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Abstract: A set of lipopeptides was recently reported for their broad-spectrum antiviral activity
against viruses belonging to the Paramyxoviridae family, including human parainfluenza virus type 3
and Nipah virus. Among them, the peptide with a 24-unit PEG linker connecting it to a cholesterol
moiety (VG-PEG24-Chol) was found to be the best membrane fusion inhibitory peptide. Here, we
evaluated the interaction of the same set of peptides with biomembrane model systems and isolated
human peripheral blood mononuclear cells (PBMC). VG-PEG24-Chol showed the highest insertion
rate and it was among the peptides that induced a larger change on the surface pressure of cholesterol
rich membranes. This peptide also displayed a high affinity towards PBMC membranes. These data
provide new information about the dynamics of peptide-membrane interactions of a specific group
of antiviral peptides, known for their potential as multipotent paramyxovirus antivirals.
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1. Introduction

Human respiratory diseases caused by the Paramyxoviridae family of viruses are a serious
worldwide concern that affect the human population in all of its strata. Children under age 5,
elderly adults, and immune-compromised individuals are high risk groups, due to their insufficient
antiviral defenses. Human parainfluenza viruses (HPIVs), either respiroviruses (HPIV1 and HPIV3) or
rubulaviruses (HPIV2 and HPIV4), are common causes of significant lower respiratory tract disease
including pneumonia. Documented HPIV infection accounts for 30-40% of all acute respiratory tract
infections in children [1]. The zoonotic paramyxovirus Nipah virus (NiV) emerged in the human
population from its bat reservoir via pig intermediate hosts, but has now been transmitted directly
between humans and represents a global health risk [2]. Human infection results in a range of
outcomes from asymptomatic infection to a severe acute respiratory disease and fatal encephalitis,
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with neurological sequelae years later. There is no available treatment to prevent or treat human
parainfluenza infection. For henipaviruses, monoclonal antibodies have been developed for use in
human infection, but are not feasible for widespread use in the field under the conditions of an
outbreak [3].

Traditionally, antiviral drugs have been designed to target viral proteins or host cell factors that
are involved in the infection process, including the characterization of the involved viral and cellular
targets. The first step of viral infection, however, requires the involvement of a conserved structure,
the lipid membrane. Two families of photoactivatable molecules were recently found to biophysically
modify the viral membrane and render the virions inert due to the absence of an internal membrane
repair system [4-8]. Both families have a broad spectrum of activity and could theoretically target
any enveloped virus. In the future, it may be possible to improve the efficacy of such compounds
in vivo, minimize their toxicity, assess possible neutralizing effects by the cell membrane, and establish
whether these compounds can be photoactivated inside the human body [9].

Some membrane-active peptides have been reported to disrupt the membranes of bacteria and
fungi as part of their antimicrobial mechanism of action [10]. A subgroup of these molecules, virolytic
antiviral peptides, can preferentially target the lipid membranes of a wide range of viruses while
sparing cell membranes [11,12]. The selectivity of these peptides for distinct membrane compositions
is a topic of ongoing investigation.

Our previous studies revealed the importance of the specific lipid bilayer membrane to the
mechanism of action of antiviral peptides [13-17], as also reviewed elsewhere [18]. Peptides designed
to target the viral entry glycoprotein of a specific virus were found to be active against related viruses,
resulting in broad-spectrum activity [19,20].

Recently, we developed these antiviral peptides as a promising strategy for prevention and
treatment of infection by HPIV or NiV [20,21]. Entry of virus into the host cell during the initial steps
of infection by both viruses is initiated by recognition of a receptor in the host cell membrane by a viral
surface glycoprotein and activation of the viral fusion protein (F), which extends via a conformational
rearrangement to insert its hydrophobic fusion peptide into the host cell membrane. At this point, viral
and target cell membranes are bridged by a transient F intermediate that refolds into an energetically
stable structure, an antiparallel six-helix bundle, thought to be responsible for driving fusion of the
viral and cell membranes. The transient intermediate structure of F can be targeted by fusion inhibitory
peptides either at the N-terminal repeat (HRN) or at the C-terminal repeat (HRC), corresponding to
the two domains that must interact to form the six-helix bundle. Peptides derived from the HRC
domain of HPIV3 F were found to be very effective at inhibiting fusion and viral entry mediated by
HPIV3 and also by NiV [21]. We recently showed that conjugation of cholesterol and PEG24 to a fusion
inhibitory peptide derived from this HPIV3-HRC peptide (referred to as “VG” to distinguish it from
other versions of this peptide) resulted in broad-spectrum antiviral activity [21]. This strategy has been
proved to be useful not only for HPIV and NiV but also for other enveloped viruses including HIV,
measles virus and influenza viruses [21-28].

In this study, we evaluated the interaction of C-terminally lipid conjugated VG peptides [21] with
membranes of different composition and with human peripheral blood mononuclear cells (PBMC).
Our data indicate that the lipid-conjugated peptides interact with cholesterol-rich membranes, likely
to be important domains for viral infection. Moreover, the high peptide-membrane affinity obtained
for PBMC indicates that these peptides can circulate within the host attached to cells, potentially
increasing their half-life and efficacy.

