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Abstract: An enantioselective (52–98% ee) Michael addition between cyclic β-diones and
α,β-unsaturated enones was established in the presence of quinine-based primary amine or
squaramide. A variety of cinnamones were smoothly converted into the desired 3,4-dihydropyrans
in moderate to high yields (63–99%). Chalcones were also suitable acceptors and gave rise to the
expected adducts in satisfactory yields (31–99%). The resulting adducts readily underwent further
modification to form fused 4H-pyran or 2,3-dihydrofuran.
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1. Introduction

The Michael addition of α,β-unsaturated compounds is an atom-economic carbon-carbon
bond-forming reaction in organic synthesis, and the development of the enantioselective catalytic
approach for this transformation, has attracted intensive attention [1–4]. Among the often-used
acceptors, unactivated α,β-unsaturated enones always exhibit relatively sluggish reactivity and emerge
as a class of historically challenging substrates for metal- and organocatalytic approaches [5–11].
In this context, the elegantly-designed chiral primary amines, especially those based on cinchona
alkaloids, provide a particularly efficient LUMO-lowering (LUMO: lowest unoccupied molecular
orbital) activation mode through the formation of iminium ions with these unsaturated enones [12–14].
Therefore, a broad range of conjugate additions of α,β-unsaturated enones with various different
nucleophiles have been successfully established with constantly high enantiocontrol [15–19].
However, the asymmetric Michael addition of cyclic 1,3-dicarbonyl compounds [20–27], except for
4-hydroxycoumarin and its analogues [7,28–36], to α,β-unsaturated enones, especially chalcones,
generally draws less attention in comparison with other type of donors [37–39], albeit the adducts
of such a conjugate addition reaction are versatile precursors to construct several classes of
compounds possessing enormous bioactivities [40,41]. Liu and Feng have successfully developed
an efficient Michael addition between dimedone and cinnamones employing the unmodified chiral
diphenylethylenediamine (DPEN) [37]. In contrast, only moderate enantioselectivity was obtained
for the Michael addition of dimedone to unfunctionalized chalcone according to Singh’s protocol [38].
Consequently, the development of the enantioselective Michael addition of cyclic β-diones to
α,β-unsaturated enone is still highly sought.

Based on our continuous interest in asymmetric Michael reactions involving α,β-unsaturated
enones [42–45], herein we would like to further extend the scope of donor to cyclic β-diones [20–23,46–
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49]. Dimedone and its analogues smoothly react with a variety of α,β-unsaturated enones, furnishing
the corresponding adducts in good yields and high levels of optical purities. The synthetic potential of
the desired Michael adduct is demonstrated by the easy formation of enantioenriched 4H-pyran and
2,3-dihydrofuran.

2. Results and Discussion

We were pleased to find that the Michael addition of dimedone 1a to cinnamone 2a proceeded
smoothly in the presence of 9-amino(9-deoxy)-epi-quinine 3a (Figure 1) in combination with a series
of different acid co-catalysts. It was documented that the acid co-catalyst had a great influence on
the yield and enantioinduction [16]. The aromatic carboxylic acids displayed superior catalytic effect
compared with sulfonic acid and aliphatic acids (Table 1, entries 4–9 vs. entries 1–3). The desired
3,4-dihydropyran 4a was generated with good to excellent enantioselectivities (87–90% ee) in the
presence of various aromatic acids. In contrast, salicylic acid (SA) afforded an optimal yield (99%) and
a superior enantioselectivity (90% ee) (entry 9 vs. entries 4–8) [50]. Having identified salicylic acid
as the preferential acid co-catalyst, we turned our attention to evaluate the effect of other primary
amines 3b and 3c (Figure 1) derived from naturally occurring cinchona alkaloids [51]. Both 3b and 3c
delivered the expected 3,4-dihydropyran 4a possessing opposite configurations to the adduct afforded
by 3a (entries 10 and 11). Moreover, these two pseudo-enantiomers displayed poorer catalytic activities
and enantioselectivities compared with 9-amino(9-deoxy)-epi-quinine 3a (entries 10 and 11 vs. entry
9). Subsequently, we examined the effect of the solvent with a combination of 3a and salicylic acid.
Tetrahydrofuran (THF) emerged as the favorable one in terms of reactivity and enantioselectivity (entry
15 vs. entries 9, 12–14). Notably, the model process proceeded equally smoothly when the amount of
cinnamone was decreased to 1.2 equivalents (entry 16 vs. entry 15). Reducing the reaction temperature
(0 ◦C) led to a slightly higher enantioselectivity (97% ee) (entry 17).

Table 1. Optimization of reaction conditions for the Michael addition of dimedone 1a to cinnamone 2a. a
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Figure 1. Structures of the chiral primary amine catalysts used.

With the optimal reaction conditions in hand, various cinnamones 2 were treated with dimedone
1a to determine the scope and generality of this Michael addition. As presented in Table 2, the electronic
property exerted marginal impact on this asymmetric process. The electron-deficient cinnamones 2c–2f
generally provided the corresponding 3,4-dihydropyrans in slightly higher chemical yields, in contrast
with the electron-rich acceptors 2g and 2h (Table 2, entries 3–6 vs. entries 7 and 8). Meanwhile, all these
enones gave rise to the desired adducts with excellent enantioselectivities (96–97% ee) irrespective of
electronic nature (entries 3–8). On the other hand, the steric hindrance slightly impaired the reactivity
of this conjugate addition reaction. In this context, the ortho-substituted enone 2b afforded somewhat
poorer conversion (87% yield) in comparison with other electron-poor cinnamones 2c–2f (96–99% yield)
(entry 2 vs. entries 3–6). Gratifyingly, 2i and 2j, both possessing a bulky naphthyl group at the β-site,
were also compatible with this catalytic system (entries 9 and 10). The resulting adducts 4ai and 4aj
were formed in excellent yields and with high levels of enantioselectivities. The heteroaromatic enones
2k and 2l were all suitable partners for this Michael reaction (entries 11 and 12). The alkyl-substituted
enones 2m and 2n were found to react relatively slowly with dimedone, however, synthetically useful
yields and satisfactory enantiocontrol were still obtained (entries 13 and 14). Remarkably, cyclic enone
2o was also a competent acceptor, furnishing the bridged-ring compound 4ao in 91% yield and 98% ee
(entry 15) [37]. The ketone substituent (R2) could also be varied from methyl group to ethyl group.
Although relatively poorer conversion was detected, excellent enantioselectivity was maintained for
this sterically more hindered acceptor (entry 16). It seemed to be an effect of increased steric bulk
on the ketone, retarding the acceptor to approach the catalyst, thereby slowing down the reaction
rate. On the other hand, the unsubstituted cyclic β-dione, 1,3-cyclohexanedione, was also tolerated by
this catalytic system. Acceptable yields (67–78%) and high degrees of enantiomeric excesses (94–96%
ee) were successfully achieved (entries 17–19), despite its relatively lower reactivity in contrast with
dimedone [20,52]. Notably, a one mmole-scale Michael addition of cinnamone 2a and dimedone 1a
was performed under optimal reaction conditions. Excellent chemical yield (95%) and enantiopurity
(94% ee) were both obtained (entry 1).

Table 2. Substrate scope of the Michael addition of cyclic β-diones to cinnamones and its analogues. a
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Table 2. Cont.

