Next Article in Journal
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer’s Disease Therapy
Next Article in Special Issue
Development of HA/Ag-NPs Composite Coating from Green Process for Hip Applications
Previous Article in Journal
Chemical Synthesis of Sulfated Yeast (Saccharomyces cerevisiae) Glucans and Their In Vivo Antioxidant Activity
Previous Article in Special Issue
Antibacterial Effect of a 4x Cu-TiO2 Coating Simulating Acute Periprosthetic Infection—An Animal Model
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(8), 1256; doi:10.3390/molecules22081256

Phenolic Compounds Contained in Little-known Wild Fruits as Antiadhesive Agents Against the Beverage-Spoiling Bacteria Asaia spp.

1
Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
2
Institute of Food Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
*
Author to whom correspondence should be addressed.
Received: 6 July 2017 / Accepted: 23 July 2017 / Published: 28 July 2017
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
View Full-Text   |   Download PDF [4028 KB, uploaded 28 July 2017]   |  

Abstract

The aim of the study was to evaluate antioxidant activity and total phenolic content of juice from three different types of fruits: elderberry (Sambucus nigra), lingonberry (Vaccinium vitis-idaea) and cornelian cherry (Cornus mas), and their action against adhesion of bacterial strains of Asaia lannensis and Asaia bogorensis isolated from spoiled soft drinks. The antioxidant profiles were determined by total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl, DPPH), and ferric-reducing antioxidant power (FRAP). Additionally, total polyphenol content (TPC) was investigated. Chemical compositions of juices were tested using the chromatographic techniques: high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS). Adhesion properties of Asaia spp. cells to various abiotic materials were evaluated by luminometry, plate count and fluorescence microscopy. Antioxidant activity of fruit juices expressed as inhibitory concentration (IC50) ranged from 0.042 ± 0.001 (cornelian cherry) to 0.021 ± 0.001 g/mL (elderberry). TPC ranged from 8.02 ± 0.027 (elderberry) to 2.33 ± 0.013 mg/mL (cornelian cherry). Cyanidin-3-sambubioside-5-glucoside, cyanidin-3-glucoside, and cyanidin-3-sambubioside were detected as the major anthocyanins and caffeic, cinnamic, gallic, protocatechuic, and p-coumaric acids as the major phenolic acids. A significant linear correlation was noted between TPC and antioxidant capacity. In the presence of fruit juices a significant decrease of bacterial adhesion from 74% (elderberry) to 67% (lingonberry) was observed. The high phenolic content indicated that these compounds may contribute to the reduction of Asaia spp. adhesion. View Full-Text
Keywords: Asaia spp.; fruit juices; berry juices; polyphenols; anti-adhesion Asaia spp.; fruit juices; berry juices; polyphenols; anti-adhesion
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Antolak, H.; Czyzowska, A.; Sakač, M.; Mišan, A.; Đuragić, O.; Kregiel, D. Phenolic Compounds Contained in Little-known Wild Fruits as Antiadhesive Agents Against the Beverage-Spoiling Bacteria Asaia spp.. Molecules 2017, 22, 1256.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top