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Abstract: Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion
channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals
in the treatment of a series of diseases, such as Alzheimer’s disease, Parkinson’s disease, and
epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new
drug lead compounds and play important roles in neurobiological research as well. Thus, the
accurate identification of conotoxin types will provide key clues for the biological research and
clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and
function are experimentally validated. However, it is time-consuming and costly to acquire the
structure and function information by using biochemical experiments. Therefore, it is important to
develop computational tools for efficiently and effectively recognizing conotoxin types based on
sequence information. In this work, we reviewed the current progress in computational identification
of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for
extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for
classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi)
future perspectives on conotoxin classification. The paper provides the basis for in-depth study of
conotoxins and drug therapy research.
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1. Introduction

Conotoxins are the group of cysteine-rich neurotoxic peptides isolated from the venom of the
marine snails of the genus Conus. [1]. Mature conotoxins consist of 10 to 30 residues with ≥1 disulfide
bonds. By binding to various ion channels, conotoxins possess important biological functions [2].
Conotoxins play key roles in pharmacology and neuroscience as well as new drug development;
and have attracted the attention of scientists worldwide [3–9]. Wang et al. [10] found there was
apparent synergistic analgesic effects that were produced by ω-conotoxin MVIIA and morphine in
rats. Conantokin-R [11] is a highly potent anticonvulsant with a protective index of 17.5 when tested
on an audiogenic mouse model of epilepsy.
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Over the last few decades, conotoxins have been the subject of pharmacological interest [12],
and have been used in the treatment of various diseases such as Alzheimer’s disease, Parkinson’s
disease, epilepsy, chronic pain, and cardiovascular diseases. Conical spirodotoxin, as a non-addictive
analgesic, has good prospects. Under the same dose, the effect of conical spirodotoxin is 1000 times
higher than that of morphine. Conotoxins have also been characterized by various rapeutic potentials
in pre-clinical or clinical trials, such as antinociceptive [13], antiepileptic [14], neuroprotective, and
cardioprotective activities [15]. In addition, they also have the potential to cultivate insect-resistant
crop varieties and be the candidate of polypeptide pesticide [16,17]. The therapeutic potential of
conotoxin is ascribed to their special ion channel-targets in the nervous systems [4]. Thus, they have
been regarded as excellent pharmacological probes and potential candidate compounds for drug
design for neurological disorders [18].

Based on the N-terminal precursor sequence and disulfide connectivity, uncharted conotoxins may
be classified into several superfamilies [19,20]. Currently, conotoxins can be classified into 16 major
superfamilies: A, D, I1, I2, I3, J, L, M, O1, O2, O3, P, S, T, V, and Y [4,19–25]. Each superfamily
can be further classified into several families based on the cysteine arrangement. For example,
A-superfamily conotoxins are classified into α, αA, and κA families; M-superfamily [26,27] includes µ
and ψ families; O-superfamily includes δ, µO,ω, κ, and γ families [22,28]. Due to the high specificity
and affinity towards ion channels, conotoxins can also be categorized into calcium channel-targeted
conotoxins (Ca-conotoxins), sodium channel-targeted conotoxins (Na-conotoxins), and potassium
channel-targeted conotoxins (K-conotoxins) [29]. We draw a structural schematic illustration to show
conotoxins classifications of superfamily and ion channel-target (Figure 1).
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Figure 1. A structural schematic illustration to show the classification of conotoxins in superfamily
and ion channel-target. Sixteen major conotoxin superfamilies are A, D, I1, I2, I3, J, L, M, O1, O2, O3, P,
S, T, V, and Y. They are also categorized into calcium channel-targeted, sodium channel-targeted, and
potassium channel-targeted conotoxins according to their functions.

There are over 100,000 conotoxins in approximately 700 species of cone snails [2]. However,
only 8344 conotoxins have been deposited in the Universal Protein Resource (UniProt, 15 May 2017).
The functions of most conotoxins are still unknown. With more and more conotoxins being sequenced,
determining the function of conotoxins with biochemical experiment-based methods is becoming
more and more difficult because of the high cost and long period of wet experiments. Computational
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methods have provided opportunities to rapidly and accurately identify the categories of conotoxins
and know about some functions of conotoxins while avoiding the disadvantages of biochemical
experiments-based methods [30,31].

