. Of special interest is the implementation
of organocatalytic processes that are environmentally friendly [15–17]. One way to achieve this goal
is by employing alternative activation techniques such as microwaves, ultrasound irradiation and
mechanochemistry [18–20]. Furthermore, removal of the solvent in the reaction leads to a reduction of
the generated waste [21–25]. There are several examples in literature of organocatalytic reactions in
the absence of solvent [26–33].

In this context, the Michael addition reaction is a particularly powerful method for C–C bond
formation. Nevertheless, the enantioselective Michael addition reaction between enolizable aldehydes
and maleimides [34–47] or nitroolefins [28–30,48–53] has rarely been studied in relation to the reaction
with cyclohexanone (Scheme 1).
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Scheme 1. Asymmetric Michael addition reaction of aldehydes to nitroolefins and N-arylmaleimides 
as acceptor substrates. Cat*, chiral catalyst; *, chiral carbon; Ar, aryl. 
Scheme 1. Asymmetric Michael addition reaction of aldehydes to nitroolefins and N-arylmaleimides
as acceptor substrates. Cat*, chiral catalyst; *, chiral carbon; Ar, aryl.
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In 2007, Cordova’s research group [54] was the first to study the addition reaction of
isobutyraldehyde to maleimides. More recently, Nájera’s group [55,56] studied the reaction employing
several chiral 1,2-diamines as catalysts, while Kokotos used different α- or β-amino acids as
organocatalysts in the presence of CsCO3 [57]. Finally, Nugent [58,59] examined the use of isoleucine
or threonine as organocatalyst in the presence of a hydrogen bond donor (sulfamide) and a base
(4-dimethylaminopyridine, DMAP) (Figure 1).
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readily obtained by the coupling of protected β-alanine (β-Ala) and the N-tert-Butoxycarbonyl (N-
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Given the proven efficiency of small peptides in asymmetric organocatalysis [61–63], and having 
access to the α,β-peptides depicted in Scheme 2, we deemed it of interest to test their potential as 
catalysts in the asymmetric Michael addition reaction. In this regard, β-amino acids have been used 
successfully as organocatalysts in asymmetric Michael addition reactions [57,64], thus their 
incorporation in dipeptidic organocatalysts was anticipated to result in more efficient activation 

Figure 1. Examples of organocatalysts and additives employed in the Michael addition reaction of
aldehydes to maleimides and/or nitroolefins, reported by Nájera et al. [55,56], Kokotos [57], and
Nugent et al. [58,59]. ee, enantiomeric excess.

A few years ago, our research group reported the synthesis of a family of α,β-dipeptides 1–6,
which were used as precursors in the synthesis of 7-membered heterocyclic type ([1,4]-diazepin-2,5-
diones, that is homodiketopiperazines) derivatives (Scheme 2) [60]. The desired α,β-dipeptides were
readily obtained by the coupling of protected β-alanine (β-Ala) and the N-tert-Butoxycarbonyl (N-Boc)
protected amino acid, followed by the removal of the protecting groups. Yields for the coupling step
went from moderate to good, depending on the side chain present in the α-amino acid. Deprotection
of these peptides with trifluoroacetic acid and subsequent isolation using an ion exchange column
with Dowex resin afforded the desired α,β-dipeptides 1–6.
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Scheme 2. Synthetic route to the α,β-peptides of interest in the present work. Me, methyl; Bn,
benzyl; Ph, phenyl; iPr, isopropyl; iBu, isobutyl; sBu, sec-butyl; iBBCl, isobutyl chloroformate; THF,
tetrahydrofuran; rt, room temperature; TFA, trifluoroacetic acid.

Given the proven efficiency of small peptides in asymmetric organocatalysis [61–63], and having
access to the α,β-peptides depicted in Scheme 2, we deemed it of interest to test their potential
as catalysts in the asymmetric Michael addition reaction. In this regard, β-amino acids have been
used successfully as organocatalysts in asymmetric Michael addition reactions [57,64], thus their
incorporation in dipeptidic organocatalysts was anticipated to result in more efficient activation modes.
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Furthermore, although β-amino acids are not found as frequently in nature as their α-analogs, they
represent a very important research area in organic synthesis since the 1990s [65,66]. Of great relevance
to the present work, it has been discovered that the incorporation of β-amino acids in peptides induces
significant conformational changes in the resulting foldamers [67–69], which may prove beneficial in
boosting the enantioinduction in the asymmetric Michael additions of interest here.