Entry 1 R2 R3 2 4 Yield (%) b ee (%) c

5 1a p-FC6H4 Me 2e 4ae 96 96
6 1a p-BrC6H4 Me 2f 4af 99 97
7 1a p-MeC6H4 Me 2g 4ag 95 97
8 1a p-MeOC6H4 Me 2h 4ah 89 97
9 1a 1-naphthyl Me 2i 4ai 89 96

10 1a 2-naphthyl Me 2j 4aj 98 98
11 1a 2-furanyl Me 2k 4ak 78 95
12 1a 2-thiophenyl Me 2l 4al 97 91
13 1a Me Me 2m 4am 69 91
14 1a n-Bu Me 2n 4an 75 94
15 1a -C3H6- 2o 4ao 91 98
16 1a Ph Et 2p 4ap 63 98
17 1b Ph Me 2a 4ba 71 94
18 1b p-ClC6H4 Me 2d 4bd 78 95
19 1b p-BrC6H4 Me 2f 4bf 67 96

a Unless otherwise noted, the reaction was performed with 0.1 mmol of 1a, 0.12 mmol of 2a, 20 mol% of 3a, and 40
mol % of salicylic acid in 1 mL of THF at 0 ◦C for 96 h. b Isolated yield after flash chromatography on silica gel.
c Determined by HPLC analysis on a chiral stationary phase. d Data within parentheses is that performed on an
one-mmole scale. e Configuration of 4ad.

Having identified cinnamones as the suitable acceptors, we successively turned our attention to
chalcone (Scheme 1), a class of challenging substrates for iminium ion activation [16]. Different than
cinnamones, the bulky benzene group might retard the later annulation process, therefore only the
initial Michael adduct was accessed. Considering the unstability of the Michael adduct due to aerobic
oxidation [53], a subsequent acetylation was conducted after the initial conjugate addition in a one-pot
manner. To our disappointment, the titled process allowed access to the final acetyl derivative 6aa in
fairly low yield (<20%), even when the initial Michael addition was performed at room temperature.
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Scheme 1. Michael addition of dimedone to chalcone.

Fortunately, we finally found that the Michael addition of chalcone worked properly in the
presence of squaramide 7 derived from quinine (see supporting material) [54,55]. As outlined in
Table 3, this Michael addition was independent of the electronic nature of the substituents on the
aromatic rings. Both the electron-rich acceptors 5b and 5f and the electron-deficient acceptors 5c
and 5g generated the expected adducts in satisfactory yields and excellent optical purities (Table 3,
entries 2 and 6 vs. entries 3 and 7). Moreover, the steric hindrance exerted influence on this
Michael addition to a certain extent. The enone 5e possessing a naphthyl group afforded relatively
lower isolated yield (68%) even after a prolonged reaction time, albeit accompanied by outstanding
enantioselectivity (entry 5). Heteroaromatic chalcones 5d and 5h were also favorable partners, giving
rise to the final acetyl derivatives with high levels of enantiopurities (entries 4 and 8). Except
for dimedone, 1,3-cyclohexanedione 1b was a competent donor as well, albeit a longer reaction
time was required in order to achieve complete conversion (entry 9). In contrast with Singh’s
precedent study (72% ee for 6aa) [38], our protocol efficiently improved the enantioselectivity and
displayed a wide substrate generality for this Michael addition of cyclic β-dione to chalcone [56].
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Moreover, a one mmole-scale Michael addition of chalcone 5a with dimedone 1a proceeded smoothly
as well. The expected acetyl derivate 6aa was formed in an almost quantitative yield and with
satisfactory enantioselectivity (entry 1). The alkyl-substituted enone 5i was also a suitable acceptor,
albeit unsatisfactory enantioselectivity was obtained for the resulting Michael adduct (entry 10).

Table 3. Substrate scope of the Michael addition of cyclic β-diones to chalcones. a
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1 1a Ph Ph 5a 6aa 95 (99) d 93 (91) d (R) e

2 1a p-ClC6H4 Ph 5b 6ab 99 94
3 1a p-MeC6H4 Ph 5c 6ac 96 93

4 f 1a 2-thiophenyl Ph 5d 6ad 95 91
5 f 1a 2-naphthyl Ph 5e 6ae 68 91
6 1a Ph p-ClC6H4 5f 6af 98 87
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9 f 1b Ph Ph 5a 6ba 93 91
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a Unless otherwise noted, the Michael addition was performed with 0.1 mmol of 1, 0.12 mmol of 5, and 20 mol % of
7 in 1 mL of chloroform at rt for 120 h. b Isolated yield after flash chromatography on silica gel. c Determined by
HPLC analysis on a chiral stationary phase. d Data within parentheses is that performed on a one-mmole scale.
e Configuration of 6aa. f Performed with 168 h. g Performed with 72 h.

The five-membered cyclic dione, 1,3-cyclopentadione 1c, was also tolerated by our catalytic
protocol (Scheme 2). However, it proved to be an inferior donor in terms of reactivity and
enantioselectivity, in contrast with the six-membered cyclic dione. The related acetyl derivative
6ca was obtained in an unsatisfactory yield and with moderate optical purity.
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To demonstrate the synthetic potential of this Michael reaction, product modification was
performed on the Michael adducts. 3,4-Dihydropyran 4aa readily underwent a dehydrating procedure
to afford 4H-pyran 8 without the loss of optical purity (Scheme 3a) [20]. The Michael adduct of
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chalcone could be utilized for the facile preparation of the biologically interesting 2,3-dihydrofuran
9 via a successive stereoselective oxidative cyclization process (Scheme 3b) [57]. The fused
2,3-dihydrofuran 9 was obtained as a single trans-diastereomer in a synthetically useful yield and with
excellent enantioselectivity.
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The absolute configuration of the Michael adduct 4ad (Table 2, entry 4) was determined to be
S via comparison of the optical rotation value and HPLC traces with that of the previous literature
reports [37]. On the other hand, the absolute configuration of 6aa (Table 3, entry 1) was established as
R by the analysis of the optical rotation value with Singh’s protocol [38]. To account for the observed
stereochemical outcome of these Michael reactions, the corresponding transition state models were
proposed and described in Scheme 4. The primary amine motif of 9-amino(9-deoxy)-epi-quinine
3a was engaged in iminium formation with the carbonyl group of benzalacetone 1a. Meanwhile,
dimedone was deprotonated by the tertiary amine moiety of aminocatalyst 3a and orientated via
hydrogen-bonding, thereby leading to a favorable attack toward the si-face of cinnamon 1a. As a result,
the desired S-configured product 4a was obtained. On the other hand, chalcone 5a was efficiently
activated via hydrogen-bonding interactions between the NH moiety of the squaramide 7 and the
carbonyl group of chalcone. Furthermore, the re-face approach of dimedone was induced by the
tertiary amine of the squaramide 7 and led to the formation of the major stereoisomer with the R
configuration [58].
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3. Materials and Methods

3.1. General Remarks

1H- and 13C-NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts (δ)
are reported in ppm downfield from CDCl3 (δ = 7.26 ppm) for 1H-NMR and relative to the central
CDCl3 resonance (δ = 77.0 ppm) for 13C-NMR spectroscopy. Coupling constants (J) are given in
Hz. ESI-HRMS spectrometry was performed with a Bruker Daltonics LCQDECA ion trap mass
spectrometer. Enantiomeric excess was determined by HPLC analysis on Chiralpak AD-H, OD-H,
and IC columns in comparison with the authentic racemates. Optical rotation data were recorded on a
Rudolph Autopol I automatic polarimeter. Commercial grade solvents were dried and purified by
standard procedures as specified in reference [59]. THF (AR grade) was used as received. All other
reagents were purchased from commercial sources and were used without further purification.

3.2. General Procedure for the Asymmetric Michael Reaction of Cinnamones

9-Amino-epi-quinine 3a (6.5 mg, 0.02 mmol), α,β-unsaturated enones (0.12 mmol), dimedone
(14.0 mg, 0.1 mmol), and salicylic acid (4.9 mg, 0.04 mmol) were dissolved in THF (1 mL) without
stirring. Once the solution was cooled down to 0 ◦C, the reaction mixture was stirred for 96 h.
After the solvent was removed in vacuo, the residue was purified by flash chromatography on silica
gel (EtOAc/petroleum ether) to afford the desired 3,4-dihydropyran.