2. Results and Discussion

Recently, we showed that peptides derived from the HRC domain of paramyxovirus F proteins
have broad-spectrum antiviral activity, inhibiting fusion and entry mediated by HPIV3 and NiV [21].
Conjugating the peptides with cholesterol (Chol) and linkers made of polyethyleneglycol (PEG)
led to better inhibition and the development of a potent lipopeptide, VG-PEG24-Chol. Here we



Molecules 2017, 22, 1190 30f10

investigated whether a set of VG peptides (Table 1) remain membrane active when challenged to
interact with membranes rich in cholesterol, an important membrane component that is present in
lipid raft micro-domains [29,30]. Membranes composed of cholesterol and also sphingolipids form
these highly ordered rigid domains with limited fluidity in comparison to the surrounding plasma
membrane. Lipid rafts are thought to be involved in fusion and budding of different enveloped
viruses namely HIV-1 [31], influenza [32,33] and paramyxovirus [34-36]. Respiratory viruses that
invade the airway epithelium activate a humoral and cellular immune response with inflammatory
cell recruitment [37-39]. Leukocytes serve as a spreading vehicle for Nipah virus, which can efficiently
bind to PBMC and travel within the host to infect new tissues [40]. We thus addressed the interaction
of VG peptides with PBMC as a model for what may happen in the circulation.

Table 1. HPIV3 HRC derived peptide sequences. The residues highlighted in red were modified from
the original HPIV3 F protein.

Peptide Name Sequence and Modifications (N-to-C)

HPIV3 F protein residues 449-484 VALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSI

VG Ac-VALDPIDISIVLNKAKSDLEESKEWIRRSNGKLDSI-GSGSG-C-NH,

VG-Chol Ac-VALDPIDISIVLNKAKSDLEESKEWIRRSNGKLDSI-GSGS-C(Chol)-NH,
VG-PEG4-Chol Ac-VALDPIDISIVLNKAKSDLEESKEWIRRSNGKLDSI-GSGS-C(PEG4-Chol)-NH,
VG-PEG24-Chol Ac-VALDPIDISIVLNKAKSDLEESKEWIRRSNGKLDSI-GSGS-C(PEG24-Chol)-NH,

2.1. PEG Linker Influences Peptide-Lipid Interactions

Using a simplistic model of lipid monolayers composed solely of POPC, we have shown that
the membrane affinity of VG peptides is similar among the cholesterol-conjugated peptides [21].
The absence of cholesterol in this model membrane might explain why no significant differences were
observed in peptide affinities. To address this possibility, in this work we evaluated the ability of
VG peptides to induce changes on the surface pressure of lipid monolayers composed of POPC and
cholesterol in a 2:1 ratio. As expected, VG peptide did not induce a change in the lipid monolayer
surface pressure (Figure 1). On the other hand, all the cholesterol-conjugated peptides induced changes
in the surface pressure of lipid monolayers (Figure 1), until a plateau is reached, likely due to saturation
with the peptide or limited peptide-membrane effect. This result reinforces the importance of the
lipid moiety for the interaction. The fitting of the experimental data using Equation (1), enabled the
calculation of the apparent dissociation constant, K4. Interestingly, the peptide that showed least
affinity to the membrane was VG-PEG24-Chol (Table 2), despite inducing the largest change in surface
pressure along with VG-PEG4-Chol (Figure 1B). The maximum surface pressure change induced by
the peptides (Allnax) seems not to be affected by the linker length. However, the kinetic insertion
rate for VG peptides (k), calculated using Equation (2), still describes fast kinetics of interaction
for VG-PEG24-Chol, as previously observed for pure POPC membranes [21]. In fact, the dynamic
interaction that PEG24 confers on the peptide was confirmed in this experiment, where a moderate
membrane affinity that does not restrict the fast kinetics of peptide attachment and detachment from
the lipid membrane is optimal. For VG-PEG24-Chol, a two-phase kinetics is observed (Figure 1C,
section C1), in which a highly fast membrane insertion occurs for the first 20 s, followed by a moderate
interaction for the rest of the assay. The perturbation of the lipid bilayer by PEG [41], together with the
increased membrane absorption of longer polymers [42], may explain why VG-PEG24-Chol shows a
better insertion rate than VG-PEG4-Chol.
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Figure 1. Surface pressure perturbation of lipid monolayers. (A) Changes in the surface pressure
as a function of concentration of VG peptides (or DMSO) added to POPC:Chol 2:1 monolayers.
(B) Maximum surface pressure perturbation achieved at 0.63 uM of peptide (dashed line in A) or
DMSO. (C) Variation of the surface pressure of POPC:Chol 2:1 monolayers as a function of time after
injection of VG peptides at a final concentration of 0.2 uM. C1 is a section of the first 100 s of the kinetic
assay showing the two-phase behavior of VG-PEG24-Chol, characterized by a fast membrane insertion
during the first 20 s (a), followed by a slower interaction over time (b).

