Supplementary Materials

for

NMR insights into the structure-function relationships in the binding of melanocortin analogues to the MC1R receptor

Maurício Morais ^{1,2}, Héctor Zamora-Carreras ³, Paula D. Raposinho ¹, Maria Cristina Oliveira ¹, David Pantoja-Uceda ³, João D. G. Correia ¹, and M. Angeles Jiménez ^{3,*}

- ¹ Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
- ² Current address: Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK
- ³ Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 119, 28006 Madrid, Spain
- * Correspondence: majimenez@iqfr.csic.es

List of contents:

Figure S1: Competitive binding curves for CycN-K6 and CycN-K7

Figure S2: Bar plots showing the $\Delta\delta c_{\alpha}$ and $\Delta\delta c_{\beta}$ values as a function of sequence for **CycS-C6**,

CycN-K6, and CycN-K7

Figure S3: Overlay of representative structures for CycS-C6, CycN-K6, and CycN-K7

highlighting the relative dispositions of DPhe, Arg and Trp side chains

Figure S4: 1H,1H-ROESY spectral region of CycN-K6 and CycN-K7

Table S1: 1H, 13C and 15N chemical shifts for CycN-K6

Table S2: 1H, 13C and 15N chemical shifts for CycN-K7

Table S3: NOEs between pNO2-benzoic acid unit and its adjacent residues His and Lys in

CycN-K6 and CycN-K7

Table S4: ³JaN coupling constants measured for CycS-C6, CycN-K6 and CycN-K7

Table S5: Structural statistics for the solution NMR structures of CycN-K6 and CycN-K7

Figure S1. Competitive binding curves for CycN-K6 (blue line) and CycN-K7 (red line)

Figure S2. Bar plots showing the $\Delta \delta_{C\alpha}$ ($\Delta \delta_{C\alpha} = \delta_{C\alpha}^{observed} - \delta_{C\alpha}^{RC}$, ppm), and $\Delta \delta_{C\beta}$ ($\Delta \delta_{C\beta} = \delta_{C\beta}^{observed} - \delta_{C\beta}^{RC}$, ppm) values as a function of sequence for peptides **CycS-C6** (black bars; Morais et al., 2012), **CycN-K6** (white bars), and **CycN-K7** (grey bars) in aqueous solution at pH 2.5 and 5 °C. Residue 6 is Cys in **CycS-C6** and Lys in **CycN-K6** and **CycN-K7**. Dashed lines indicate the random coil (RC) ranges. An asterisk (*) indicates that the C_a of His2 residues could not be measured (see Tables S1 and S2), and that the available random coil values are not appropriate for the C_β of Cys6 in **CycS-C6**, because the pNO₂-benzoic acid affects its chemical shift (see Figure 1). Random coil values were taken from Wishart et al., 1995.

Figure S3. Overlay of representative structures for peptides **CycS-C6** (grey) **CycN-K6** (green) and **CycN-K7** (orange) highlighting the relative dispositions of DPhe, Arg and Trp side chains.

Figure S4. ¹H, ¹H-ROESY spectral region of peptides **CycN-K6** and **CycN-K7** in aqueous solution (H_2O/D_2O 9:1 v/v) at pH 2.5 and 25 °C. Intraresidual H_{α} -NH cross-peaks are labelled with the residue name and number, and the sequential H_{α} -NH(i,i+1) and the non-sequential H_{α} -NH(i,i+2) with the residue number for the H α at the left or the right, and for the HN above or below. CONH₂ indicates the C-terminal amide. The intraresidual H_{α} -H_{ϵ 3} Trp5 cross-peak is also seen in this region. Non-sequential cross-peaks are boxed. The horizontal line at about 4.78 ppm comes from the H₂O solvent.