Machine learning approaches have been widely applied in protein or peptide classification by
using amino acid composition, n-mer amino acid composition, pseudo amino acid composition,
position-specific scoring matrix (PSSM) and so on [32–39]. A process framework of protein or peptide
classification with a machine learning approach was shown in Figure 2. These methods were also
proposed to identify conotoxins superfamily type. A multi-class support vector machine (SVM) was
proposed to predict conotoxin superfamily by using pseudo amino acid composition (PseAAC) [24].
Subsequently, Lin et al. improved the accuracy of classifying conotoxin superfamily by using the
modified Mahalanobis discriminant [32]. Inspired by these works, Fan et al. proposed a late-model
approach and established a webserver called PredCSF for conotoxin superfamily prediction [33].
Zaki et al. used local alignment partition functions to predict conotoxin superfamilies [34]. Then, they
introduced a novel method called Toxin-AAM for classifying conotoxin superfamilies [35]. Yin et al.
predicted conotoxin superfamilies by using diffusion maps-based feature selection technique [36].
Laht et al. classified conotoxin superfamilies and families based on profile Hidden Markov Models
(pHMMs) [37]. Koua et al. established pHMMs for each of the 48 alignments with the hmmbuild
script in the HMMER 3.0 package and built a webserver called ConoDictor based on the method [38].
Moreover, they defined 50 position-specific scoring matrices (PSSMs) and 47 hidden Markov models
to improve accuracy for conotoxin superfamily prediction [39].
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Although these methods and results exemplified above can provide some clues for the study
of conotoxins, they only indirectly offer possible function information of conotoxins and they
cannot predict the receptor types of the conotoxins. For example, both Delta-conotoxin-like
Ac6.1 and Omega-conotoxin-like Ai6.2 belong to the O1 superfamily, but they target different ion
channels. The Delta-conotoxin-like Ac6.1 binds to voltage-gated sodium channels, whereas the
Omega-conotoxin-like Ai6.2 blocks voltage-gated calcium channels [40]. Thus, it is necessary to develop
new computational tools that can recognize the types of ion channel-targeted conotoxins. For the first
time, Yuan et al. developed a feature selection technique based on binomial distribution to predict the
types of ion channel-targeted conotoxins by using a radial basis function network [41]. Subsequently,
they developed a predictor (iCTX-Type) to improve prediction accuracies [42]. Zhang et al. applied
a hybrid feature in the prediction issue [43]. Wu et al. incorporated new properties of residues into
PseAAC to predict the types of conotoxins [44]. Recently, Wang et al. combined the analysis of variance
and correlation (AVC) with SVM to reduce redundancy of attributes and improve the prediction
accuracy and computation speed [45].

In this review, we summarized recent advances in conotoxin classification by using machine
learning methods in the following aspects: (i) benchmark dataset construction; (ii) feature extraction
method; (iii) feature selection technique; (iv) classification algorithms; (v) prediction accuracy and web
servers establishment; and (vi) prospect of conotoxin prediction with machine learning methods.

2. Benchmark Datasets

2.1. Published Database Resources

Constructing a high quality and reliable benchmark dataset is critical for the protein attribute
predictor. Both general databases and special databases play a key role in the construction of
bioinformatics benchmark [46–49]. The general databases include the protein knowledgebase
(UniProtKB: http://www.uniprot.org) [50], the protein structure data bank (PDB: http://www.
rcsb.org/pdb/home/home.do) [51], and the protein database provided by the National Center for
Biotechnology information (NCBI) [52]. Researchers used to collect the data from these molecular
biology databases.

For the convenience of users, some special databases were constructed. Here, we mainly
introduced the ConoServer (http://www.conoserver.org/), which was a specific database for
conotoxins [53,54]. The database collected various kinds of information of conotoxins from SwissProt,
GenBank, Protein Data Bank and literatures, including peptide sequences, chemical modifications,
and their ability to block the ion channels. At present, the ConoServer has managed 2838 nucleic
sequences (from 83 Conus species), 6255 protein sequences (from 109 Conus species) and 176 3D
structures (from 35 Conus species) until 16 April 2017, provides a convenient overview of current
knowledge on conopeptides and furnishes sequence/structure/activity relationships information,
which is of particular interest for drug design research.

2.2. Benchmark Dataset Construction

Although the ConoServer contains much information, for the purpose of conotoxin prediction, it
is necessary to construct a new benchmark dataset that can be handled by machine learning methods.
Generally, a high quality benchmark dataset is constructed in the four following steps. In step 1,
samples of conotoxin peptide are acquired from a database with some relevant key words. In step 2,
only those proteins with clear functional annotations based on experimental evidence are included.
In step 3, the proteins with the annotation information of “immature”, “invalid”, and “fragment” are
excluded. In step 4, redundancy and homology bias are reduced by using the program CD-HIT [55]
which has been widely used for clustering and comparing protein or nucleotide sequences.

Based on the strict steps above, some high-quality datasets have been constructed for conotoxin
superfamilies. Some superfamilies with relatively less members were not considered in some

http://www.uniprot.org
http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
http://www.conoserver.org/
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studies [24,32]. The first benchmark dataset of superfamily was called S1, which included 116 mature
conotoxin sequences including A (25 entries), M (13 entries), O (61 entries) and T (17 entries)
superfamilies [24]. At the same time, they also built a negative dataset containing 60 short peptide
sequences that did not belong to any of the four superfamilies (A, M, O or T). The second benchmark
dataset S2 contains 261 entries consisting of four superfamilies: A (63 samples), M (48 samples), O
(95 samples) and T (55 samples) obtained from the SwissProt [33]. In addition, Lath et al. collected
964 sequences from ConoServer [37]. Koua et al. also acquired 933 samples and 967 samples from
Conoserver [38,39].

The benchmark dataset of ion channel-targeted conotoxins was also constructed based on the
Uniprot. The function type of conotoxins was obtained by searching Gene Ontology. The first
benchmark dataset I1 established by Yuan et al. included 112 sequences (24 K-conotoxins,
43 Na-conotoxins, and 45 Ca-conotoxins) [41]. Ding et al. [42], Wu et al. [44] and Wang et al. [45] also
established their models based on this dataset. In addition, Zhang et al. built a new dataset called I2
containing 145 samples (26 K-conotoxins, 49 Na-conotoxins and 70 Ca-conotoxins) [43]. The benchmark
datasets are provided in Table 1.

Table 1. The benchmark datasets of conotoxin superfamily and ion channel-targeted conotoxin.