Table 2. Peptide-lipid monolayer interaction parameters. The data from Figure 1A were fitted using
Equation 1, yielding the maximum surface pressure change, Allnax, and the dissociation constant, Ky,
values presented here. The data on variation of the surface pressure of POPC:Chol 2:1 monolayer as
a function of time after injection of VG peptides at a final concentration of 0.2 uM (Figure 1C) were
fitted with Equation 2, permitting the calculation of the kinetic adsorption rate constant, k. Values are
means =+ standard error of the mean (SEM) of at least 3 experiments.

VG-Chol VG-PEG4-Chol VG-PEG24-Chol
Allmax (mN/m) 1.26 4 0.38 416 +0.16 5.01 + 0.80
K4 (1072 uM) 9.83 +1.59 10.90 + 1.59 30.89 + 14.52
k(10~%s™1) 2.06 +0.01 496 + 0.05 2417 + 7671 7.34 4+ 0.09 2

! The fit range was the first 20 s; ? the fit ranged from 20-2000 s

2.2. HPIV3 HRC Peptides Interact with PBMC

To assess the affinity of the peptides for cell membranes, we chose PBMC due to their potential

role in viral dissemination, as mentioned above. As the direct measurement of peptide tryptophan
fluorescence is impracticable with cells, an indirect reporter sensitive to membrane dipole potential was
used [15,21,24,26]. For the sake of comparison with surface pressure data, the initial experiments were



Molecules 2017, 22, 1190 50f 10

assessed with di-8-ANEPPS labelled liposomes of POPC and POPC:Chol 2:1 in the presence of different
concentrations of the peptides. In Figure 2A,B, the perturbation of the membrane dipole potential
in the presence of all cholesterol-tagged peptides was higher in membranes with cholesterol than in
those with pure POPC. In agreement with the pressure data (Table 2 and [21]), the highest changes in
surface pressure (Allnax) were obtained in cholesterol-containing membranes. These data indicate that
membrane composition influences the peptides’ behavior in the lipid bilayers. Recently, we showed
that two membrane fusion inhibitory peptides of measles virus perturb membranes composed of
POPC:Chol 2:1 more than those composed of pure POPC [28], a trend that was also apparent for HIV
fusion inhibitory peptides [26].
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Figure 2. Fusion inhibitory peptides” interaction with di-8-ANEPPS labeled liposomes and cells.
Binding profiles of VG peptides to LUVs of POPC (A) or POPC:Chol 2:1 (B), and to human PBMC (C),
obtained by plotting the di-8-ANEPPS excitation ratio R (I455/I525, normalized to the initial value), as a
function of peptide concentration.

PBMC were isolated from human blood samples, labeled with di-8-ANEPPS and incubated for
1 h with a range of peptide concentrations. Only the cholesterol-conjugated peptides induced changes
in the membrane dipole potential sensed by the fluorescent probe (Figure 2C). The unconjugated VG
peptide and the DMSO control (data not shown) did not cause variations in the measured parameter,
as found for the liposome assays. To quantify the interaction between the VG peptides and PBMC, the
ratio R of the fluorescence intensities with emission at 670 nm and excitation wavelengths at 455 nm
and 525 nm was measured and used to calculate the dissociation constant, K4, using Equation (3).
R decreases upon increasing the concentration of cholesterol-tagged peptides, while the unconjugated
VG peptide does not induce any change in the membrane dipole potential of PBMC. VG-PEG24-Chol
showed a higher affinity (K4 = 0.36 uM) in comparison to VG-PEG4-Chol (K4 = 0.77 uM), but similar
to VG-Chol (K4 = 0.32 uM). Despite the small variation in the dissociation constants (Table 3), they are



Molecules 2017, 22, 1190 6 of 10

not significantly different, indicating that these cholesterol-conjugated peptides have a similar affinity
towards PBMC membranes.

Table 3. Peptide affinity towards PBMC, assessed by di-8-ANEPPS fluorescence. The dissociation
constant, K4 and the asymptotic minimum value of R, Ry, were obtained by fitting the experimental
data to Equation (3). Values are means & SEM of at least 3 experiments.

Peptides Kq (uM) Rmin, norm
VG - -
VG-Chol 0.32 £ 0.11 —0.18 £ 0.01
VG-PEG4-Chol 0.77+£ 0.38 —0.21 £ 0.03
VG-PEG24-Chol 0.36 + 0.14 —0.17 £ 0.01

3. Materials and Methods

3.1. Peptide Synthesis and Lipids

All peptides were produced by standard Fmoc-solid phase methods. The cholesterol moiety
was attached to the peptide via chemoselective reaction between the thiol group of an extra cysteine
residue, added C-terminally to the sequence, and a bromoacetyl derivative of cholesterol, as previously
described [21,22,43]. POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) was purchased from
Avanti Polar Lipids (Alabaster, AL, USA), while cholesterol (Chol) was from Sigma (St. Louis, Missouri,
MO, USA).