2. Results

α,β-Dipeptides 1–6 were examined as potential catalysts in the present work (Figure 2). It is
important to mention that the β-Ala residue gives certain advantages to these molecules in comparison
to their α,α-analogs. In particular, the phenylalanine-glycine (Phe-Gly) dipeptide was synthetized in
the present work in order to compare its catalytic activity. In the event, the synthetic route resulted in
poor yields (see Supplementary Materials) owing to glycine’s low solubility [70].
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Initially, we conducted Michael additions of isobutyraldehyde to N-phenylmaleimide in the
absence of solvent (neat), as shown in Table 1. It is important to mention that it became evident that
a base is required for the reaction to take place. Based on Kokotos’s observations [57], KOH was
chosen as the base additive in this system. It can be observed that the peptides which afforded better
results in terms of yield and selectivity were phenylalanine-β-alanine (Phe-β-Ala, 2), leucine-β-alanine
(Leu-β-Ala, 5) and isoleucine-β-alanine (Ileu-β-Ala, 6) (Table 1). As peptide 2 can be synthesized in
a higher yield [60], this dipeptide was selected for further optimization experiments. α,α-Dipeptide
(Phe-Gly) gave a poor yield of Michael adduct with a lack of enantioselectivity (59% yield, 52:48
enantiomeric ratio (er). See Supplementary Materials).

Table 1. Michael addition reaction of isobutyraldehyde to N-phenylmaleimide organocatalyzed by
α,β-dipeptides 1–6.
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Table 1. Michael addition reaction of isobutyraldehyde to N-phenylmaleimide organocatalyzed by 
α,β-dipeptides 1–6. 
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Essay a Cat* % Yield b er c

1 1 79 76:24
2 2 64 88:12
3 3 77 77:23
4 4 65 79:21
5 5 75 88:12
6 6 74 85:15

a Reaction conditions: aldehyde (5.5 mmol), maleimide (0.5 mmol), cat* 10 mol % (0.05 mmol), and KOH, 10 mol
% (0.05 mmol). b Isolated yield. c Determined by chiral HPLC. rt, room temperature; er, enantiomeric ratio; Cat*,
chiral catalyst.
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With dipeptide 2 as the representative chiral catalyst, we proceeded to optimize the reaction
in terms of several key parameters. The first parameter that was evaluated was catalyst loading.
A screening was performed varying the concentration of catalyst from 1 to 25 mol %, finding that the
optimum amount of dipeptide 2 corresponds to 10 mol % (Table 2). Similar observations have been
made by Berkessel, Gröger and co-workers in related systems [70].

Table 2. Michael addition reaction of isobutyraldehyde to N-phenylmaleimide with different amounts
of catalyst.
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Next, various hydroxides, carbonates as well as several amines were tested as base additives.
These bases were used in equimolar amounts relative to catalyst 2 (10 mol %). In Table 3, it can
be appreciated that hydroxides are the most efficient base additives, leading to better yields and
stereoselectivities. Among them, sodium hydroxide afforded higher enantioselectivity (Table 3,
entry 3).