Superfamily
Total Number Reference

A M O T

S1 25 13 16 17 116 [24,32,34,35]
S2 63 48 95 55 216 [33,36]

Type of Ion Channel
Total Number Reference

K-Conotoxin Na-Conotoxin Ca-Conotoxin

I1 24 43 45 112 [41,42,44,45]
I2 26 49 70 145 [43]

3. Conotoxin Sample Description Methods

In the process of protein classification with machine learning methods, the second step is to
represent protein samples. Two strategies may be adopted: the continuous model and the discrete
model. In the continuous model, the BLAST or FASTA programs are used to search homology. For a
highly similar sequence (sequence identity ≥40%) in the searching dataset, its predictive results are
always good. Thus, the similarity-based method is straightforward and intuitive. However, if a query
protein has no similar sequence in the training dataset, these methods cannot work. Therefore, various
discrete models were recommended [24,32–36,41–45,56]. The way to formulate conotoxin samples
with discrete models is provided below.

3.1. Amino Acid Compositions and Dipeptide Compositions

The amino acid compositions (AAC) and dipeptide compositions are the most widely used
features to formulate the protein samples, and can be formulated as:

X20 = [x1 · · · xi · · · x20]
T , (1)

Y400 = [y1 · · · yi · · · y400]
T , (2)

where xi (i = 1,2,... , 20) and yi (i = 1, 2,..., 400) are, respectively, the absolute occurrence frequencies of
20 native amino acids and 400 dipeptides, which, respectively, describe the sequence composition and
neighborhood information of residues.

Based on the two kinds of parameters above, Lin et al. [32] developed a method to predict
conotoxin superfamilies by combining the increment of diversity with modified Mahalanobis
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discriminant. Recently, the 400 dipeptide compositions were also used to represent a conotoxin
sequence by Wang et al. [45].

3.2. Pseudo Amino Acid Composition

The pseudo amino acid composition (PseAAC) is a widely used strategy for peptide sample
description in protein classification [57,58]. PseAAC can not only include amino acid composition,
but also the correlation of physicochemical properties between two residues [59]. Its merits have been
demonstrated in a series of studies [24,44,57,58].

Mondal et al. constructed a model by using Type-I PseAAC to formulate samples for predicting
superfamilies of conotoxins [24]. The Type-I PseAAC is also called parallel correlation PseAAC, which
contains 20 + λ components. The number ‘20’ reflects the occurrence frequency of one of the 20 native
amino acids in a protein P and λ reflects the rank of correlation and is a non-negative integer. In the
discrete descriptor, an arbitrary conotoxin (P) can be expressed by a 20 + λ-dimensional vector and is
defined as follows:

P = [x1 · · · x20x20+1 · · · x20+λ]
T , (3)

where

xu =


fu

∑20
i=1 fi+ω ∑λ

j=1 θj
, (1 ≤ u ≤ 20)

ωθu−20

∑20
i=1 fi+ω ∑λ

j=1 θj
, (20 + 1 ≤ u ≤ 20 + λ)

, (4)

where fi is denoted as the normalized frequency of the 20 residues in a conotoxin. ω is weight factor
for sequence order effect and was previously defined as 0.7 [24]. θj is the j-tier sequence correlation
factor and calculated as:

θj =
1

L− j ∑ L−j
i=1 F(Ri, Ri+1), (j < L), (5)

where θj is the j-th tire correlation factor that reflects the sequence order correlation between all the j-th
most contiguous residues along a protein sequence. In addition, the correlation function is given by:

F
(

Ri, Rj
)
=

1
k

{[
H1
(

Rj
)
− H1Ri

]2
+
[
H2
(

Rj
)
− H2Ri

]2
+ · · ·+

[
Hk
(

Rj
)
− HkRi

]2}, (6)

where k is the number of factors and Hl(Ri) is the l-th physiochemical properties of the residue Ri:

Hl(Ri) =
H0

l (i)−∑20
i=1
(

H0
l (i)/20

)√
∑20

i=1[H
0
l (i)−∑20

i=1(H0
l (i)/20)]

2

20

, (7)

where H0
l (i) is the l-th original value of the i-th residue. The numerical indices 1, 2, 3,· · · , 20,

respectively, represent the 20 native amino acids: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W,
and Y. The five factors of polarity index, secondary structure factor, molecular size, relative amino acid
composition in various proteins and electrostatic charge were used in the model of Mondal et al. [24].

Wu et al. [44] used the Type-II PseAAC, which is also called series correlation PseAAC, to
formulate their samples. In the descriptor, an arbitrary conotoxin (P) is expressed as a vector containing
(202 + 3λ) components:

P = [x1 · · · x400 · · · x400+3λ]
T , (8)

where x1 · · · x400 denote the frequencies of 202 dipeptides. The ‘3’ is the number of amino acid
properties, namely, rigidity, flexibility, and irreplaceability; λ reflects the rank of correlation, which is
the same as that in Type-I PseAAC:



Molecules 2017, 22, 1057 7 of 21

xu =


fu

∑400
i=1 fu+ω ∑3λ

j=1 τj
, (1 ≤ u ≤ 400)

ωτu
∑400

i=1 fu+ω ∑3λ
j=1 τj

, (400 + 1 ≤ u ≤ 400 + 3λ)
, (9)

where ω is weight factor for sequence order effect; and fu was the normalized frequency of the 400
dipeptides in conotoxin (P);

fu =
nu

∑u nu
, (10)

where nu denotes the number of occurrences of u-th dipeptide in conotoxin (P); τu in Equation (9) is
the correlation factor of the physicochemical properties between residues:

τ1 = 1
L−1 ∑L−1

K=1 H1
k,k+1

τ2 = 1
L−1 ∑L−1

K=1 H2
k,k+1

...
τn = 1

L−1 ∑L−1
K=1 Hn

k,k+1
τn+1 = 1

L−2 ∑L−2
K=1 H1

k,k+2
τn+2 = 1

L−2 ∑L−2
K=1 H2

k,k+2
...