2-Hydroxy-2,7,7-trimethyl-4-phenyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4aa) [37]. Colorless oil; 99%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.30–7.23 (m,
2H), 7.19–7.12 (m, 3H), 4.03 (br s, 0.6H), 3.84 (t, J = 8.4 Hz, 0.6H), 3.31 (br s, 0.4H), 3.16–3.12 (m, 0.4H),
2.50–2.15 (m, 6H), 1.48 (s, 1.7H), 1.46 (s, 1.3H), 1.19 (s, 1.7H), 1.16 (s, 1.3H), 1.11 (s, 1.7H), 1.07 (s, 1.3H);
13C-NMR (100 MHz, CDCl3) δ (ppm) 197.3, 196.9, 169.6, 168.6, 144.9, 142.9, 128.8, 128.2, 127.8, 127.7,
126.9, 126.8, 126.5, 125.7, 113.0, 110.5, 99.8, 99.2, 50.6, 50.5, 42.9, 42.8, 42.7, 40.5, 33.9, 32.8, 31.9, 31.4,
29.5, 28.6, 28.3, 27.8, 27.4, 27.1; 97% ee was determined by HPLC on AD-H column, hexane/i-propanol
(80/20), 1.0 mL/min, UV 254 nm, tminor = 4.820 min, tmajor = 7.627 min; [α]20

D = −4.2◦ (c = 0.028, EtOH).

4-(2-Chlorophenyl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ab) [60]. Colorless
oil; 87% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.36–7.29
(m, 1H), 7.10–7.05 (m, 3H), 4.36–4.24 (m, 1H), 3.83 (br s, 0.5H), 3.43 (br s, 0.5H), 2.49–2.11 (m, 6H), 1.49
(s, 1.4H), 1.48 (s, 1.6H), 1.18 (s, 1.6H), 1.16 (s, 1.4H), 1.09 (s, 1.6H), 1.07 (s, 1.4H); 13C-NMR (100 MHz,
CDCl3) δ (ppm) 196.7, 196.5, 169.7, 140.5, 133.6, 129.9, 129.5, 127.8, 127.6, 126.9, 126.7, 126.6, 112.6, 110.4,
99.7, 98.1, 50.7, 50.6, 42.9, 42.8, 37.7, 31.9, 31.5, 29.4, 28.9, 28.2, 27.9, 27.6, 27.3; 91% ee was determined
by HPLC on AD-H column, hexane/i-propanol (90/10), 1.0 mL/min, UV 254 nm, tminor = 7.703 min,
tmajor = 9.353 min; [α]20

D = −32.8◦ (c = 0.021, EtOH).

4-(3-chlorophenyl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ac) [37]. Colorless
oil; 99% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.19–7.09
(m, 3H), 7.02 (t, J = 7.8 Hz, 1H), 4.34 (br s, 0.5H), 3.89 (t, J = 4.8 Hz, 0.5H), 3.82–3.77 (m, 1H), 2.48–2.09
(m, 6H), 1.44 (s, 3H), 1.18 (s, 1.3H), 1.15 (s, 1.7H), 1.09 (s, 1.3H), 1.07 (s, 1.7H); 13C-NMR (100 MHz,
CDCl3) δ (ppm) 197.3, 197.0, 169.9, 169.1, 147.3, 145.9, 134.2, 133.9, 129.6, 129.5, 129.1, 127.9, 127.5,
127.1, 126.4, 125.9, 125.27, 125.25, 112.6, 110.3, 99.6, 98.1, 50.6, 50.5, 42.9, 42.8, 42.5, 40.5, 33.9, 33.3,
31.9, 31.5, 29.9, 29.5, 28.6, 28.3, 27.8, 27.4, 26.9; 96% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 5.267 min, tmajor = 7.583 min; [α]20

D =
+5.5◦ (c = 0.039, EtOH).

4-(4-Chlorophenyl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ad) [37]. Colorless
oil; 99% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.23
(d, J = 8.8 Hz, 1H), 7.21 (d, J = 8.8 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 3.95
(d, J = 4.4 Hz, 0.5H), 3.81 (d, J = 8.6 Hz, 0.5H), 3.16–3.09 (m, 0.5H), 2.95 (br s, 0.4H), 2.49–2.17 (m,
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6H), 1.53 (s, 1.5H), 1.50 (s, 1.5H), 1.18 (s, 1.5H), 1.15 (s, 1.5H), 1.10 (s, 1.4H), 1.08 (s, 1.6H); 13C-NMR
(100 MHz, CDCl3) δ (ppm) 196.9, 196.6, 169.3, 168.3, 143.5, 141.9, 132.1, 131.3, 129.1, 128.8, 128.49,
128.47, 128.3, 127.9, 112.9, 110.5, 99.5, 97.9, 50.74, 50.72, 42.9, 42.8, 42.5, 40.3, 33.6, 32.6, 32.0, 31.5, 29.5,
28.7, 28.3, 28.1, 27.5, 27.4; 97% ee was determined by HPLC on OD-H column, hexane/i-propanol
(80/20), 1.0 mL/min, UV 254 nm, tminor = 5.493 min, tmajor = 8.417 min; [α]20

D = +13.8◦ (c = 0.039, EtOH),
[α]D

2◦ = +10.5◦ (c = 0.039, DCM).

4-(4-Fluorophenyl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ae) [37]. Colorless
oil; 96% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.13
(t, J = 6.4 Hz, 1H), 7.08 (t, J = 6.4 Hz, 1H), 6.94 (t, J = 9.4 Hz, 1H), 6.92 (t, J = 8.8 Hz, 1H), 3.94 (br s,
0.5H), 3.82 (dd, J = 9.8, 8.2 Hz, 0.5H), 3.51–3.27 (m, 1H), 2.48–2.11 (m, 6H), 1.47 (s, 3H), 1.78 (s, 1.4H),
1.14 (s, 1.6H), 1.09 (s, 1.4H), 1.07 (s, 1.6H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 197.2, 196.9, 169.5,
168.6, 161.2 (d, J1

C-F = 243.3 Hz), 160.9 (d, J1
C-F = 241.8 Hz), 140.6 (d, J4

C-F = 3.2 Hz), 139.0 (d, J4
C-F

= 3.3 Hz), 129.2, 129.1, 128.5 (d, J3
C-F = 7.8 Hz), 128.2 (d, J3

C-F = 7.8 Hz), 115.4 (d, J2
C-F = 21.1 Hz),

115.0 (d, J2
C-F = 21.2 Hz), 114.6, 114.4, 113.0, 110.7, 99.6, 98.1, 60.4, 50.7, 50.6, 42.9, 42.8, 42.7, 40.6, 33.4,

32.6, 31.9, 31.4, 29.5, 28.6, 28.3, 27.9, 27.3, 27.0, 20.9, 14.1; 96% ee was determined by HPLC on AD-H
column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 5.043 min, tmajor = 9.330 min;
[α]20

D = −5.4◦ (c = 0.041, EtOH).

4-(4-Bromophenyl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4af) [37]. Colorless
oil; 99% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.37 (d,
J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 3.90 (t, J = 5.4 Hz,
0.5H), 3.72 (pseudo triple, J = 5.4 Hz, 0.6H), 3.50 (br s, 0.5H), 3.19 (br s, 0.4H), 2.48–2.07 (m, 6H), 1.49
(s, 1.6H), 1.48 (s, 1.4H), 1.17 (s, 1.4H), 1.14 (s, 1.6H), 1.09 (s, 1.4H), 1.07 (s, 1.6H); 13C-NMR (100 MHz,
CDCl3) δ (ppm) 197.0, 196.7, 169.4, 168.4, 144.1, 142.6, 131.6, 131.4, 130.9, 129.6, 128.9, 128.7, 120.0, 119.4,
112.8, 110.4, 99.5, 97.9, 50.7, 50.6, 42.9, 42.8, 42.4, 40.3, 33.7, 32.8, 31.9, 31.5, 29.5, 28.7, 28.3, 28.1, 27.4,
27.3; 97% ee was determined by HPLC on AD-H column, hexane/i-propanol (80/20), 1.0 mL/min, UV
254 nm, tminor = 5.720 min, tmajor = 10.570 min; [α]20

D = +13.9◦ (c = 0.010, EtOH).