3.2. Surface Pressure

Changes in the surface pressure of lipid monolayers induced by VG, VG-Chol, VG-PEG4-Chol or
VG-PEG24-Chol were measured in a NIMA ST900 Langmuir-Blodgett trough (NIMA, Coventry, UK),
at constant temperature (25 £ 0.5 °C). Briefly, a solution of lipids in chloroform was spread on a Teflon
trough of fixed area until it reached a surface pressure of 23 £ 1 mN/m. Peptide solutions were injected
in the subphase and the changes in surface pressure were followed for the time necessary to reach a
constant value. The surface pressure of an air-water interface upon injecting the largest concentration
of each peptide used throughout the studies was always below 15 mN/m. For this reason, the lowest
initial surface pressure of the lipid monolayers before the addition of the peptides to the subphase
was above that value. In this condition, the changes in surface pressure observed upon the injection
of the peptide can be attributed to an effect of the peptide on the monolayer’s interfacial tension.
The apparent dissociation constant (K4) was calculated from the adsorption Langmuir isotherm:

_ ATLyax(peptide)

AlT= Ky + (peptide) @

where Al is the change of surface pressure, Allnax is the maximum change of surface pressure
achieved and [peptide] is the peptide concentration. The insertion rate constant (k) was calculated
from the AIT vs. time (t) data, using the equation:

ATT = —e M ATT00 + Al yax )

3.3. Membrane Dipole Potential Assessed by Di-8-ANEPPS

Membrane dipole potential studies were based on fluorescence spectroscopy measurements
carried out in a Varian Cary Eclipse fluorescence spectrophotometer (Mulgrave, Australia). HEPES
and NaCl were from Merck (Darmstadt, Germany). The working buffer used throughout the studies
was HEPES 10 mM pH 7.4 in NaCl 150 mM. All fluorescence measurements were performed at
approximately 25 °C. Human blood samples were obtained from healthy volunteers, with their
previous written informed consent, at Instituto Portugués do Sangue (Lisbon, Portugal), with the
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approval of the joint Bioethics Committee of Faculdade de Medicina da Universidade de Lisboa and
Hospital de Santa Maria. All methods were performed in accordance with the relevant guidelines
and regulations. Isolation of peripheral blood mononuclear cells (PBMC) and labeling of these cells
with di-8-ANEPPS (Invitrogen, Carlsbad, CA, USA) were performed as previously described [15,44].
PBMC were isolated by density gradient using Lymphoprep (Axis-Shield, Oslo, Norway) and counted
in a MOXI Z Mini Automated Cell Counter (Orflo Technologies, Ketchum, ID, USA). Cells were
incubated at 3000 cells/pL in Pluronic-supplemented buffer with 3.3 uM di-8-ANEPPS during 1 h,
with gentle agitation. Unbound probe was washed with Pluronic-free buffer on two centrifugation
cycles. VG peptide series were incubated with PBMC at 100 cells/pL, during 1 h, with gentle agitation,
before the fluorescence measurements. For lipid vesicle labeling, suspensions with 500 uM of total
lipid were incubated overnight with di-8-ANEPPS 10 uM, to ensure maximum incorporation of the
probe. The maximum concentration of DMSO in the suspensions was 2.4% (v/v) at 6 uM of peptide or
in the controls (cholesterol). Excitation spectra and the ratio of intensities at the excitation wavelengths
455 and 525 nm (R = I455/1575) were obtained with emission set at 670 nm, in order to avoid membrane
fluidity-related artifacts [45,46]. Excitation and emission slits for these measurements were set to 5
and 10 nm, respectively. The variation of R with the peptide concentration was analyzed by a single
binding site model [47]:

R_ 1+ —Ré—gﬁ(peptit.ie) (©)]

Ry Ky + (peptide)

With R values normalized for Ry, the value in the absence of peptide. Ry, defines the asymptotic
minimum value of R and Ky is the apparent dissociation constant.

3.4. Data Analysis and Fitting

All the analysis and data fitting were performed in Prism 5 (GraphPad Software, La Jolla,
CA, USA).

4. Conclusions

The biophysical data shown here support the conclusions obtained in our previous work, where
VG-PEG24-Chol was identified among the VG series of HRC-derived peptides as the optimal inhibitor
of HPIV3 and NiV virus infection and also as the molecule with highest affinity towards POPC
membranes and inducing the most extensive changes in membrane surface pressure [21]. In the present
study, we included cholesterol as a component of membranes to study membranes that are more
ordered than those composed of pure POPC, a feature that could modulate the peptides’ biological
activity. All the cholesterol-conjugated peptides interact with cholesterol-rich model membranes
and also with human PBMC, expanding upon the data obtained previously for this set of peptides.
The membrane affinity of VG-PEG24-Chol is less for POPC:Chol 2:1 than for pure POPC, but with
a significant increment in the kinetic rate of insertion. Interestingly, the kinetic behavior observed
for VG-PEG24-Chol with POPC:Chol membranes shows rapid insertion in the membrane in the first
20 s, followed by a slower membrane binding after that initial time period. This kinetics favors the
dynamic interaction suggested in our previous work [21], where a flipping of the peptide between the
viral and host cell membranes may explain the antiviral efficacy of VG-PEG24-Chol. The addition of
cholesterol to the antiviral peptide is the driving force that anchors the peptides in the membrane, but
the PEG24 linker modulates peptide-membrane affinity and promotes the more dynamic interaction of
VG-PEG24-Chol, a feature that correlates with antiviral activity.