τn+n = 1
L−2 ∑L−2

K=1 Hn
k,k+2

...
τnλ = 1

L−λ ∑L−λ
K=1 Hn

k,k+λ

(λ < L), (11)

where Hn
k,k+λ is the correlation function:

Hn
k,k+λ = hn(Rk)·hn(Rk+λ), (12)

where hn(Rk) is the n-th kind of the physicochemical values of the residue Rk. The values should be
converted to standard type:

hn(Rk) =
hn

0 (Rk)−
〈

hn
0 (Rk)

〉
SD
〈

hn
0 (Rk)

〉 , (13)

where hn
0 (Rk) is the original physicochemical value of the k-th residue.

Both Type-I and Type-II PseAAC can not only describe the information of the constituent
elements of the conotoxin sequence, but also reflect the long-range correlation information of residues’
physicochemical properties. Therefore, PseAAC can usually produce better prediction accuracy
compared with the traditional peptide frequency. Because Type-II PseAAC considers the contributions
of each kind of physicochemical property, it exhibits a better prediction performance as shown in
Ref. [44]

3.3. Hybrid Features

Instead of using a single discrete model, different features were used to describe conotoxin
samples. Recently, the 246 physicochemical properties of residues obtained from APDbase [60] were
used to formulate protein samples [33,36]:

P1 = R1
1R1

2R1
3R1

4 · · · R1
L

P2 = R2
1R2

2R2
3R2

4 · · · R2
L

...
P246 = R246

1 R246
2 R246

3 R246
4 · · · R246

L

. (14)
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By using the maximal overlap discrete wavelet transform (MODWT) to construct the
eigenvectors [61], a conotoxin sample can thus be represented by a 1230-dimensional feature vector
((1 + 1 + 3) × 246 = 1230):

FMODWT =
[

f 1,1
1 , f 1,2

2 , f 1,3
3 , f 1,4

4 , f 1,5
5 , f 2,1

6 , f 2,2
7 , f 2,3

8 , f 2,4
9 , f 2,5

10 , · · · f 246,5
1230 ,

]
. (15)

In addition, three characteristics were also incorporated in their model: 20D features of
evolutionary information, 3D secondary structural (SS) information, and 20D AAC. Therefore, the
final feature set to formulate conotoxin sample was a (1230 + 20 + 3 + 20)1273D vector.

Compared with the above two methods, the method combines with several models to represent
protein samples. Thus, the bias caused by a single discrete model can be significantly reduced.

4. Feature Selection Techniques

Feature selection is important in pattern recognition for the insight gained from determining
relevant modeling variables. By feature selection, generalization ability of prediction model
will improve, information redundancy or noise will be excluded; and the dimension disaster
will be resolved [62]. It can significantly increase the comprehensibility of classifier models
and often build a better model [63]. The ultimate goal of feature selection is to find the best
feature subset that can produce the maximum accuracy and to establish a robust prediction
model. Currently, many feature selection techniques have been developed to optimize a feature
set, such as principal component analysis (PCA) [64], minimal-redundancy-maximal-relevance
(mRMR) [65], maximum-relevancy-maximum-distance (MRMD) [66], diffusion maps [36] and the
analysis of variance (ANOVA) [67]. The following feature selection techniques have been used in
conotoxin prediction.

4.1. Binomial Distribution

Binomial distribution is a discrete probability and can deal with the experiments that have two
types of results. Thus, Yuan et al. [41] proposed using the binomial distribution to perform feature
selection in order to improve the accuracy of conotoxin prediction. In their model, the confidence level
(CL) of each feature was calculated by:

CLij = 1−
Ni

∑
n=nij

Ni!
n!(Ni − n)!

pn
j
(
1− pj

)Ni−n, (16)

where CLij is the confidence level of the i-th dipeptide in the j-th type; Ni represents the total number
of the i-th dipeptide in the dataset; nij represents the occurrence number of the i-th dipeptide in the
j-th type and the sum is taken from nij to Ni; the probability pj is the relative frequency of Type j in the
database; the confidence level of peptide i in benchmark dataset is defined as follows:

CLi = max{CLi k, CLi Na, CLi Ca}, (17)

All features can be ranked in descending order according to their CLs. According to the
principle of feature selection, the CLi reveals the degree that the i-th feature is related to the group
variables. The larger CL the feature is, the higher its contribution to the classification. The binomial
distribution-based technique is a powerful statistical method that can extract the over-represented
motifs; however, it needs more computational resources.