Table 3. Michael addition reaction of isobutyraldehyde to N-phenylmaleimide organocatayzed by
phenylalanine-β-alanine (Phe-β-Ala, 2) in the presence of different bases.
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The potential of dipeptides 1–6 in the Michael addition to nitroolefins was also studied. Initially, 
the optimized conditions of the reaction with N-substituted maleimides were employed, but 
surprisingly the reaction did not proceed. Therefore, dipeptides 1–6 were tested under the conditions 
reported by Nugent et al. [58,59] who employ DMAP and a hydrogen bond donor (to ensure the 
proximity of both substrates) as additives (Table 5). Catalysts 4 and 6 provided the best results and 
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2 LiOH 63 84:16
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5 KHCO3 45 70:30
6 Na2CO3 57 65:35
7 K2CO3 31 68:32
8 Cs2CO3 26 58:42
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a Reaction conditions: aldehyde (2.75 mmol), maleimide (0.5 mmol), KOH was used in the same amount as catalyst
2. b Isolated yield. c Determined by chiral HPLC. NMM, N-methylmorpholine; DMAP, 4-dimethylaminopyridine.
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Furthermore, the reaction was examined in solution, exploring different solvents as reaction
mediums. It transpired that only dichloromethane afforded results comparable in yield and selectivity
(77% yield, 88:12 enantiomeric ratio. Table S1 of Supporting Information) relative to the reaction
carried out under neat conditions. No reaction took place with the rest of the solvents that were
examined (see Supplementary Materials). Taking into account the above observations, it was decided
to continue the work in the absence of solvent to further promote processes which are friendlier to the
environment [15–25]. In this regard, the amount of aldehyde substrate was optimized at this point. To
our benefit, the reaction may proceed well with only 5.5 equivalents of isobutyraldehyde, which is
the minimum quantity required to have a homogeneous reaction mixture—with less equivalents, the
reaction becomes too slow.

It may be argued that isobutyraldehyde being used in excess in the reaction (5.5 equivalents
relative to the N-phenyl maleimide substrate) actually acts as a as solvent and reagent. Nevertheless,
this is one aspect of the area of green chemistry where there is clearly no consensus. In particular,
according to the philosophy of Sheldon [21], who states “the best solvent is no solvent”, one strategy
for the development of more environmentally friendly protocols involves solvent-free reactions. In
some cases, this has been achieved using an excess (up to 20 equivalents) of a liquid reagent [31,71,72].

The potential influence of other additives, in particular hydrogen bond donors such as urea,
thiourea and sulfamide, was also examined; however, these additive acids did not lead to any
significant improvement of the stereoselectivity of the reaction. A similarly disappointing observation
was made when the reaction was performed at a low temperature: the reaction became too slow, and
the enantioselectivity did not actually improve (Table S2 of Supplementary Materials).

Once the reaction conditions had been optimized, the scope of the reaction was evaluated with
different maleimides as electrophilic substrates. Table 4 summarizes the results. It can be observed
that N-donor substituents in the aromatic group on the N-substituted maleimide cause a decrease in
the reactivity, which results in poor reaction yields.

Table 4. Michael addition reaction of aldehydes to different N-substituted maleimide substrates.
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(0.05 mmol). b Isolated yield. c Determined by chiral HPLC.

The potential of dipeptides 1–6 in the Michael addition to nitroolefins was also studied.
Initially, the optimized conditions of the reaction with N-substituted maleimides were employed,
but surprisingly the reaction did not proceed. Therefore, dipeptides 1–6 were tested under the
conditions reported by Nugent et al. [58,59] who employ DMAP and a hydrogen bond donor (to
ensure the proximity of both substrates) as additives (Table 5). Catalysts 4 and 6 provided the best
results and were used in subsequent studies.

With dipeptide 6 as the catalyst, the effect of catalyst loading was evaluated. Examination of
Table 6 shows that the most suitable catalyst load is 10 mol % (entry 3). It is important to note that
as in the case of the reaction with maleimides, the use of solvent afforded the desired products in



Molecules 2017, 22, 1328 6 of 14

lower yield and decreased stereoselectivity. It was observed that both dichloromethane (DCM) and
water solvent gave the desired product with high selectivity (93:7 and 94:6 er, respectively, Table S3 of
Supplementary Materials). Finally, yields went from moderate to good (64% and 81%, respectively,
Table S3 of Supplementary Materials). Again, the amount of aldehyde was optimized to 5.5 equivalents
in order to use the minimum quantity to perform the reactions maintaining the same results in yield
and selectivity.

Table 5. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene organocatalyzed by
α,β-dipeptides 1–6.