Acknowledgments: This work was supported by Fundagao para a Ciéncia e a Tecnologia — Ministério da
Ciéncia, Tecnologia e Ensino Superior (FCT-MCTES, Portugal) grant PTDC/BBB-BQB/3494/2014, and by NIH
grants RO1AI114736, R33AI101333 and RO1AI031971 to A.M. M.T.A. also acknowledges FCT-MCTES fellowship
SFRH/BD/95624/2013 and Fundacao Luso-Americana para o Desenvolvimento (FLAD) project 4/2016.



Molecules 2017, 22, 1190 8 of 10

Author Contributions: N.C.S.,, M.T.A.,, M.P,, A M., and A.H. conceived and designed the experiments. M.T.A.
and A.H. performed the experiments. M.T.A., A H. and N.C.S. analyzed the data. N.C.S.,, M.T.A., M.P. and A M.
wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Englund, J.A.; Moscona, A. Paramyxoviruses: Parainfluenza Viruses. In Viral Infections of Humans;
Kaslow, R.A., Stanberry, L.R., Le Duc, ].W.,, Eds.; Springer US: New York, NY, USA, 2014; pp. 579-600.
Clayton, B.A. Nipah virus: Transmission of a zoonotic paramyxovirus. Curr. Opin. Virol. 2017, 22, 97-104.
[CrossRef] [PubMed]

Satterfield, B.A.; Dawes, B.E.; Milligan, G.N. Status of vaccine research and development of vaccines for
Nipah virus. Vaccine 2016, 34, 2971-2975. [CrossRef] [PubMed]

St Vincent, M.R.; Colpitts, C.C.; Ustinov, A.V; Muqadas, M.; Joyce, M.A.; Barsby, N.L.; Epand, R.F;
Epand, R.M.; Khramyshev, S.A.; Valueva, O.A; et al. Rigid amphipathic fusion inhibitors, small molecule
antiviral compounds against enveloped viruses. Proc. Natl. Acad. USA 2010, 107, 17339-17344. [CrossRef]
[PubMed]

Vigant, F; Lee, J.; Hollmann, A_; Tanner, L.B.; Akyol Ataman, Z.; Yun, T.; Shui, G.; Aguilar, H.C.; Zhang, D.;
Meriwether, D.; et al. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion.
PLoS Pathog. 2013, 9, €1003297. [CrossRef] [PubMed]

Vigant, F.; Hollmann, A.; Lee, J.; Santos, N.C.; Jung, M.E.; Lee, B. The rigid amphipathic fusion inhibitor
dUY11 acts through photosensitization of viruses. J. Virol. 2014, 88, 1849-1853. [CrossRef] [PubMed]
Hollmann, A.; Castanho, M.A.R.B.; Lee, B.; Santos, N.C. Singlet oxygen effects on lipid membranes:
Implications for the mechanism of action of broad-spectrum viral fusion inhibitors. Biochem. ]. 2014,
459, 161-170. [CrossRef] [PubMed]

Hollmann, A.; Gongalves, S.; Augusto, M.T.; Castanho, M.A.R.B.; Lee, B.; Santos, N.C. Effects of singlet
oxygen generated by a broad-spectrum viral fusion inhibitor on membrane nanoarchitecture. Nanomedicine
2015, 11, 1163-1167. [CrossRef] [PubMed]

Schang, L.M. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action.
Future Virol. 2014, 9, 283-299. [CrossRef]

Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows
function. Nat. Rev. Drug Discov. 2011, 11, 37. [CrossRef] [PubMed]

Vigant, F; Santos, N.C.; Lee, B. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 2015, 13,
426-437. [CrossRef] [PubMed]

Jackman, J.A.; Lee, J.; Cho, N.-J. Nanomedicine for infectious disease applications: Innovation towards
broad-spectrum treatment of viral infections. Small 2016, 12, 1133-1139. [CrossRef] [PubMed]

Castanho, M.A.R.B,; Santos, N.; Wiley InterScience (Online service). Peptide Drug Discovery and Development;
Castanho, M., Santos, N.C., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011;
ISBN 9783527636730.

Matos, PM.; Franquelim, H.G.; Castanho, M.A.R.B.; Santos, N.C. Quantitative assessment of peptide-lipid
interactions.: Ubiquitous fluorescence methodologies. Biochim. Biophys. Acta 2010, 1798, 1999-2012.
[CrossRef] [PubMed]

Matos, PM.; Castanho, M.A.R.B.; Santos, N.C. HIV-1 fusion inhibitor peptides enfuvirtide and T-1249 interact
with erythrocyte and lymphocyte membranes. PLoS ONE 2010, 5, €9830. [CrossRef] [PubMed]
Franquelim, H.G.; Loura, L.M.S.; Santos, N.C.; Castanho, M.A.R.B. Sifuvirtide screens rigid membrane
surfaces. establishment of a correlation between efficacy and membrane domain selectivity among HIV
fusion inhibitor peptides. J. Am. Chem. Soc. 2008, 130, 6215-6223. [CrossRef] [PubMed]