4.2. Relief Algorithm

Zhang et al. [43] proposed another feature selection technique called relief algorithm in conotoxin
classification. The relevance between the features and class labels can be depicted by this algorithm [68].
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Based on the ability of the feature to distinguish the near samples, the weighted features can be
formulated by [69]:

Wi+1
P = Wi

P −
di f f (Y, xi, H(xi))

m
+

di f f (S, xi, M(xi))

m
, (18)

di f f (∗, x, y) =

{
‖x− y‖, x 6= y,

0, x 6= y,
(19)

where Wi
P and Wi+1

P denote the current and next weighting values, respectively. p stands for a given
feature; xi denotes the i-th sample sequence; H(xi) represents the nearest neighbor samples from the
same class label against xi; M(xi) represents the nearest neighbor samples from the different class
labels against xi; Y and S are, respectively, the sample sets with the same and different class labels
against xi; m denotes the number of random samples; the function of diff(∗, x, y) is used to calculate
the distance between the random samples.

The algorithm is not dependent on heuristics, runs in low-order polynomial time, and is
noise-tolerant and robust to feature interactions; however, it does not discriminate between
redundant features.

4.3. F-Score Algorithm

Ding et al. [42] and Wu et al. [44] used the F-score to sort the features for conotoxin classification:

F(i) =
∑3

k=1

(
xk

i − xi

)2

∑3
k=1(1/(Nk − 1))∑Nk

j=1

(
xk

ij − xk
i

)2 , (20)

where xk
i is the average frequency of the i-th feature in the k-th dataset; xi the average frequency of the

i-th feature in all of the datasets concerned; xk
ij is the frequency of the i-th feature of the j-th sequence

in the k-th dataset; Nk is the number of peptide samples in the k-th dataset. The larger the F value
is, the better the predictive capability the feature has. A python script fselect.py downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/ can be used to perform the F-score calculation and
rank the features.

The F-score is a simple but effective technique for evaluating the discriminative power of each
feature in the feature set. It has strict mathematical definition but does not take the true negatives
into account.

4.4. Diffusion Map Reduction

For conotoxin superfamily classification, Yin et al. [36] proposed using the diffusion maps to
project the data into diffusion space. Diffusion maps algorithm can effectively reduce the data
dimensionality while keeping the original data structure [70]. Thus, high-dimensional data can be
projected into a low-dimensional space based on diffusion maps, while the intrinsic properties are
kept almost invariant. Compared with other methods, the diffusion maps algorithm is robust to noise
perturbation and is computationally inexpensive. It has strict mathematical definition but does not
take the true negatives into account [71].

It is assumed that there is a dataset Ω with N observations and each of them has p attributes. If a
weighted graph on the dataset is defined, the margin between two observations x and y is defined as:

w(x, y) = exp

(
− (x− y)2

ε

)
, (21)

where (x− y)2 is the application dependent dissimilarity between x and y; the degree of node x is
defined as:

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
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d(x) = ∑ z∈Ωw(x, z). (22)

Next, a Markov random walk over the weighted graph can be constructed. The transition
probability from x to y in one-step is:

p(x, y) =
w(x, z)

d(x)
, (23)

where w(x, z) and d(x) are, respectively, defined in Equations (21) and (22).
Then, a transition matrix R of size N × N can be built, and each element of R is calculated by

Equation (23). R is the transition matrix for a Markov random walk and can be used to calculate the
transition probability matrix Rt, where each entry in Rt represents the probability going from x to y in
t steps. Based on Rt, the stationary distribution of the random walk ϕ0(x) can be calculated:

ϕ0(x) =
d(x)

∑z∈Ω d(z)
. (24)

The next step is to define the diffusion distance between two points at the scale t as:

D2
t (x, y) = ∑ z

(Rt(x, z)− Rt(y, z))2

ϕ0(z)
. (25)

The diffusion map at scale t can project the data x from the original space into the m-dimensional
diffusion space by taking the first m eigenvectors as follows:

x →
[

λ1

1− λ1
ψ1(x),

λ2

1− λ2
ψ2(x), · · · ,

λm

1− λm
ψm(x)

]
, (26)

where λj and ψj are, respectively, the eigenvalue and right eigenvector of Rt; m is the final
reduced dimension.

4.5. Analysis of Variance

In order to select optimal features from the 400D dipeptide compositions, Wang et al.
classified the ion channel-targeted conotoxins with the analysis of variance (ANOVA) method [45].
The variance-based analysis is used to calculate the ratio of the variance among groups and the variance
within the group for each attribute [72,73]. It has a good foundation of statistics and can test the feature
difference between groups intuitively. The formula expressions are as follows:

F(u) =
S2

b(u)
S2

w(u)
. (27)

The F value represents the u-th dipeptide, and S2
b(u) is the variance between groups, S2

w(u) is the
variance within groups. The calculation methods are shown in Equations (28) and (29), respectively:

S2
b(u) =

SSb(u)
K− 1

, (28)

S2
w(u) =

SSw(u)
N − K

, (29)

where K is the total of classes; N is the total of samples; SSb(u) is the sum of the squares between the
groups; and SSw(u) is the sum of squares within the groups.

4.6. Feature Selection Process

Picking out informative features can overcome the high-dimensional disaster, reduce information
redundancy, exclude noise, and improve the accuracy and robust of the proposed models. Obviously,
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the most objective and strict method to select the best feature subset is to examine the performance of all
the feature combinations. However, the computation time is too long. Taking a 20-dimensional feature
vector as an example, there are 1,048,575 possible combinations. Thus, feature selection techniques
described above are developed to economize the computational time and source.