Molecules 2017, 22, 1328  6 of 14 

 

With dipeptide 6 as the catalyst, the effect of catalyst loading was evaluated. Examination of 
Table 6 shows that the most suitable catalyst load is 10 mol % (entry 3). It is important to note that as 
in the case of the reaction with maleimides, the use of solvent afforded the desired products in lower 
yield and decreased stereoselectivity. It was observed that both dichloromethane (DCM) and water 
solvent gave the desired product with high selectivity (93:7 and 94:6 er, respectively, Table S3 of 
Supplementary Materials). Finally, yields went from moderate to good (64% and 81%, respectively, 
Table S3 of Supplementary Materials). Again, the amount of aldehyde was optimized to 5.5 
equivalents in order to use the minimum quantity to perform the reactions maintaining the same 
results in yield and selectivity. 

Table 5. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene organocatalyzed by 
α,β-dipeptides 1–6. 

 
Essay a Cat* % Yield b er c

1 1 59 74:26 
2 2 72 82:18 
3 3 70 77:23 
4 4 96 92:8
5 5 13 88:12 
6 6 98 93:7

a Reaction conditions: aldehyde (5.5 mmol), trans-β-nitrostyrene (0.5 mmol), cat* (10 mol %), DMAP 
(10 mol %), urea (10 mol %). b Isolated yield. c Determined by chiral HPLC. 

Table 6. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene with different amounts 
of catalyst. 

 
Essay a Cat* (mol %) % Yield b er c

1 2 n.r. n.d. 
2 5 42 93:7 
3 10 98 93:7
4 15 89 92:2 
5 20 81 92:2 

a Reaction conditions: aldehyde (2.75 mmol), trans-β-nitrostyrene (0.5 mmol) DMAP and urea were 
used in the same amount as cat*: 10 mol % (0.05 mmol). b Isolated yield. c Determined by chiral HPLC. 

Following the methodology reported by Nugent and co-workers [58,59], an analysis of the 
reaction was undertaken in the presence of different additives. Specifically, three different hydrogen 
bond donors were tested: urea, thiourea and sulfamide. The results turned out to be slightly better 
with thiourea, which is also readily accessible. Similar observations were made with dipeptides 4 and 
6 as catalysts. The potential effect of temperature was also studied. Nevertheless, at low temperatures 
(−15 °C and +2 °C) the required reaction times turned out to be too long. Thus, it was concluded that 
the best reaction conditions correspond to the employment of 10 mol % of catalyst in the presence of 
equimolar amounts of urea or thiourea and DMAP as additives, at ambient temperature, and in the 
absence of solvent. Table 7 summarizes the observations derived from this evaluation. 

Essay a Cat* % Yield b er c

1 1 59 74:26
2 2 72 82:18
3 3 70 77:23
4 4 96 92:8
5 5 13 88:12
6 6 98 93:7

a Reaction conditions: aldehyde (5.5 mmol), trans-β-nitrostyrene (0.5 mmol), cat* (10 mol %), DMAP (10 mol %),
urea (10 mol %). b Isolated yield. c Determined by chiral HPLC.

Table 6. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene with different amounts
of catalyst.

Molecules 2017, 22, 1328  6 of 14 

 

With dipeptide 6 as the catalyst, the effect of catalyst loading was evaluated. Examination of 
Table 6 shows that the most suitable catalyst load is 10 mol % (entry 3). It is important to note that as 
in the case of the reaction with maleimides, the use of solvent afforded the desired products in lower 
yield and decreased stereoselectivity. It was observed that both dichloromethane (DCM) and water 
solvent gave the desired product with high selectivity (93:7 and 94:6 er, respectively, Table S3 of 
Supplementary Materials). Finally, yields went from moderate to good (64% and 81%, respectively, 
Table S3 of Supplementary Materials). Again, the amount of aldehyde was optimized to 5.5 
equivalents in order to use the minimum quantity to perform the reactions maintaining the same 
results in yield and selectivity. 

Table 5. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene organocatalyzed by 
α,β-dipeptides 1–6. 

 
Essay a Cat* % Yield b er c

1 1 59 74:26 
2 2 72 82:18 
3 3 70 77:23 
4 4 96 92:8
5 5 13 88:12 
6 6 98 93:7

a Reaction conditions: aldehyde (5.5 mmol), trans-β-nitrostyrene (0.5 mmol), cat* (10 mol %), DMAP 
(10 mol %), urea (10 mol %). b Isolated yield. c Determined by chiral HPLC. 

Table 6. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene with different amounts 
of catalyst. 