Franquelim, H.G.; Veiga, A.S.; Weissmiiller, G.; Santos, N.C.; Castanho, M.A.R.B. Unravelling the molecular
basis of the selectivity of the HIV-1 fusion inhibitor sifuvirtide towards phosphatidylcholine-rich rigid
membranes. Biochim. Biophys. Acta 2010, 1798, 1234-1243. [CrossRef] [PubMed]

Badani, H.; Garry, R.E; Wimley, W.C. Peptide entry inhibitors of enveloped viruses: The importance of
interfacial hydrophobicity. Biochim. Biophys. Acta 2014, 1838, 2180-2197. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.coviro.2016.12.003
http://www.ncbi.nlm.nih.gov/pubmed/28088124
http://dx.doi.org/10.1016/j.vaccine.2015.12.075
http://www.ncbi.nlm.nih.gov/pubmed/26973068
http://dx.doi.org/10.1073/pnas.1010026107
http://www.ncbi.nlm.nih.gov/pubmed/20823220
http://dx.doi.org/10.1371/journal.ppat.1003297
http://www.ncbi.nlm.nih.gov/pubmed/23637597
http://dx.doi.org/10.1128/JVI.02907-13
http://www.ncbi.nlm.nih.gov/pubmed/24284320
http://dx.doi.org/10.1042/BJ20131058
http://www.ncbi.nlm.nih.gov/pubmed/24456301
http://dx.doi.org/10.1016/j.nano.2015.02.014
http://www.ncbi.nlm.nih.gov/pubmed/25791807
http://dx.doi.org/10.2217/fvl.13.130
http://dx.doi.org/10.1038/nrd3591
http://www.ncbi.nlm.nih.gov/pubmed/22173434
http://dx.doi.org/10.1038/nrmicro3475
http://www.ncbi.nlm.nih.gov/pubmed/26075364
http://dx.doi.org/10.1002/smll.201500854
http://www.ncbi.nlm.nih.gov/pubmed/26551316
http://dx.doi.org/10.1016/j.bbamem.2010.07.012
http://www.ncbi.nlm.nih.gov/pubmed/20646999
http://dx.doi.org/10.1371/journal.pone.0009830
http://www.ncbi.nlm.nih.gov/pubmed/20352107
http://dx.doi.org/10.1021/ja711247n
http://www.ncbi.nlm.nih.gov/pubmed/18410103
http://dx.doi.org/10.1016/j.bbamem.2010.02.010
http://www.ncbi.nlm.nih.gov/pubmed/20153294
http://dx.doi.org/10.1016/j.bbamem.2014.04.015
http://www.ncbi.nlm.nih.gov/pubmed/24780375

Molecules 2017, 22, 1190 90f 10

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Porotto, M.; Doctor, L.; Carta, P.; Fornabaio, M.; Greengard, O.; Kellogg, G.E.; Moscona, A. Inhibition of
hendra virus fusion. J. Virol. 2006, 80, 9837-9849. [CrossRef] [PubMed]

Porotto, M.; Rockx, B.; Yokoyama, C.C.; Talekar, A.; Devito, I.; Palermo, L.M.; Liu, J.; Cortese, R.; Lu, M.;
Feldmann, H.; et al. Inhibition of Nipah virus infection in vivo: Targeting an early stage of paramyxovirus
fusion activation during viral entry. PLoS Pathog. 2010, 6, €1001168. [CrossRef] [PubMed]

Mathieu, C.; Augusto, M.T.; Niewiesk, S.; Horvat, B.; Palermo, L.M.; Sanna, G.; Madeddu, S.; Huey, D.;
Castanho, M.A.R.B.; Porotto, M.; et al. Broad spectrum antiviral activity for paramyxoviruses is modulated
by biophysical properties of fusion inhibitory peptides. Sci. Rep. 2017, 7, 43610. [PubMed]

Ingallinella, P.; Bianchi, E.; Ladwa, N.A.; Wang, Y.-].; Hrin, R.; Veneziano, M.; Bonelli, F.; Ketas, T.].; Moore, ].P;
Miller, M.D.; et al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases
its antiviral potency. Proc. Natl. Acad. Sci. USA 2009, 106, 5801-5806. [CrossRef] [PubMed]

Lee, KK.; Pessi, A.; Gui, L.; Santoprete, A.; Talekar, A.; Moscona, A.; Porotto, M. Capturing a fusion
intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for
influenza virus. J. Biol. Chem. 2011, 286, 42141-42149. [CrossRef] [PubMed]

Hollmann, A.; Matos, PM.; Augusto, M.T.; Castanho, M.A .R.B.; Santos, N.C. Conjugation of cholesterol to
HIV-1 fusion inhibitor C34 increases peptide-membrane interactions potentiating its action. PLoS ONE 2013,
8, €60302. [CrossRef] [PubMed]