The incremental feature selection (IFS) is a popular strategy to determine the optimal feature
subset. The selection process is described as follows. At first, all features are ranked according to a
score obtained from one of the feature selection techniques described above. Subsequently, the feature
subset is built from the first feature in the ranked feature set. Furthermore, a new feature subset is built
when the second feature is added. This process is repeated from the first feature to the last feature
until all candidate features are added. For each feature subset, the machine learning methods are used
to investigate their performance with cross-validation [57,74–77]. The highest accuracy is produced by
the best feature subset, which is selected to build the final prediction model. The machine learning
methods in conotoxin prediction is discussed below.

5. Prediction Algorithms

The four key steps for conotoxin classification are to select a highly efficient and powerful
machine learning method to make a predictive decision. In the prediction, the classification function
or classification model was constructed with a machine learning method for predicting the input
conotoxin to a given category.

5.1. Support Vector Machine

Support Vector Machine (SVM) was originally developed by Vapnik et al. [78]. As SVM is
always suitable for small sample, SVM has been widely used to deal with many pattern recognition
problems [42,79–87], and also some hierarchical classification [88]. As shown in Table 1, the number
of train data is from 13 to 95 for each type; thus, several works used SVM to predict conotoxin
types [24,32–39,42–45].

The basic idea of SVM is to transform the input vector into a high-dimensional Hilbert space
and seek a separating hyperplane in this space. Gaussian Radial Basis Function (RBF) kernel function

(KGaussion
(

xi, xj
)
= e

‖xi−xj‖
2

2σ ) is a widely used kernel function because of its high performance in
non-line classification.

In order to reduce the programming burden of researchers, some software packages including
LIBSVM, mySVM and SVMLight [89,90] have been developed and can be freely downloaded from
the internet. LIBSVM is the most popular software to implement SVM and can be downloaded from
https://www.csie.ntu.edu.tw/~cjlin/libsvm/. A grid search strategy with cross-validation test is
always utilized to obtain the best values for the regularization parameter C and kernel parameter g.

5.2. Profile Hidden Markov Models

Profile Hidden Markov Models (pHMMs) are statistical models for capturing position-specific
information [91]. The pHMMs provide a formal probabilistic framework for sequence comparison [92]
and leverage the information contained in a sequence alignment to improve detection of distantly
related sequences [93,94]. More recently, Hidden Markov Models have been extended to pairwise
Markov models and triplet Markov models for the consideration of more complex data structures [95]
and the model of non-stationary data [96]. Obviously, compared to the classic tool BLAST [97], pHMMs
can more accurately detect remote homologs and provide more information by using a statistical
representation of a multiple sequence alignment. Recently, a pHMM has been built for each subset
using hmmbuild from the HMMER package and can be acquired from http://www.hmmer.org/.
In addition, more packages about pHMMs can be acquired [91].

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.hmmer.org/
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5.3. K-Local Hyperplane Distance Nearest Neighbor Algorithm

The K-local hyperplane distance nearest neighbor algorithm (HKNN) [98] was introduced to
overcome the generalization problems of the well-known K-nearest neighbor algorithm (KNN).
Unlike SVM, it can be used to establish a nonlinear decision surface directly in the original sample space
with a local linear manifold. With the HKNN method, the closest K neighbors should be firstly found
to test the samples for each class. Then, these neighbors are used to build the local linear manifolds of
the classes. Finally, the query is allocated to the class that is associated with the closest manifold.

Suppose there are C classes in the training set. Let Vk
i
(
xq
)
=
{

xi
1, xi

2, · · · , xi
k
}

represent the set of
K nearest samples of the tested sample xq ∈ ℵm in the training set belonging to the i-th class. Here, the
dimension of the sample space m is assumed to be larger than or equal to K. The local affine hull of
each class is defined in terms of the closest K sample vectors as:

LHk
i
(

xq
)
=

{
v | v = ui +

li

∑
i=1

βi
jz

i
j, βi

j ∈ ℵm

}
, i = 1, · · · , C, (30)

where ui =
1
K ∑K

j=1 xi
j, zi

j are the linearly independent vectors obtained from the difference vectors{
xi

1 − ui, xi
2 − ui, · · · , xi

K − ui
}

; li is the number of linearly independent difference vectors and
li ≤ K− 1.

In order to classify a query xq, the minimum distances between the query vector and the local
manifolds should be computed as follows:

dis
(

xq, LHK
i
(

xq
))

= min
v∈LHK

i (xq)
‖xq − v‖ = min

βi∈ℵli
‖xq − ui − Ziβi‖, i = 1, · · · , C. (31)

Thus, the query is assigned to the class whose manifold is the closest to xq. The details about
HKNN can be obtained from the results reported by Yin et al. [36].

5.4. Mahalanobis Discriminant

The Mahalanobis distant is a measure of the distance between a point P and a distribution D,
introduced by P. C. Mahalanobis in 1936 [99]. If P is at the mean of D, this distance is zero and the
mean grows as P moves away.

Mahalanobis Discriminant has been widely used in cluster analysis and data classification [100].
Due to the imbalance of data samples, based on Bayes theory, the modified Mahalanobis Discriminant
was deduced [101].

The modified Mahalanobis Discriminant (MD) between test sequence x and training set x can be
calculated as:

MD =
(

x− x
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layers: an input layer, a hidden layer and a linear output layer. Training is usually carried out in two
stages: (1) fixed width and centers, and (2) fixed weights. This can be demonstrated by considering the
different properties of nonlinear hidden neurons versus linear output neurons.