 
Essay a Cat* (mol %) % Yield b er c

1 2 n.r. n.d. 
2 5 42 93:7 
3 10 98 93:7
4 15 89 92:2 
5 20 81 92:2 

a Reaction conditions: aldehyde (2.75 mmol), trans-β-nitrostyrene (0.5 mmol) DMAP and urea were 
used in the same amount as cat*: 10 mol % (0.05 mmol). b Isolated yield. c Determined by chiral HPLC. 

Following the methodology reported by Nugent and co-workers [58,59], an analysis of the 
reaction was undertaken in the presence of different additives. Specifically, three different hydrogen 
bond donors were tested: urea, thiourea and sulfamide. The results turned out to be slightly better 
with thiourea, which is also readily accessible. Similar observations were made with dipeptides 4 and 
6 as catalysts. The potential effect of temperature was also studied. Nevertheless, at low temperatures 
(−15 °C and +2 °C) the required reaction times turned out to be too long. Thus, it was concluded that 
the best reaction conditions correspond to the employment of 10 mol % of catalyst in the presence of 
equimolar amounts of urea or thiourea and DMAP as additives, at ambient temperature, and in the 
absence of solvent. Table 7 summarizes the observations derived from this evaluation. 

Essay a Cat* (mol %) % Yield b er c

1 2 n.r. n.d.
2 5 42 93:7
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Following the methodology reported by Nugent and co-workers [58,59], an analysis of the reaction
was undertaken in the presence of different additives. Specifically, three different hydrogen bond
donors were tested: urea, thiourea and sulfamide. The results turned out to be slightly better with
thiourea, which is also readily accessible. Similar observations were made with dipeptides 4 and 6
as catalysts. The potential effect of temperature was also studied. Nevertheless, at low temperatures
(−15 ◦C and +2 ◦C) the required reaction times turned out to be too long. Thus, it was concluded that
the best reaction conditions correspond to the employment of 10 mol % of catalyst in the presence of
equimolar amounts of urea or thiourea and DMAP as additives, at ambient temperature, and in the
absence of solvent. Table 7 summarizes the observations derived from this evaluation.

Once the reaction conditions had been optimized, catalysts 4 and 6 were used to carry out Michael
addition reactions with different substrates, in order to establish the scope of the reaction. Table 8
summarizes the results. Generally, both 4 and 6 catalysts provided the desired products with similarly
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high enantiomeric purity. It is important to note that electron withdrawing groups (EWG) conducts
to lower yields in comparison to electron donating groups (EDG). The most dramatic effect was
produced with 2-Br substituted nitroolefin, which gave the lowest yield but despite that, the product’s
stereoselectivity was good (Table 8, essay 2).

Table 7. Michael addition reaction of isobutyraldehyde to trans-β-nitrostyrene organocatalyzed by
dipeptides 4 and 6 in the presence of different hydrogen bond donors and at various temperatures.
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1
4 CH3 2-MeO-C6H4- 15

78 86:14
6 77 87:13

2
4 CH3 2-Br-C6H4- 16

31 85:15
6 29 83:13

3
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6 83 91:9

4
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6
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Based on the mechanistic observations reported by Nugent [58,59], we propose a plausible
mechanism for the reaction of isobutyraldehyde with both maleimides and trans-β-nitrostyrenes
(Scheme 3).

3. Discussion

For the Michael addition reaction of aldehydes to N-arylmaleimides, the first step should
correspond to enamine formation. The sodium carboxylate that is generated by the hydroxide base
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orients the approach of the electrophile, the Na+ cation acting as a bridging Lewis acid. Formation of
the new C–C bond takes place with the concomitant creation of the chiral center. Finally, hydrolysis of
the iminium ion intermediate gives the desired product (Scheme 3).
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Scheme 3. Proposed mechanism for the Michael addition reaction of isobutyraldehyde to
N-arylmaleimides catalysed by peptide 2 in the presence of sodium hydroxide as a base.