2-Hydroxy-2,7,7-trimethyl-4-(p-tolyl)-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ag) [60]. Colorless oil; 95%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.16–7.01 (m,
4H), 3.99 (br s, 0.6H), 3.80 (pseudo triple, J = 8.8 Hz, 0.6H), 3.33 (pseudo double, J = 9.6 Hz, 0.8H),
2.50–2.13 (m, 9H), 1.47 (s, 3H), 1.19 (s, 1.7H), 1.15 (s, 1.3H), 1.10 (s, 1.7H), 1.07(s, 1.3H); 13C-NMR (100
MHz, CDCl3) δ (ppm) 197.1, 196.7, 169.2, 169.1, 141.8, 139.6, 136.2, 135.1, 129.8, 129.0, 128.7, 127.5,
126.8, 126.7, 113.3, 110.5, 99.7, 98.1, 50.7, 42.9, 42.8, 42.7, 40.3, 33.6, 31.9, 31.5, 29.5, 28.8, 28.3, 27.9, 27.4,
27.3, 21.0, 20.9; 97% ee was determined by HPLC on AD-H column, hexane/i-propanol (80/20), 1.0
mL/min, UV 254 nm, tminor = 5.313 min, tmajor = 7.733 min; [α]20

D = +6.2◦ (c = 0.041, EtOH).

2-Hydroxy-4-(4-methoxyphenyl)-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ah) [37].
Colorless oil; 89% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ
(ppm) 7.10 (d, J = 8.8 Hz, 1.1H), 7.05 (d, J = 8.8 Hz, 0.9H), 6.82 (d, J = 7.6 Hz, 1.1H), 6.79 (d, J = 8.4
Hz, 0.9H), 3.99 (br s, 0.6H), 3.80 (pseudo triple, J = 8.8 Hz, 0.6H), 3.75 (s, 3H), 3.59 (br s, 0.4H), 3.31
(br s, 0.6H), 2.49–2.11 (m, 6H), 1.47 (s, 1.7H), 1.46 (s, 1.3H), 1.19 (s, 1.7H), 1.15 (s, 1.3H), 1.10 (s, 1.7H),
1.07 (s, 1.3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 197.0, 196.7, 169.1, 167.9, 158.2, 157.6, 136.8, 134.4,
128.7, 127.9, 127.8, 114.5, 113.8, 113.4, 113.3, 110.6, 99.7, 88.1, 55.2, 55.1, 50.8, 42.9, 42.8, 42.7, 40.1, 33.2,
31.9, 31.49, 31.47, 29.5, 28.8, 28.3, 27.9, 27.5; 97% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 6.353 min, tmajor = 12.270 min; [α]20

D =
+6.5◦ (c = 0.030, EtOH).

2-Hydroxy-2,7,7-trimethyl-4-(naphthalen-1-yl)-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ai). Colorless oil;
89% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 8.18 (d,
J = 8.0 Hz, 0.3H), 8.13 (d, J = 8.4 Hz, 0.7H), 7.90 (d, J = 8.0 Hz, 0.7H), 7.85 (d, J = 7.6 Hz, 0.3H), 7.74 (d,
J = 8.4 Hz, 0.7H), 7.68 (d, J = 8.0 Hz, 0.3H), 7.65–7.54 (m, 2.5H), 7.34 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 5.6
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Hz, 0.5H), 4.82 (d, J = 6.8 Hz, 0.8H), 4.70 (br s, 0.5H), 3.39 (br s, 0.8H), 2.63–2.23 (m, 6H), 1.47 (s, 3H),
1.27 (s, 2H), 1.24 (s, 1H), 1.17 (s, 2H), 1.12 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 196.9, 196.7,
169.7, 138.6, 134.7, 130.8, 129.3, 128.9, 127.9, 126.2, 125.8, 125.4, 125.3, 125.2, 123.3, 122.5, 118.8, 117.1,
110.2, 99.5, 98.3, 50.8, 50.7, 43.1, 42.9, 37.9, 32.1, 31.5, 29.4, 29.2, 28.0, 27.9, 27.83, 27.80; ESI-HRMS calcd.
for C22H24O3 + H+ 337.1804, found 337.1798; 96% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 4.927 min, tmajor = 6.790 min; [α]20

D =
−88.9◦ (c = 0.045, EtOH).

2-Hydroxy-2,7,7-trimethyl-4-(naphthalen-2-yl)-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4aj) [37]. Colorless
oil; 98% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.81–7.69
(m, 3H), 7.59 (s, 0.5H), 7.55 (s, 0.5H), 7.44–7.35 (m, 2.5H), 7.27–7.26 (m, 0.5H), 4.19 (br s, 0.5H), 4.01
(pseudo triple, J = 8.6 Hz, 0.5H), 3.29–3.17 (m, 1H), 2.57–2.17 (m, 6H), 1.49 (s, 3H), 1.26 (s, 2H), 1.19
(s, 1H), 1.13 (s, 1.6H), 1.09 (s, 1.4H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 197.2, 196.9, 169.7, 168.6,
142.3, 140.5, 133.6, 133.5, 132.3, 132.1, 128.8, 127.9, 127.7, 127.53, 127.52, 127.4, 126.1, 125.7, 125.65,
125.57, 125.52, 125.4, 124.9, 124.8, 113.0, 110.4, 99.8, 98.2, 50.7, 50.6, 42.9, 42.8, 42.5, 40.0, 34.1, 32.9,
32.0, 31.5, 29.9, 29.5, 28.7, 28.4, 27.9, 27.5, 27.2; 98% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 7.073 min, tmajor = 13.053 min; [α]20

D =
+60.2◦ (c = 0.051, EtOH).

4-(Furan-2-yl)-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ak) [37]. Colorless oil;
78% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.36 (s,
0.6H), 7.29 (s, 0.4H), 6.28 (dd, J = 3.0, 1.8 Hz, 1H), 6.02 (d, J = 3.2 Hz, 0.7H), 5.95 (d, J = 2.0 Hz, 0.3H),
4.15 (d, J = 6.8 Hz, 1H ), 4.04 (br s, 1H), 2.55–2.22 (m, 6H), 1.55 (s, 2.2 H), 1.41 (s, 0.8H), 1.17 (s, 3H),
1.11 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 196.7, 168.9, 155.5, 141.9, 140.3, 110.6, 110.3, 108.4,
106.0, 105.3, 98.3, 50.7, 42.8, 35.9, 32.0, 28.6, 28.2, 27.9, 26.1; 95% ee was determined by HPLC on AD-H
column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 5.327 min, tmajor = 6.257 min;
[α]20

D = −12.9◦ (c = 0.015, EtOH).

2-Hydroxy-2,7,7-trimethyl-4-(thiophen-2-yl)-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4al). Brown oil; 97%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.17 (d, J = 4.8
Hz, 0.6H), 7.06 (d, J = 4.8 Hz, 0.6H), 6.89–6.87 (m, 1H), 6.81 (s, 1H), 4.32 (d, J = 5.6 Hz, 0.6H), 4.23
(pseudo triple, J = 8.0 Hz, 0.4H), 3.53 (br s, 1H), 2.51-2.11 (m, 6H), 1.52 (s, 2H), 1.46 (s, 1H), 1.19 (s,
2H), 1.16 (s, 1H), 1.10 (s, 2H), 1.07 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 196.8, 196.7, 169.1,
168.1, 148.7, 147.2, 127.0, 126.4, 124.6, 124.2, 123.8, 123.7, 123.2, 122.4, 112.9, 110.7, 99.4, 98.4, 50.6, 42.8,
42.7, 39.9, 31.9, 31.4, 29.4, 29.3, 28.5, 28.4, 27.7, 27.66, 27.61, 27.3; ESI-HRMS calcd. for C16H20O3S +
H+ 293.1211, found 293.1206; 91% ee was determined by HPLC on AD-H column, hexane/i-propanol
(80/20), 1.0 mL/min, UV 254 nm, tminor = 5.850 min, tmajor = 7.423 min; [α]20

D =−18.9◦ (c = 0.047, EtOH).