Welsch, J.C.; Talekar, A.; Mathieu, C.; Pessi, A.; Moscona, A.; Horvat, B.; Porotto, M. Fatal measles virus
infection prevented by brain-penetrant fusion inhibitors. J. Virol. 2013, 87, 13785-13794. [CrossRef] [PubMed]
Augusto, M.T,; Hollmann, A.; Castanho, M.A.R.B.; Porotto, M.; Pessi, A.; Santos, N.C. Improvement of HIV
fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure. J. Antimicrob. Chemother. 2014,
69, 1286-1297. [CrossRef] [PubMed]

Mathieu, C.; Huey, D.; Jurgens, E.; Welsch, J.C.; DeVito, I.; Talekar, A.; Horvat, B.; Niewiesk, S.; Moscona, A.;
Porotto, M. Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. J. Virol.
2015, 89, 1143-1155. [CrossRef] [PubMed]

Figueira, T.N.; Palermo, L.M.; Veiga, A.S.; Huey, D.; Alabi, C.A.; Santos, N.C.; Welsch, J.C.; Mathieu, C.;
Horvat, B.; Niewiesk, S.; et al. In vivo efficacy of measles virus fusion protein-derived peptides is modulated
by the properties of self-assembly and membrane residence. J. Virol. 2017, 91. [CrossRef] [PubMed]

Pike, L.J. Lipid rafts: Bringing order to chaos. J. Lipid Res. 2003, 44, 655-667. [CrossRef] [PubMed]

Silvius, J.R. Role of cholesterol in lipid raft formation: Lessons from lipid model systems. Biochim. Biophys.
Acta 2003, 1610, 174-183. [CrossRef]

Campbell, S.M.; Crowe, S.M.; Mak, ]. Lipid rafts and HIV-1: From viral entry to assembly of progeny virions.
J. Clin. Virol. 2001, 22, 217-227. [CrossRef]

Takeda, M.; Leser, G.P.; Russell, C.J.; Lamb, R.A. Influenza virus hemagglutinin concentrates in lipid raft
microdomains for efficient viral fusion. Proc. Natl. Acad. Sci. 2003, 100, 14610-14617. [CrossRef] [PubMed]
Leser, G.P; Lamb, R.A. Influenza virus assembly and budding in raft-derived microdomains: A quantitative
analysis of the surface distribution of HA, NA and M2 proteins. Virology 2005, 342, 215-227. [CrossRef]
[PubMed]

Manié, S.N.; de Breyne, S.; Debreyne, S.; Vincent, S.; Gerlier, D. Measles virus structural components are
enriched into lipid raft microdomains: A potential cellular location for virus assembly. J. Virol. 2000, 74,
305-311. [CrossRef] [PubMed]

Laliberte, J.P.; McGinnes, L.W.; Morrison, T.G. Incorporation of functional HN-F glycoprotein-containing
complexes into newcastle disease virus is dependent on cholesterol and membrane lipid raft integrity. J. Virol.
2007, 81, 10636-10648. [CrossRef] [PubMed]

Fleming, E.H.; Kolokoltsov, A.A.; Davey, R.A.; Nichols, J.E.; Roberts, N.J. Respiratory syncytial virus F
envelope protein associates with lipid rafts without a requirement for other virus proteins. J. Virol. 2006, 80,
12160-12170. [CrossRef] [PubMed]

Vareille, M.; Kieninger, E.; Edwards, M.R.; Regamey, N. The airway epithelium: Soldier in the fight against
respiratory viruses. Clin. Microbiol. Rev. 2011, 24, 210-229. [CrossRef] [PubMed]

Chiu, C.; Openshaw, PJ. Antiviral B cell and T cell immunity in the lungs. Nat. Immunol. 2014, 16, 18-26.
[CrossRef] [PubMed]


http://dx.doi.org/10.1128/JVI.00736-06
http://www.ncbi.nlm.nih.gov/pubmed/16973588
http://dx.doi.org/10.1371/journal.ppat.1001168
http://www.ncbi.nlm.nih.gov/pubmed/21060819
http://www.ncbi.nlm.nih.gov/pubmed/28344321
http://dx.doi.org/10.1073/pnas.0901007106
http://www.ncbi.nlm.nih.gov/pubmed/19297617
http://dx.doi.org/10.1074/jbc.M111.254243
http://www.ncbi.nlm.nih.gov/pubmed/21994935
http://dx.doi.org/10.1371/journal.pone.0060302
http://www.ncbi.nlm.nih.gov/pubmed/23565220
http://dx.doi.org/10.1128/JVI.02436-13
http://www.ncbi.nlm.nih.gov/pubmed/24109233
http://dx.doi.org/10.1093/jac/dkt529
http://www.ncbi.nlm.nih.gov/pubmed/24464268
http://dx.doi.org/10.1128/JVI.02417-14
http://www.ncbi.nlm.nih.gov/pubmed/25378493
http://dx.doi.org/10.1128/JVI.01554-16
http://www.ncbi.nlm.nih.gov/pubmed/27733647
http://dx.doi.org/10.1194/jlr.R200021-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/12562849
http://dx.doi.org/10.1016/S0005-2736(03)00016-6
http://dx.doi.org/10.1016/S1386-6532(01)00193-7
http://dx.doi.org/10.1073/pnas.2235620100
http://www.ncbi.nlm.nih.gov/pubmed/14561897
http://dx.doi.org/10.1016/j.virol.2005.09.049
http://www.ncbi.nlm.nih.gov/pubmed/16249012
http://dx.doi.org/10.1128/JVI.74.1.305-311.2000
http://www.ncbi.nlm.nih.gov/pubmed/10590118
http://dx.doi.org/10.1128/JVI.01119-07
http://www.ncbi.nlm.nih.gov/pubmed/17652393
http://dx.doi.org/10.1128/JVI.00643-06
http://www.ncbi.nlm.nih.gov/pubmed/17005642
http://dx.doi.org/10.1128/CMR.00014-10
http://www.ncbi.nlm.nih.gov/pubmed/21233513
http://dx.doi.org/10.1038/ni.3056
http://www.ncbi.nlm.nih.gov/pubmed/25521681