Residue	¹⁵ N	HN	$^{13}C_{\alpha}$	$C_{\alpha}H$	$^{13}C_{\mu}$	$C_{\mu}H$	Others
pNO ₂ -benzoic							С _{δ1} Н 8.42;
acid 1							С _{δ2} Н 6.85;
							C _{\varepsilon2} H 8.12
H2	119.5	8.72	nd	4.68	28.8	3.23, 3.23	С _{δ2} Η 7.15;
							C _{ε1} H 8.36
DF3	125.6	8.93	59.1	4.51	39.2	2.75, 3.08	С _{бб} , Н 7.19, 7.19;
							C _{εε} [,] H 7.36, 7.36;
							C _s H nd
R4	121.2	8.20	55.5	4.42	31.3	1.48, 1.69	$^{13}C_{\gamma} 27.0;$
							С _γ Н 1.02, 1.22;
							$^{13}C_{\delta}$ 43.7;
							C _δ H 2.48, 2.82;
							$^{15}N_{\epsilon}$ 84.6; N _{ϵ} H 6.90
							N _η H 6.52
W5	123.0	8.37	59.0	4.38	29.1	3.03, 3.26	$C_{\delta 1}$ H 7.04;
							$^{15}N_{\epsilon 1}$ 129.4;
							N _{ε1} H 10.00;
							С _{ε3} Н 7.52;
							С _{ζ3} Н 7.11;
							C _{η2} Η 7.17;
							C ₍₂ H 7.36
K6	122.2	8.01	56.7	4.21	34.1	1.66, 1.80	$^{13}C_{\gamma}26.4;$
							$C_{\gamma}H$ 1.37, 1.45;
							$C_{\delta} 30.6;$
							$C_{\delta\delta}$, H 1.62, 1.6/;
							$C_{\epsilon} 45.9;$
							$C_{\epsilon\epsilon}$ ['] H 3.30, 3.36;
177	101.0	7.01	565	1.07	22.2	1 (0 1 77	13 C 25 O
Κ/	121.3	/.91	30.3	4.06	33.2	1.68, 1.77	$C_{\gamma} 25.0;$
							$C_{\gamma}H$ 1.40, 1.40;
							$C_{\delta} 29.4,$
							$C_{\delta\delta}$, Π 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
							$C_{\varepsilon} 42.4,$
							$C_{\epsilon\epsilon}$ ¹¹ 2.77, 2.77, $^{15}N_{\star}$ 68.8.
							$N_{\rm c}$ U0.0, $N_{\rm c}$ H ₂ 7 54
CONH ₂	108.2	7.07, 7.48					1 Y (113 /.JH

Table S1. ¹H, ¹³C and ¹⁵N chemical shifts (ppm, from DSS) for peptide CycN-K6 in H_2O/D_2O 9:1 v/v at pH 2.5 and 25 °C. "nd" stands for not determined.

Residue	¹⁵ N	HN	$^{13}C_{\alpha}$	C _a H	$^{13}C_{\mu}$	$C_{\mu}H$	Others
pNO ₂ benzoic							C _{δ1} H 8.30;
acid 1							С _{δ2} Н 6.69;
							C _{ε2} H 7.86
H2	117.1	8.51	nd	4.85	29.5	3.24, 3.31	С _{δ2} Н 7.15;
							$C_{\epsilon 1}H 8.43$
DF3	124.4	8.84	59.2	4.49	38.9	2.83, 3.00	С _{бб'} Н 7.20, 7.20;
							С _{ее} , Н 7.34, 7.34;
							СζН 7.32
R4	124.6	8.34	55.9	4.13	30.0	1.41, 1.60	$^{13}C_{\gamma} 26.9;$
							С _γ Н 0.94, 1.08;
							$^{13}C_{\delta}$ 43.3;
							C _δ H 2.71, 2.85;
							$^{15}N_{\epsilon}$ 84.3;
							N _ε H 6.94
							N _η H 6.55
W5	122.5	7.80)	58.1	4.29	29.6	2.99, 3.04	C _{δ1} H 6.80;
							$^{15}N_{\epsilon 1}$ 129.4;
							N _{ε1} H 10.00;
							$C_{\epsilon 3}$ H 7.48;
							С _{ζ3} Н 7.07;
							C _{η2} Η 7.14;
							C _{ζ2} H 7.34
K6	123.3	7.89	56.7	4.33	32.5	1.57, 1.68	$^{13}C_{\gamma}24.6;$
							$C_{\gamma}H$ 1.25, 1.30;
							$^{13}C_{\delta}$ 29.1;
							$C_{\delta\delta}$, H 1.61, 1.61;
							$^{13}C_{\epsilon} 42.2;$
							$C_{\epsilon\epsilon}$ H 2.94, 2.94;
							$^{13}N_{\zeta}$ 68.0;
	104.4	0.04		4.21	22.7	1.05.1.00	$N_{\zeta}H_3$ 7.48
K /	124.4	8.36	56.6	4.31	33./	1.85, 1.90	$C_{\gamma} 25.4;$
							$C_{\gamma}H$ 1.48, 1.56;
							$C_{\delta} 30.0;$
							$C_{\delta}H$ 1.65, 1.65;
							U_{ϵ} 45.3;
							$C_{\rm g}$ H 3.27, 3.39;
CONH	107 1	7 11 7 50					ης πα, ης η πα
CONH ₂	107.1	7.11, 7.59					$^{15}N_{\zeta}$ nd; $N_{\zeta}H~$ nd