2-Hydroxy-2,4,7,7-tetramethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4am). Colorless oil; 69% yield
purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 3.66–3.35 (m, 1H),
2.77–2.66 (m, 1H), 2.29–2.06 (m, 6H), 1.55 (s, 1.4H), 1.50 (s, 1.6H), 1.23 (d, J = 7.6 Hz, 2H), 1.21 (d, J =
7.6 Hz, 1H), 1.05 (s, 3H), 1.02 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 213.5, 198.5, 197.9, 170.7,
166.7, 166.5, 117.1, 114.9, 114.3, 99.1, 97.8, 51.3, 51.2, 51.1, 49.2, 43.2, 42.8, 42.7, 41.5, 39.2, 31.9, 31.4, 29.8,
29.2, 28.4, 28.1, 28.0, 27.2, 26.9, 24.3, 22.9, 22.1, 19.7, 19.4, 18.5; ESI-HRMS calcd. for C13H20O3 + H+

225.1491, found 225.1485; 91% ee was determined by HPLC on IC column, hexane/i-propanol (95/5),
1.0 mL/min, UV 254 nm, tminor = 49.740 min, tmajor = 77.910 min; [α]20

D = −5.5◦ (c = 0.017, EtOH).

4-Butyl-2-hydroxy-2,7,7-trimethyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4an). Colorless oil; 75% yield
purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 3.19–3.10 (m, 1H),
2.93–2.87 (m, 0.5H), 2.64 (s, 0.3H), 2.59 (s, 0.3H), 2.30–2.09 (m, 6H), 2.01–1.89 (m, 1H), 1.79–1.73 (m, 1H),
1.65–1.45 (m, 3H), 1.35–1.19 (m, 4H), 1.06–1.02 (m, 6H), 0.89–0.81 (m, 3H); 13C-NMR (100 MHz, CDCl3)
δ (ppm) 213.8, 198.6, 197.8, 171.5, 167.1, 166.7, 115.7, 114.2, 113.9, 99.3, 97.9, 51.4, 51.3, 51.2, 48.3, 43.2,
42.9, 42.8, 38.2, 35.1, 32.1, 31.8, 31.7, 31.3, 30.9, 30.5, 29.8, 29.7, 29.4, 29.3, 28.5, 28.3, 28.2, 28.1, 28.0, 27.9,
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27.1, 26.8, 22.8, 22.7, 22.4, 14.1, 14.0; ESI-HRMS calcd. for C16H26O3 + H+ 267.1960, found 267.1964;
94% ee was determined by HPLC on IC column, hexane/i-propanol (70/30), 1.0 mL/min, UV 254 nm,
tminor = 4.440 min, tmajor = 8.093 min; [α]20

D = −13.0◦ (c = 0.034, EtOH).

2-Hydroxy-9,9-dimethyl-2,3,4,5,6,8,9,10-octahydro-7H-2,6-methanobenzo[b]oxocin-7-one (4ao) [37]. White
solid; 91% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 4.46
(s, 1H ), 3.15 (s, 1H), 2.29 (s, 2H), 2.19 (s, 2H), 2.02 (d, J = 12.8 Hz, 1H), 1.93 (d, J = 12.4 Hz, 1H), 1.74 (d,
J = 15.2 Hz, 1H), 1.16 (dd, J = 13.0, 3.8 Hz, 1H), 1.59 (d, J = 11.2 Hz, 2H), 1.45–1.33 (m, 2H), 1.04 (s, 6H);
13C-NMR (100 MHz, CDCl3) δ (ppm) 196.7, 171.2, 112.3, 101.3, 50.3, 42.0, 38.7, 36.2, 32.3, 28.5, 28.4, 28.2,
26.9, 19.2; 98% ee was determined by HPLC on IC column, hexane/i-propanol (90/10), 1.0 mL/min,
UV 254 nm, tmajor = 12.987 min, tminor = 14.423 min; [α]20

D = +4.7◦ (c = 0.023, EtOH).

2-Ethyl-2-hydroxy-7,7-dimethyl-4-phenyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ap) [37]. Colorless oil;
63% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.24–7.16
(m, 2.5H), 7.12 (d, J = 7.6 Hz, 1H), 7.09–7.06 (m, 1.5H), 3.99 (br s, 0.5H), 3.76 (pseudo triple, J = 9.0 Hz,
0.5H), 3.15–3.00 (m, 1H), 2.44–2.09 (m, 6H), 1.69–1.63 (m, 2H), 1.13 (s, 1.6H), 1.09 (s, 1.4H), 1.04 (s, 1.6H),
1.00 (s, 1.4H), 0.89 (0.86) (t, J = 7.6 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 196.9, 196.5, 169.3,
168.0, 145.1, 142.9, 129.0, 128.3, 126.9, 126.7, 125.8, 113.3, 110.4, 101.3, 99.7, 50.8, 42.9, 42.8, 40.3, 38.0,
33.9, 33.6, 33.2, 32.0, 31.9, 31.5, 29.5, 28.9, 28.3, 27.5, 7.3, 7.2; 98% ee was determined by HPLC on AD-H
column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 5.247 min, tmajor = 11.667 min;
[α]20

D = −5.4◦ (c = 0.018, EtOH).

2-Hydroxy-2-methyl-4-phenyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4ba) [60]. White solid; 71% yield
purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.28 (t, J = 7.2 Hz,
1H), 7.24 (d, J = 7.2 Hz, 1H), 7.19–7.12 (m, 3H), 4.02 (br s, 0.5H), 3.84 (pseudo triple, J = 8.8 Hz, 0.5H),
3.36–3.31(m, 0.5H), 2.63–2.45 (m, 2H), 2.42–2.30 (m, 2H), 2.27–2.15 (m, 2H), 2.11–1.95 (m, 2H), 1.47 (s,
1.5H), 1.45 (s, 1.5H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 197.2, 196.9, 171.1, 170.1, 144.8, 142.7, 128.9,
128.3, 127.9, 127.7, 126.79, 126.77, 126.6, 125.8, 114.4, 111.6, 99.6, 97.9, 42.8, 40.4, 36.9, 33.9, 32.5, 29.3,
29.2, 27.9, 27.2, 20.8, 20.2; 94% ee was determined by HPLC on AD-H column, hexane/i-propanol
(80/20), 1.0 mL/min, UV 254 nm, tminor = 5.343 min, tmajor = 6.693 min; [α]20

D = −8.2◦ (c = 0.019, EtOH).

4-(4-chlorophenyl)-2-hydroxy-2-methyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4bd): White solid; 78%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.25 (d, J = 7.2
Hz, 0.6H), 7.21 (d, J = 8.8 Hz, 1.5H), 7.11 (d, J = 8.8 Hz, 0.6H), 7.07 (d, J = 7.6 Hz, 1.4H), 3.95 (pseudo
triple, J = 4.8 Hz, 0.5H), 3.82 (pseudo triple, J = 9.0 Hz, 0.5H), 3.33 (br s, 0.5H), 3.05 (br s, 0.5H), 2.61–2.33
(m, 4H), 2.26–2.17 (m, 2H), 2.07–1.97 (m, 2H), 1.51 (s, 1.6H), 1.49 (s, 1.4H); 13C-NMR (100 MHz, CDCl3)
δ (ppm) 197.2, 196.8, 171.2, 170.2, 143.4, 141.8, 132.0, 131.2, 128.8, 128.4, 128.3, 128.2, 114.2, 111.6, 99.4,
97.8, 42.5, 40.3, 36.9, 33.5, 32.6, 29.3, 29.2, 28.1, 27.2, 20.7, 20.2; ESI-HRMS calcd. for C16H17ClO3 + H+

293.0944, found 293.0937; 95% ee was determined by HPLC on AD-H column, hexane/i-propanol
(80/20), 1.0 mL/min, UV 254 nm, tminor = 6.397 min, tmajor = 8.430 min; [α]20

D =−11.9◦ (c = 0.007, EtOH).