Generally, the RBF network is modeled by the following relation:

ŷk =
m

∑
i=1

ωikRi(x), (k = 1, 2, · · · , p), (33)

where Ri(x) represents the RBF and is expressed as:

Ri(x) = exp

(
−‖x− ci‖2

2σ2
i

)
, (i = 1, 2, · · · , m), (34)

where ‖x− ci‖ represents Euclidean norm; ci, δi, and Ri are the center, the width and the output of the
i-th hidden unit, respectively.

The WEKA [104] soft package is used to execute the RBF network with default parameters.

5.6. Random Forest Algorithm

The Random Forest (RF) algorithm is also a popular learning algorithm and has been successfully
employed in dealing with various biological prediction problems [105–108]. The principle of RF is
based on the training of multiple decision trees. It just needs two parameters: one is the number of
building decision trees t, another is the number of input features to be considered when each node
of the decision tree splits m. By establishing many tree predictors, the type of a new sample can
be determined. The results obtained from many experiments have shown that combining multiple
trees generated in randomly selected subspaces can significantly improve the prediction accuracy.
The algorithm can produce a high accuracy classifier and handle a large number of input variables
with fast learning process. For an unbalanced dataset, it can balance the random error. For more
detailed information about the RF algorithm, readers can refer to the http://www.stat.berkeley.edu/
~breiman/RandomForests/cc_home.htm.

6. Prediction Accuracy

In this section, we listed the commonly-used metrics for the performance evaluation of proposed
models and introduced the published results.

6.1. Commonly-Used Evaluation Metrics

A jackknife test can yield a unique result for a given benchmark dataset and has been wildly
applied in various predictions [109,110]. A set of metrics, namely, sensitivity (Sn), average accuracy
(AA) (or called average sensitivity) and overall accuracy (OA) are commonly used to quantitatively
estimate the accuracy of the models and respectively calculated as:

Sn =
TP

TP + FN
, (35)

AA =
∑ Sn

µ
, (36)

OA =
TP

TP + TN + FP + FN
, (37)

where TP, FP, TN, and FN, respectively, denote the number of true positives, false positives, true
negatives, and false negatives; µ is the type of samples.

The receiver operating characteristic (ROC) curve [111] shows the predictive capability. The ROC
curve can also present the model behavior of the true positive rate (sensitivity) against the false positive

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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rate (1-specificity) in a visual way. The area under the ROC (auROC) is calculated to quantitatively and
objectively measure the performance of the proposed method. A perfect classifier gives auROC = 1
and the random performance gives auROC = 0.5.

6.2. Published Results

Based on the benchmark dataset S1, by using Multi-class SVMs combined with PseAAC,
Mondal et al. [24] achieved an overall accuracy of 88.1%, which was higher than those obtained
by other methods like BLAST and ISort (Intimate Sorting) predictor. In order to improve the
accuracy, Lin et al. [32] proposed a new algorithm that combined increment of diversity with modified
Mahalanobis discriminant. The algorithm can reduce the dimension of inputting vector, extract
important classify information, and improve the calculation efficiency. The average sensitivity
and specificity respectively reached 88% and 91% in the jackknife cross-validation test. Zaki et al.
developed a scoring system called SVM-Free score based on local alignment partition functions [34]
and increased the average sensitivity and specificity to 97.42% and 99.17%, respectively. Based on
SVM-Free score method, a soft package was constructed and could be freely downloaded from
http://faculty.uaeu.ac.ae/nzaki/SVM-Freescore.htm. Based on this work, a novel method called
Toxin-AAM [35] was introduced with evolutionary information and amino acid composition and the
average sensitivity reached 94.5% in jackknife cross-validation test.

Based on the benchmark dataset S2, Fan et al. [33] proposed a novel method called PredCSF
for predicting the conotoxin superfamily by using modified one-versus-rest SVMs. PredCSF can
realize an overall accuracy of 90.65% in jackknife cross-validation tests. A user-friendly webserver
was established and could be freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/PredCSF/.
Yin et al. [36] proposed an improved HKNN version called dHKNN algorithm for predicting conotoxin
superfamily by considering the local density information in the diffusion space. The overall accuracy
of 91.90% was obtained by the jackknife cross-validation test on the benchmark dataset S2. The results
indicated that the proposed dHKNN was more promising.

Based on the dataset of ConoServer, Laht et al. [37] acquired 964 sequences and built 62 profile
Hidden Markov Models (pHMMs) for the classification of all the described conopeptide superfamilies
and families based on the primary sequences. As a result, the mature peptide models realized an
accuracy of 96% and the propeptide and signal peptide models got an accuracy of 100%. Koua et al. [38]
constructed pHMMs for each of the 48 alignments using the HMMbuild script from the HMMER
3.0 package [112] based on 933 samples of conotoxin superfamily. The model obtained promising
discriminative abilities with the sensitivity of ~95% and specificity of ~99%. Based on the model,
they published the webserver ConoDoctor to predict the conotoxin superfamily, and the package
could be freely downloaded from http://conco.ebc.ee. For further improving the accuracy, they
established 50 position-specific scoring matrices and 47 hidden Markov models based on 967 sequences
from ConoServer [39] and realized the sensitivity of 99.42% and specificity of 92.81%, respectively.
Although the accuracies of these models are high, the benchmark datasets used in these models are
not objective. Many redundant sequences are included in these datasets. Moreover, the some samples
lack biochemical experimental proofs.