In the case of enolate addition to nitroolefins, the first step should be an acid-base reaction between
the dipeptide and DMAP, followed by enamine formation. In this case, the resulting intermediate
step is activated by the thiourea molecule, which helps orient the approach of the nitroolefin to the
enamine. Final hydrolysis gives the Michael adduct (Scheme 4).
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4. Materials and Methods

Methyl ((benzyloxy)carbonyl)-L-phenylalanylglycinate (21). In a round-bottomed flask provided with
nitrogen atmosphere and magnetic stirring was placed 6.0 g (0.02 mol) of N-protected phenylalanine.
The amino acid was disolved in 20 mL of CH3CN and the flask was placed in an ice bath at 0 ◦C
before the addition of 4.8 mL (0.044 mol, 2.2 equiv.) of N-methyl morpholine and 14.28 mL (0.024 mol,
1.2 equiv.) of a 1.68 M solution of propylphosphonic anhydride (T3P). The reaction mixture was stirred
at 0 ◦C before the addition of additional 2.4 mL (0.022 mol, 1.1 equiv.) of N-methyl morpholine and
2.52 g (0.02 mol, 1 equiv.) of de HCl salt of glycine methyl ester, previously dissolved in 20 mL of
CH3CN. The reaction mixture was allowed to reach ambient temperature and stirred for 24 additional
hours. After this time, the solvent was evaporated and the crude was redisolved in 300 mL of EtOAc
and washed with 1N HCl (2 × 150 mL) and saturated solution of sodium and potassium tartrate
(1 × 100 mL). The organic extracts were dried with Na2SO4 and concentrated under vacuum. The
product was crystallized from EtOAc:hexane (75:25) affording 5.8 g (78% yield) of the desired product
as a white solid. Experimental properties in agreement with reported in literature [73]. Experimental
mp 118–119 ◦C. [α]25

D = +0.826 (c = 0.363, CHCl3). 1H-NMR (400 MHz, DMSO-d6, 120 ◦C) (ppm): 2.89
(dd, J1 = 9.2, J2 = 14.0 Hz, 1H), 3.11 (dd, J1 = 4.6, J2 = 14.0 Hz 1H), 3.67 (s, 3H), 3.89 (m, 2H), 4.38 (m, 1H),
5.01 (m, 2H), 6.79 (a, 1H), 7.19–7.36 (m, 10H), 7.94 (a, 1H); 13C-NMR (DMSO-d6/100.52 MHz): δ 38.3,
41.4, 51.9, 56.6, 66.1, 126.6, 127.8, 128.0, 128.4, 128.6, 129.6, 137.6, 138.3, 156.0, 170.3, 172.1; HRESI-MS:
m/z = 371.1598 [M + H]+; calculated for C20H23N2O5 371.1601.

((Benzyloxy)carbonyl)-L-phenylalanylglycine (22). In a round-bottomed flask provided with magnetic
stirring was placed 600 mg (1.6 mmol) of esther 21 and dissolved in 6 mL of THF. The flask was placed
in an ice bath at 0 ◦C before the addition of 134.5 (3.2 mmol, 2 equiv.) of LiOH monohydrate in 2 mL of
water. The reaction mixture was stirred at 0 ◦C and allowed to reach ambient temperature. After 24 h,
the solvent was evaporated under vacuum and the residue was acidulated with conc. HCl to pH = 2
and then extracted with CH2Cl2. The organic extracts were dried with Na2SO4 and concentrated
under vacuum. The product was crystallized from EtOAc:hexane affording 134 mg (23 % yield) of
22 as a white solid. Experimental properties in agreement with those reported in the literature [74],
mp 128-130 ◦C. [α]25

D = −10.59 (c = 0.34, AcOH). 1H-NMR (400 MHz, DMSO-d6, 120 ◦C) (ppm): 2.87
(dd, J1 = 9.2, J2 = 14.0 Hz, 1H), 3.12 (dd, J1 = 4.8, J2 = 9.2 Hz 1H), 3.66 (s, 2H), 4.33 (m, 1H), 5.00 (m,
2H), 6.85 (a, 1H), 7.16–7.36 (m, 10H), 7.57 (a, 1H); 13C-NMR (DMSO-d6, 100.52 MHz): δ 38.3, 42.8, 56.8,
66.0, 126.5, 127.7, 127.9, 128.4, 128.6, 129.6, 137.6, 138.6, 156.0, 170.3, 171.3; HRESI-MS: m/z = 357.1452
[M + H]+; calculated for C19H21N2O5, 357.1444.