4-(4-Bromophenyl)-2-hydroxy-2-methyl-2,3,4,6,7,8-hexahydro-5H-chromen-5-one (4bf). White solid; 67%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.38 (d, J = 8.8
Hz, 0.8H), 7.36 (d, J = 8.8 Hz, 1.2H), 7.05 (d, J = 10.0 Hz, 0.8H), 7.03 (d, J = 8.8 Hz, 1.2H), 3.93 (pseudo
triple, J = 5.0 Hz, 0.5H), 3.81 (pseudo triple, J = 9.2 Hz, 0.5H), 3.23 (br s, 0.5H), 2.99 (br s, 0.5H), 2.61–2.33
(m, 4H), 2.28–2.17 (m, 2H), 2.07–1.97 (m, 2H), 1.52 (s, 1.6H), 1.49 (s, 1.4H); 13C-NMR (100 MHz, CDCl3)
δ (ppm) 197.2, 196.8, 171.2, 170.2, 143.9, 142.4, 131.7, 131.4, 130.9, 129.6, 128.8, 128.6, 120.1, 119.4, 114.2,
111.6, 99.4, 97.8, 42.5, 40.3, 36.9, 36.8, 33.6, 32.7, 29.3, 29.2, 28.1, 27.2, 20.7, 20.2; ESI-HRMS calcd. for
C16H17BrO3 + H+ 337.0439, found 337.0438; 96% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 6.780 min, tmajor = 8.967 min; [α]20

D =
−8.5◦ (c = 0.008, EtOH).
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3.3. Procedure for the Asymmetric Michael Reaction of Chalcones

Dimedone 1a (14.0 mg, 0.1 mmol), chalcone 5a (25.0 mg, 0.12 mmol), and quinine-based
squaramide 7 (12.5 mg, 0.02 mmol) were dissolved in chloroform (1.0 mL). After stirring at room
temperature for 120 h, triethylamine (41.7 µL, 0.3 mmol) was added in one portion. Subsequently,
acetyl chloride (14.2 µL, 0.2 mmol) was added dropwise. Once the reaction completed (1 h), the crude
product was purified over silica gel by column chromatography (EtOAc/petroleum ether) to afford
6aa (37.1 mg, 95 % yield) as a colorless oil.

5,5-Dimethyl-3-oxo-2-(3-oxo-1,3-diphenylpropyl)cyclohex-1-en-1-yl acetate (6aa) [38,53]. 1H-NMR (400 MHz,
CDCl3) δ (ppm) 7.96 (d, J = 8.0 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.28–7.22 (m, 4H),
7.15 (t, J = 6.6 Hz, 1H), 4.79 (t, J = 7.4 Hz, 1H), 3.82 (ABX, JAB = 17.2 Hz, JAX = 8.0 Hz, 1H), 3.75 (ABX,
JAB = 17.2, JBX = 6.8 Hz, 1H), 2.53 (AB, JAB = 18.0 Hz, 1H), 2.42 (AB, JAB = 17.2 Hz, 1H), 2.24 (s, 2H),
2.15 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 198.7, 198.6, 167.3, 163.9,
142.0, 136.8, 132.9, 128.9, 128.5, 128.2, 128.1, 127.4, 126.1, 116.4, 51.7, 42.7, 40.8, 35.7, 32.5, 28.1, 27.9, 20.9;
93% ee was determined by HPLC on AD-H column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254
nm, tminor = 7.467 min, tmajor = 10.760 min; [α]20

D = +41.5◦ (c = 0.032, CHCl3).

2-(1-(4-Chlorophenyl)-3-oxo-3-phenylpropyl)-5,5-dimethyl-3-oxocyclohex-1-en-1-yl acetate (6ab). Colorless
oil; 99% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.95 (d,
J = 7.6 Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.4 Hz, 2H), 7.24–7.17 (m, 4H), 4.74 (t, J = 7.2 Hz, 1H),
3.79 (ABX, JAB = 17.6 Hz, JAX = 7.2 Hz, 1H), 3.72 (ABX, JAB = 17.8 Hz, JBX = 7.8 Hz, 1H), 2.53 (AB, JAB =
18.0 Hz, 1H), 2.42 (AB, JAB = 17.6 Hz, 1H), 2.24 (s, 2H), 2.20 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H); 13C-NMR
(100 MHz, CDCl3) δ (ppm) 198.8, 198.3, 167.4, 164.0, 140.5, 136.7, 133.1, 131.9, 128.9, 128.7, 128.6, 128.3,
128.1, 51.7, 42.7, 40.6, 35.3, 32.6, 27.9, 27.8, 20.9; ESI-HRMS calcd. for C25H26ClO4 + H+ 425.1514, found
425.1514; 94% ee was determined by HPLC on AD-H column, hexane/i-propanol (70/30), 1.0 mL/min,
UV 254 nm, tminor = 6.560 min, tmajor = 11.080 min; [α]20

D = +79.6◦ (c = 0.019, EtOH).

5,5-Dimethyl-3-oxo-2-(3-oxo-3-phenyl-1-(p-tolyl)propyl)cyclohex-1-en-1-yl acetate (6ac). Colorless oil; 96%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.96 (d, J = 7.2
Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H),
4.74 (t, J = 7.4 Hz, 1H), 3.82 (ABX, JAB = 17.2 Hz, JAX = 8.0 Hz, 1H), 3.73 (ABX, JAB = 17.2 Hz, JBX = 6.8
Hz, 1H), 2.53 (AB, JAB = 17.6 Hz, 1H), 2.43 (AB, JAB = 17.6 Hz, 1H), 2.28 (s, 3H), 2.24 (s, 2H), 2.17 (s, 3H),
1.02 (s, 3H), 1.01 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 198.9, 198.8, 167.5, 163.8, 138.9, 136.9,
135.7, 132.9, 129.1, 128.9, 128.5, 128.1, 127.4, 51.8 42.8, 40.9, 35.5, 32.6, 28.0, 27.9, 20.9; ESI-HRMS calcd.
for C26H29O4 + H+ 405.2060, found 405.2061; 93% ee was determined by HPLC on AD-H column,
hexane/i-propanol (70/30), 1.0 mL/min, UV 254 nm, tminor = 6.467 min, tmajor = 13.007 min; [α]20

D =
+70.1◦ (c = 0.018, EtOH).

5,5-Dimethyl-3-oxo-2-(3-oxo-3-phenyl-1-(thiophen-2-yl)propyl)cyclohex-1-en-1-yl acetate (6ad). Colorless oil;
95% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.72–7.67
(m, 1H), 7.54 (d, J = 4.0 Hz, 1H), 7.20–7.16 (m, 4H), 7.10–7.09 (m, 1H), 7.05–7.00 (m, 1H), 4.71 (t, J = 7.4
Hz, 1H), 3.72 (ABX, JAB = 16.2 Hz, JAX = 8.4 Hz, 1H), 3.57 (ABX, JAB = 16.4 Hz, JBX = 6.4 Hz, 1H), 2.45
(AB, JAB = 18.0 Hz, 1H), 2.36 (AB, JAB = 17.6 Hz, 1H), 2.16 (s, 2H), 2.12 (s, 3H), 0.93 (s, 6H); 13C-NMR
(100 MHz, CDCl3) δ (ppm) 198.8, 191.7, 167.4, 164.1, 144.3, 141.8, 133.7, 132.1, 128.7, 128.2, 128.0, 127.4,
126.2, 51.7, 42.7, 41.3, 36.0, 32.6, 27.9, 27.8, 20.9; ESI-HRMS calcd. for C23H25O4S + H+ 397.1468, found
397.1468; 91% ee was determined by HPLC on AD-H column, hexane/i-propanol (70/30), 1.0 mL/min,
UV 254 nm, tminor = 6.903 min, tmajor = 10.567 min; [α]20

D = +29.6◦ (c = 0.016, EtOH).