Based on the benchmark dataset I1, Yuan et al. [41] predicted the types of ion channel-targeted
conotoxins by using binomial distribution and radial basis function network, and achieved an average
accuracy of 89.7% and overall accuracy of 85.7% in the prediction of three types of ion channel-targeted
conotoxins in the jackknife cross-validation test. The model provides the valuable instructions for
theoretical and experimental studies on conotoxins. For further improving the accuracy, Ding et al. [42]
used the SVM to classify three kinds of samples based on the feature selection technique F-score.
The average sensitivity and the overall accuracy respectively reached 90.3% and 91.1%, which are
higher than those of the RBF network-based method [41]. For the convenience of the vast majority
of experimental scientists, they provided the webserver iCTX-Type, and user guide details could
be obtained from http://lin.uestc.edu.cn/server/iCTX-Type. By incorporating new properties of

http://faculty.uaeu.ac.ae/nzaki/SVM-Freescore.htm
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residues into pseudo amino acid composition, Wu et al. [44] achieved a higher overall accuracy of
94.6%. Recently, an overall accuracy of 91.98% with an average accuracy of 92.17% was obtained by
the AVC-SVM model proposed by Wang et al. [45].

Based on the benchmark dataset I2, Zhang et al. [43] proposed a random forest based predictor
called ICTCPred for the prediction of the types of ion channel-targeted conotoxins and yielded the
satisfactory performance with an average accuracy of 91.0%.

The detailed results obtained by these theoretical methods are provided in Table 2. The published
webservers are listed in Table 3. Although many methods have been proposed to predict superfamily
types and ion channel-target types of conotoxins, only a few tools were established based on the
proposed methods. PsedCSF provides not only a free webserver, but also a stand-alone soft package.
The establishment of ConoDictor is based on the cone snail genome project for health. The project
website also provides a database called ConoDB, which collects the peptide sequences from cone snails
stored in NCBI and Uniprot. The iCTX-Type is the only webserver for the prediction of the types of
ion channel-target conotoxins.

Table 2. A list of published results for conotoxin superfamilies and ion channel-targeted
conotoxin classifications.

Superfamily Prediction
Reference

Dataset Methods A M O T AA OA

S1

Multi-class SVMs 0.840 0.923 0.869 0.941 0.893 0.881 [24]
IDQD 0.960 0.923 0.820 0.940 0.911 0.883 [32]

SVM-Freescore 0.960 0.984 0.984 1 0.982 0.974 [34]
Toxin-AAM 0.957 0.966 0.891 0.966 0.945 0.966 [35]

S2
PredCFS 0.960 0.984 0.984 1 0.982 0.903 [33]
dHKNN 0.957 0.966 0.891 0.966 0.945 0.919 [36]

Type of Ion Channel-Targeted Prediction
Reference

Dataset Methods K-Conotoxin Na-Conotoxin Ca-Conotoxin AA OA

I1

RBF network 0.917 0.884 0.889 0.897 0.893 [41]
iCTX-Type 0.833 0.978 0.898 0.903 0.911 [42]

Fscore-SVM 0.917 0.953 0.953 0.942 0.946 [44]
AVC-SVM 0.931 0.942 0.892 0.922 0.920 [45]

I2 ICTCPred 1 0.919 1 0.973 0.957 [43]

Table 3. A list of the published prediction tools for conotoxin classification.

Name Prediction Type URL Reference

PredCSF Superfamily http://www.csbio.sjtu.edu.cn/bioinf/PredCSF/ [33]
ConoDictor Superfamily http://conco.ebc.ee [38]
iCTX-Type ion channel-target http://lin.uestc.edu.cn/server/iCTX-Type [42]

7. Conclusions

Conotoxins have a wide application prospect in the fields of neuroscience development and
neuroscience research and play different physiological functions and therapeutic potentials. Accurate
identification of conotoxin types will provide vital clues in revealing the physiological mechanism and
pharmacological therapeutic of conotoxins. It is necessary to develop computational tools for both
basic research and drug development, particularly for in-depth investigation into the mechanisms
of conotoxins and the development of new drugs to treat chronic pain, epilepsy, spasticity, and
cardiovascular diseases.

Similarly, the computational-based methods can be also applied to other disulfide-rich
venom peptides that target the same ion channels and receptors as conotoxins and show similar
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pharmacological, biochemical and structural properties, such as spider venoms, centipede or
snake venoms.

Although encouraging results have been obtained in conotoxin superfamily and ion channel-target
type prediction, further improvements should be made. At first, the prediction accuracy should be
further improved. Different types of PseAAC can be applied in the field to formulate conotoxin samples
for improving the accuracy. A PSSM (position-specific scoring matrix) produced by similarity search
can also be used as an important feature in prediction. Moreover, different feature selection techniques,
such as minimal-redundancy-maximal-relevance (mRMR) and principal component analysis (PCA),
can also be used to reduce the feature dimension and extract key features. Furthermore, with machine
learning approaches, more methods such as deep learning, deep forest, and random forest can also
be used to obtain higher accuracies. In addition to superfamily and target type prediction, the signal
peptide cleavage sites, the position of two disulfide bonds, and the transition from L to D-residues are
also required to be computationally identified by using machine learning methods. We hope that more
and more scholars devote themselves to this field.
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