Molecules 2017, 22, 1190 10 of 10

39.

40.

41.

42.

43.

44.

45.

46.

47.

Aguayo-Hiraldo, PI.; Arasaratnam, R.J.; Tzannou, I.; Kuvalekar, M.; Lulla, P.; Naik, S.; Martinez, C.A.;
Piedra, P.A.; Vera, ].F,; Leen, A.M. Characterizing the cellular immune response to Parainfluenza virus 3.
J. Infect. Dis. 2017. [CrossRef] [PubMed]

Mathieu, C.; Pohl, C.; Szecsi, J.; Trajkovic-Bodennec, S.; Devergnas, S.; Raoul, H.; Cosset, F.-L.; Gerlier, D.;
Wild, T.F.,; Horvat, B. Nipah virus uses leukocytes for efficient dissemination within a host. J. Virol. 2011, 85,
7863-7871. [CrossRef] [PubMed]

Dutheil, D.; Underhaug Gjerde, A.; Petit-Paris, I.; Mauco, G.; Holmsen, H. Polyethylene glycols interact
with membrane glycerophospholipids: Is this part of their mechanism for hypothermic graft protection?
J. Chem. Biol. 2009, 2, 39-49. [CrossRef] [PubMed]

Gursahani, H.; Riggs-Sauthier, ]J.; Pfeiffer, J.; Lechuga-Ballesteros, D.; Fishburn, C.S. Absorption of
polyethylene glycol (PEG) polymers: The effect of PEG size on permeability. J. Pharm. Sci. 2009, 98,
2847-2856. [CrossRef] [PubMed]

Porotto, M.; Yokoyama, C.C.; Palermo, L.M.; Mungall, B.; Aljofan, M.; Cortese, R.; Pessi, A.; Moscona, A. viral
entry inhibitors targeted to the membrane site of action. J. Virol. 2010, 84, 6760—-6768. [CrossRef] [PubMed]
Matos, PM.; Freitas, T.; Castanho, M.A.R.B.; Santos, N.C. The role of blood cell membrane lipids on the
mode of action of HIV-1 fusion inhibitor sifuvirtide. Biochem. Biophys. Res. Commun. 2010, 403, 270-274.
[CrossRef] [PubMed]

Gross, E.; Bedlack, R.S.; Loew, L.M. Dual-wavelength ratiometric fluorescence measurement of the membrane
dipole potential. Biophys. J. 1994, 67, 208-216. [CrossRef]

Clarke, R.J.; Kane, D.J. Optical detection of membrane dipole potential: Avoidance of fluidity and
dye-induced effects. Biochim. Biophys. Acta 1997, 1323, 223-239. [CrossRef]

Cladera, J.; O’Shea, P. Intramembrane molecular dipoles affect the membrane insertion and folding of a
model amphiphilic peptide. Biophys. ]. 1998, 74, 2434-2442. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1093/infdis/jix203
http://www.ncbi.nlm.nih.gov/pubmed/28472480
http://dx.doi.org/10.1128/JVI.00549-11
http://www.ncbi.nlm.nih.gov/pubmed/21593145
http://dx.doi.org/10.1007/s12154-009-0014-x
http://www.ncbi.nlm.nih.gov/pubmed/19568791
http://dx.doi.org/10.1002/jps.21635
http://www.ncbi.nlm.nih.gov/pubmed/19408293
http://dx.doi.org/10.1128/JVI.00135-10
http://www.ncbi.nlm.nih.gov/pubmed/20357085
http://dx.doi.org/10.1016/j.bbrc.2010.11.013
http://www.ncbi.nlm.nih.gov/pubmed/21075080
http://dx.doi.org/10.1016/S0006-3495(94)80471-0
http://dx.doi.org/10.1016/S0005-2736(96)00188-5
http://dx.doi.org/10.1016/S0006-3495(98)77951-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	PEG Linker Influences Peptide-Lipid Interactions 
	HPIV3 HRC Peptides Interact with PBMC 

	Materials and Methods 
	Peptide Synthesis and Lipids 
	Surface Pressure 
	Membrane Dipole Potential Assessed by Di-8-ANEPPS 
	Data Analysis and Fitting 

	Conclusions 