5,5-Dimethyl-2-(1-(naphthalen-2-yl)-3-oxo-3-phenylpropyl)-3-oxocyclohex-1-en-1-yl acetate (6ae). Colorless
oil; 68% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 8.00 (d,
J = 8.0 Hz, 2H), 7.78–7.73 (m, 4H), 7.56 (t, J =7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.43–7.39 (m, 3H), 4.97
(t, J = 7.2 Hz, 1H), 3.94 (ABX, JAB = 17.6 Hz, JAX = 8.4 Hz, 1H), 3.88 (ABX, JAB = 17.0 Hz, JBX = 7.0 Hz,
1H), 2.56 (AB, JAB = 18.0 Hz, 1H), 2.43 (AB, JAB = 18.0 Hz, 1H), 2.28 (AB, JAB = 16.8 Hz, 1H), 2.24 (AB,
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JAB = 17.6 Hz, 1H), 2.15 (s, 3H), 1.04 (s, 3H), 1.01 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 198.8,
198.6, 167.4, 164.1, 139.5, 136.9, 133.3, 133.0, 132.0, 128.8, 128.5, 128.1, 127.9, 127.7, 127.5, 126.5, 125.8,
125.6, 125.3, 51.7, 42.8, 40.8, 35.9, 32.6, 27.9, 27.8, 20.9; ESI-HRMS calcd. for C29H29O4 + H+ 441.2060,
found 441.2061; 91% ee was determined by HPLC on AD-H column, hexane/i-propanol (70/30), 1.0
mL/min, UV 254 nm, tminor = 7.943 min, tmajor = 11.667 min; [α]20

D = +79.7◦ (c = 0.011, EtOH).

2-(3-(4-Chlorophenyl)-3-oxo-1-phenylpropyl)-5,5-dimethyl-3-oxocyclohex-1-en-1-yl acetate (6af). White solid;
98% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.90 (d, J =
8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.26–7.23 (m, 4H), 7.20–7.23 (m, 1H), 4.77 (t, J = 7.4 Hz, 1H), 3.82
(ABX, JAB = 17.2 Hz, JAX = 8.0 Hz, 1H), 3.70 (ABX, JAB = 17.2 Hz, JBX = 6.8 Hz, 1H), 2.54 (AB, JAB = 17.6
Hz, 1H), 2.42 (AB, JAB = 18.0 Hz, 1H), 2.24 (s, 2H), 2.17 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H); 13C-NMR (100
MHz, CDCl3) δ (ppm) 198.9, 197.5, 167.3, 164.0, 141.8, 139.3, 135.1, 129.5, 128.75, 128.72, 128.2, 127.4,
126.2, 51.7, 42.7, 40.7, 35.8, 32.5, 27.8, 20.9; ESI-HRMS calcd. for C25H26ClO4 + H+ 425.1514, found
425.1514; 87% ee was determined by HPLC on AD-H column, hexane/i-propanol (70/30), 1.0 mL/min,
UV 254 nm, tminor = 9.913 min, tmajor = 15.547 min; [α]20

D = +57.9◦ (c = 0.016, EtOH).

5,5-Dimethyl-3-oxo-2-(3-oxo-1-phenyl-3-(p-tolyl)propyl)cyclohex-1-en-1-yl acetate (6ag). Colorless oil; 99%
yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.87 (d, J = 8.0 Hz,
2H), 7.29–7.23 (m, 6H), 7.19–7.11 (m, 1H), 4.79 (t, J = 7.4 Hz, 1H), 3.79 (ABX, JAB = 16.4 Hz, JAX = 7.6
Hz, 1H), 3.73 (ABX, JAB = 16.8 Hz, JBX = 6.8 Hz, 1H), 2.53 (AB, JAB = 18.0 Hz, 1H), 2.42 (AB, JAB = 17.6
Hz, 1H), 2.40 (s, 3H), 2.25 (s, 2H), 2.17 (s, 3H), 1.03 (s, 3H), 1.01 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ
(ppm) 198.8, 198.3, 167.4, 163.8, 143.7, 142.1, 134.4, 129.1, 129.0, 128.2, 128.1, 127.5, 126.1, 51.7, 42.7, 40.6,
35.7, 32.6, 27.9, 21.6, 20.9; ESI-HRMS calcd. for C26H29O4 + H+ 405.2060, found 405.2061; 95% ee was
determined by HPLC on AD-H column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor =
9.573 min, tmajor = 13.540 min; [α]20

D = +77.1◦ (c = 0.018, EtOH)

5,5-Dimethyl-3-oxo-2-(3-oxo-1-phenyl-3-(thiophen-2-yl)propyl)cyclohex-1-en-1-yl acetate (6ah). Colorless
oil; 99% yield purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.88
(d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.4 Hz, 2H), 7.03–6.97 (m, 1H), 6.83–6.74 (m,
2H), 4.97 (t, J = 7.0 Hz, 1H), 3.82 (ABX, JAB = 17.4 Hz, JAX = 7.8 Hz, 1H), 3.70 (ABX, JAB = 17.6 Hz,
JBX = 6.4 Hz, 1H), 2.49 (AB, JAB = 18.0 Hz, 1H), 2.38 (AB, JAB = 17.6 Hz, 1H), 2.19 (s, 2H), 2.15 (s, 3H),
0.97 (s, 3H), 0.95 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 198.4, 198.0, 167.3, 164.1, 145.7, 136.6,
133.0, 128.5, 128.2, 128.1, 126.4, 124.1, 123.3, 51.6, 42.6, 42.3, 32.6, 31.5, 27.9, 27.8, 20.9; ESI-HRMS calcd.
for C23H25O4S + H+ 397.1468, found 397.1469; 97% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 7.623 min, tmajor = 9.193 min; [α]20

D =
+102.9◦ (c = 0.019, EtOH)

3-Oxo-2-(3-oxo-1,3-diphenylpropyl)cyclohex-1-en-1-yl acetate (6ba). Colorless oil; 93% yield purified by
flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.97 (d, J = 7.6 Hz, 2H), 7.55 (t,
J = 7.2 Hz, 1H), 7.44 (t, J =7.4 Hz, 2H), 7.29–7.23 (m, 4H), 7.16 (t, J = 6.6 Hz, 1H), 4.80 (t, J = 7.2 Hz,
1H), 3.81 (ABX, JAB = 17.8 Hz, JAX = 6.6 Hz, 1H), 3.75 (ABX, JAB = 17.6 Hz, JBX = 7.6 Hz, 1H), 2.65 (dt,
J = 18.0, 6.4 Hz, 1H), 2.53 (dt, J = 18.0, 5.9 Hz, 1H), 2.37 (t, J = 6.4 Hz, 2H), 2.17 (s, 3H), 1.98–1.89 (m, 2H);
13C-NMR (100 MHz, CDCl3) δ (ppm) 198.8, 198.7, 167.3, 165.6, 142.0, 136.8, 132.9, 130.1, 128.5, 128.1,
128.0, 127.5, 126.1, 40.8, 37.9, 35.7, 29.0, 20.9, 20.7; ESI-HRMS calcd. for C23H23O4 + H+ 363.1591, found
363.1591; 91% ee was determined by HPLC on AD-H column, hexane/i-propanol (70/30), 1.0 mL/min,
UV 254 nm, tminor = 7.667 min, tmajor = 10.660 min; [α]20

D = +92.4◦ (c = 0.016, EtOH).