Table S2. ¹H, ¹³C and ¹⁵N chemical shifts (ppm, from DSS) for peptide CycN-K7 in H_2O/D_2O 9:1 v/v at pH 2.5 and 25 °C. "nd" stands for not determined.

Proton	from	Peptide		
pNO2-benzoic acid	Residue	CycN-K6	CycN-K7	
δ1	HN His 2	Strong	Strong	
δ1	ββ' His 2	Medium	Not detected	
δ2	εε' Lys 6	Strong		
δ2	δδ' Lys 6	Strong		
δ2	εε' Lys 7		Strong	
δ2	δδ' Lys 7		Strong	

Table S3. NOEs between pNO₂-benzoic acid unit and its adjacent residues His and Lys in peptides CycN-K6 and CycN-K7.

Table S4. ${}^{3}J_{\alpha N}$ coupling constants (Hz) measured in 1D ¹H-NMR spectra of peptides **CycS-C6** (Morais et al., 2012), **CycK6** and **CycK7** in aqueous solution (H₂O/D₂O v/v) at pH 2.5 at 25 °C. Experimental error: ± 0.4 Hz. ^a Accurate value could not be measured because of signal overlap.

	${}^{3}J_{\alpha N}$ coupling constant (Hz) for residue					
Peptide	His 2	DPhe 3	Arg 4	Trp 5	Cys/Lys 6	Lys 7
CycS-C6	7.9	4.8	7.0	7.1	7.0	7.1
CycN-K6	4.2	6.6	8.7	~6.5 ^a	7.6	6.5
CycN-K7	6.0	6.2	$\sim 8.6^{a}$	6.1	~8.1 ^a	7.7

	CycN-K6	CycN-K7
NOE distance constraints		
Short-range distances $(i-j) \ge 1$	80	71
Medium-range distances (i-j) < 5	3	3
Long-range distances $(i-j) \ge 5$	0	0
Total	83	74
Stereospecific assignment	1	2
Final CYANA target function value (Å ²)	4.5 E-5	1.4 E-7
RMSD to lowest target function structure (Å) a		
Backbone atoms + heavy atoms of linker	0.7	0.8
belonging to the cycle	2.8	1.8
An neavy atoms	2.0	1.0
Ramachandran plot statistics		
Most favorable regions (%)	70.0	60.0
Additional allowed regions (%)	30.0	40.0
Generously allowed regions (%)	0.0	0.0
Disallowed regions (%)	0.0	0.0

Table S5. Structural statistics of the 20 best NMR structures of peptides CycN-K6 and CycN-K7 in aqueous solution (H2O/D2O 9:1 v/v) at pH 2.5 at 25 °C.

^a The corresponding RMSD values for **CycS-C6** structure (Morais et al., 2012) are 0.4 Å for backbone + linker, and 1.9 Å for all heavy atoms.

References

Morais, M.; Raposinho, P.D.; Oliveira, M.C.; Pantoja-Uceda, D.; Jimenez, M.A.; Santos, I.; Correia, J.D.G. NMR structural analysis of MC1R-targeted rhenium(i) metallopeptides and biological evaluation of Tc-99m(i) congeners. Organometallics 2012, 31, 5929-5939.

Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. H-1, C-13 and N-15 random coil NMR chemical-shifts of the common amino-acids. 1. Investigations of nearest-neighbor effects. J Biomol NMR 1995, 5, 67-81.