L-Phenylalanylglycine (A). In a round bottomed flask provided with magnetic stirrer and H2 atmosphere
was placed 86 mg of compound 22 with 8.6 mg of Pd/C 10% w/w. Cautiously, 2 mL of methanol
was added and the reaction was stirred at ambient temperature for 24 h. Finally, the mixture was
filtered on Celite and the solid washed with conc. NH4OH affording 56 mg (quantitative yield) of the
desired product as a white solid. Experimental properties were in agreement with those reported in
the literature [75], mp 218–220 ◦C (decomposes). [α]25

D = −5.59 (c = 0.34, AcOH). 1H-NMR (500 MHz,
D2O) (ppm): 2.84 (dd, J1 = 7.1, J2 = 13.6 Hz, 1H), 2.92 (dd, J1 = 6.7, J2 = 13.6 Hz, 1H), 3.42 (d, J = 17.3 Hz,
1H), 3.63 (d, J = 17.5 Hz,1H), 3.74 (dd, J1 = 6.9, J2 = 7.1 Hz 1H), 7.10–7.25 (m, 5H); 13C-NMR (D2O,
125.76 MHz): δ 38.9, 43.2, 55.6, 127.4, 128.7, 128.9, 129.4, 135.9, 173.4, 176.3; HRESI-MS: m/z = 223.1077
[M + H]+; calculated for C11H14N2O3, 223.1077.

General method for addition of aldehydes to N-arylmaleimides: 15.6 mg (0.05 mmol) of α,β-dipeptide
2, 2 mg (0.05 mmol) of NaOH, 0.5 mmol (1 equiv.) of the corresponding maleimide and
2.75 mmol (5.5 equiv.) of the aldehyde were placed in a flask equipped with a magnetic
stirrer. The reaction mixture was stirred for up to 24 h at ambient temperature, until thin layer
chromatography (TLC) showed that the reaction was complete. The product was purified by
flash column chromatography with a mixture of hexanes/EtOAc (7:3) as eluent. The absolute
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configuration of the products was assigned by comparison with the available literature [45,55–57,76,77].
The enantiomeric ratio was determined by chiral HPLC. NMR spectra and chromatograms can be
found in Supplementary Materials.

General method for the addition of isobutyraldehyde to nitroolefins: 0.05 mmol of dipeptide 4 or 6,
3.8 mg (0.05 mmol) of (thio)urea, 6.1 mg (0.05 mmol) of DMAP and 0.25 mL (2.75 mmol, 5.5 equiv.)
of isobutyraldehyde were placed in a flask equipped with a magnetic stirrer. The resulting mixture
was stirred for 5 min before the addition of 0.5 mmol (1 equiv.) of the corresponding nitroolefin.
The reaction mixture was stirred for up to 24 h at ambient temperature until TLC showed that the
reaction was complete. The product was purified by flash column chromatography with a mixture of
hexanes/EtOAc (9:1) as eluent. The enantiomeric ratio was determined by chiral HPLC. The absolute
configuration of the products was assigned in accordance with the literature [58,59,76,77].

5. Conclusions

Six novel α,β-dipeptides were evaluated as organocatalysts in the Michael addition reaction
of various aldehydes to different substrates. With N-arylmaleimides or nitroolefins as electrophiles,
the dipeptide alone was not able to promote the reaction, whereas with base NaOH as additive
the asymmetric Michael addition to maleimides proceeds. Similarly, a 1:1 mixture of DMAP and
urea or thiourea promotes the Michael addition reaction to β-nitrostyrene. The effective use of
additives reported in this work constitutes a clear example of how catalytic activity depends markedly
on non-covalent interactions induced by the additive which are apparently more efficient under
solvent-free reaction conditions. In particular, the sodium salt of the dipeptidic catalyst as well as a
putative supramolecular cluster consisting of dipeptide, DMAP and (thio)urea appear to play a key
role in the stereoselective Michael addition reactions presented here.

Supplementary Materials: The following are available online. References [45,57,59,76–78] are cited in the
supplementary materials.
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