3-Oxo-2-(3-oxo-1,3-diphenylpropyl)cyclopent-1-en-1-yl acetate (6ca). Colorless oil; 31% yield purified by
flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.94 (d, J = 7.6 Hz, 2H), 7.52 (t,
J = 7.2 Hz, 1H), 7.42 (t, J = 7.0 Hz, 2H), 7.36–7.34 (m, 2H), 7.26 (t, J = 6.8 Hz, 2H), 7.18 (t, J = 7.0 Hz, 1H),
4.49 (t, J = 7.2 Hz, 1H), 4.06 (ABX, JAB = 17.6 Hz, JBX = 8.8 Hz, 1H), 3.56 (ABX, JAB = 17.6 Hz, JBX = 6.0
Hz, 1H), 2.93–2.79 (m, 2H), 2.47–2.38 (m, 2H), 2.21 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm) 205.3,
198.3, 176.7, 166.5, 141.9, 136.8, 133.1, 129.9, 128.6, 128.5, 128.0, 127.8, 126.7, 40.8, 35.8, 34.7, 26.9, 21.1;



Molecules 2017, 22, 1096 13 of 17

ESI-HRMS calcd. for C22H22O4 + H+ 349.1440, found 349.1437; 57% ee was determined by HPLC on
AD-H column, hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 8.787 min, tmajor = 12.983
min; [α]20

D = +29.0◦ (c = 0.014, EtOH).

5,5-Dimethyl-3-oxo-2-(1-oxo-1-phenylhexan-3-yl)cyclohex-1-en-1-yl acetate (6ai). Colorless oil; 93% yield
purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.91 (d, J = 7.2 Hz,
2H), 7.52 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 3.32 (ABX, JAB = 16.4 Hz, JBX = 6.8 Hz, 1H), 3.23
(ABX, JAB = 16.0 Hz, JBX = 6.4 Hz, 1H), 2.46 (AB, JAB = 18.0 Hz, 1H), 2.41 (AB, JAB = 18.0 Hz, 1H), 2.27
(AB, JAB = 15.6 Hz, 1H), 2.21 (AB, JAB = 15.2 Hz, 1H), 2.20 (s, 3H), 1.77–1.68 (m, 2H), 1.54–1.47 (m, 1H),
1.21–1.16 (m, 2H), 1.06 (s, 3H), 0.99 (s, 3H), 0.85 (t, J = 7.2 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ (ppm)
199.7, 199.4, 167.7, 163.8, 137.2, 132.8, 128.6, 128.4, 128.1, 52.1, 42.7, 42.0, 35.0, 32.4, 31.6, 28.0, 27.9, 21.1,
20.9, 13.9; ESI-HRMS calcd. for C22H29O4 + H+ 357.2066, found 357.2064; 52% ee was determined by
HPLC on IC column, hexane/i-propanol (99/1), 1.0 mL/min, UV 254 nm, tmajor = 39.457 min, tminor =
42.963 min; [α]20

D = +4.75◦ (c = 0.022, EtOH).

3.4. Preparation of 4H-Pyran via Dehydrating

Thionyl chloride (7.3 µL, 11.9 mg, 0.1 mmol) was added dropwise to a solution of 4a (28.6 mg,
0.1 mmol, 97% ee) and pyridine (14.1 µL, 15.8 mg, 0.2 mmol) in DCM (1.0 mL) at rt. After the reaction
completed, the solvent was removed under reduced pressure. The residue was subjected to silica gel
flash chromatography (EtOAc/petroleum ether) to provide 8 (19.3 mg, 72% yield) as a white solid.

2,7,7-Trimethyl-4-phenyl-4,6,7,8-tetrahydro-5H-chromen-5-one (8): 1H-NMR (400 MHz, CDCl3) δ (ppm)
7.29–7.24 (m, 4H), 7.17–7.13 (m, 1H), 4.90 (d, J = 4.8 Hz, 2H), 4.28 (d, J = 4.0 Hz, 1H), 2.39 (s, 2H), 2.22
(AB, JAB = 16.0 Hz, 1H), 2.16 (AB, JAB = 16.4 Hz, 1H), 1.88 (s, 3H), 1.09 (s, 3H), 1.03 (s, 3H); 13C-NMR
(100 MHz, CDCl3) δ (ppm) 197.3, 164.7, 145.8, 145.6, 128.2, 127.8, 126.2, 112.2, 104.5, 50.8, 41.4, 35.2, 31.9,
29.1, 27.6, 18.6; ESI-HRMS calcd. for C18H20O2 + H+ 269.1542, found 269.1541; 98% ee was determined
by HPLC on OD-H column, hexane/i-propanol (90/10), 1.0 mL/min, UV 254 nm, tminor = 5.880 min,
tmajor = 8.550 min; [α]20

D = −182.7◦ (c = 0.024, EtOH).

3.5. Preparation of Fused Dihydrofuran via Stereoselective Oxidative Cyclization

After the initial Michael addition between 5a (49.9 mg, 0.24 mmol) and 1a (28.0 mg, 0.2 mmol) was
completed, the corresponding adduct was purified via flash column chromatography. Subsequently,
the mixture of PhIO (66 mg, 0.3 mmol) and Michael adduct (69.6 mg, 0.2 mmol) in H2O (1 mL)
was treated with Bu4NI (111 mg, 0.3 mmol). The reaction mixture was warmed up to 30 ◦C and
allowed to stir for 16 h. The reaction was followed by TLC until completion. The reaction mixture was
successively quenched with saturated Na2S2O3 (25 mL) and extracted by dichloromethane (25 mL × 3).
The organic layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified by
column chromatography on silica gel (EtOAc/petroleum ether) to furnish 2,3-dihydrobenzofuran 9 in
61% yield as a colorless oil.

2-Benzoyl-6,6-dimethyl-3-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (9) [61]. White solid; 61% yield
purified by flash column chromatography; 1H-NMR (400 MHz, CDCl3) δ (ppm) 7.82 (d, J = 7.2 Hz,
2H), 7.61 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.36 (t, J =7.2 Hz, 2H), 7.30–7.28 (m, 1H), 7.25–7.23
(m, 2H), 5.89 (d, J = 4.8 Hz, 1H), 4.40 (d, J = 4.0 Hz, 1H), 2.63 (ABX, JAB = 18.0 Hz, JAX = 1.6 Hz, 1H),
2.53 (AB, JAB = 17.6 Hz, 1H), 2.25 (AB, JAB = 16.4 Hz, 1H), 2.18 (AB, JAB = 16.4 Hz, 1H), 1.17 (s, 6H);
13C-NMR (100 MHz, CDCl3) δ (ppm) 193.5, 192.8, 176.3, 141.2, 134.1, 133.1, 129.0, 128.89, 128.86, 127.6,
127.3, 115.1, 91.8, 51.1, 48.9, 37.6, 34.3, 29.0, 28.3; 93% ee was determined by HPLC on AD-H column,
hexane/i-propanol (80/20), 1.0 mL/min, UV 254 nm, tminor = 10.843 min, tmajor = 15.107 min; [α]20

D =
−44.6◦ (c = 0.021, EtOH).
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4. Conclusions

In summary, we have successfully developed an enantioselective Michael addition of cyclic
β-diones to α,β-unsaturated enones in the presence of quinine-based primary amine or squaramide.
These asymmetric processes displayed especially broad substrate generalities, and various cinnamones
and chalcones furnished the desired adducts in good to high yields. Although chalcones proved to be a
class of challenging acceptors in the precedent study [38], good reactivities and excellent enantiopurities
were achieved in the case of their Michael addition with cyclic β-diones via our protocol.

Supplementary Materials: The supplementary materials are available online.
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