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Abstract: Cardiovascular diseases remain the number one diseases affecting patients’ morbidity
and mortality. The adenosine receptors are G-protein coupled receptors which have been of interest
for drugs target for the treatment of multiple diseases ranging from cardiovascular to neurological.
Adenosine receptors have been connected to several biological pathways affecting the physiology and
pathology of the cardiovascular system. In this review, we will cover the different adenosine receptor
ligands that have been identified to interact with adenosine receptors and affect the vascular system.
These ligands will be evaluated from clinical as well as medicinal chemistry perspectives with more
emphasis on how structural changes in structure translate into ligand potency and efficacy. Adenosine
receptors represent a novel therapeutic target for development of treatment options treating a wide
variety of diseases, including vascular disease and obesity.
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1. Introduction

The cardiovascular system plays an important role in the health and well-being of patients.
Dysregulation of the cardiovascular system has large implications, for example hypertension can be a
major risk factor for the development of stroke and heart disease. It has been found that more than
30% of adults will run the risk of dying from either heart disease or stroke [1]. This has led to an
increased search for the understanding of the pathology behind these life-threatening disease states,
and is evident in both medical literature as well as in the health care commercial market.

The vascular system plays an important role in the normal physiology, affecting several organ
systems, including the brain and renal system. Any pathological changes in this system can lead to
chronic disease states, including altering the structure of blood vessels in the kidney and may lead
to cerebrovascular diseases such as Alzheimer’s disease. In the clinical setting, patients who are
being treated for cardiovascular diseases, easily experience polypharmacy as the normal treatment
paradigm. Although several classical drug targets exist in the treatment of the cardiovascular system,
e.g., beta-antagonists, voltage gated calcium blockers (VGCC) etc., a deeper knowledge is needed to
functionally treat this system to achieve the maximal decrease in mortality and morbidity. One of the
newer drug targets which we are investigating is the adenosine receptor signaling cascade and its
effect on cardiovascular physiology.

2. Role of Adenosine in Cardiovascular Function

Adenosine is a purine nucleoside which plays an important physiological role due to the presence
of the adenosine receptors in practically every tissue type [2,3]. There are four distinct adenosine
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receptors, which are known as A1, A2A, A2B, and A3. The usefulness of adenosine, physiologically, can
be seen from the fact that adenosine, itself, is used clinically (as an injectable generic product), for the
treatment of supraventricular tachycardia [4].

The adenosine receptors belong to the G protein-coupled receptors (GPCRs) family of transduction
receptors. These are functionally arranged in a seven-membrane spanning α-helical system which
is known as seven transmembrane receptors (7TMRs) [5]. The adenosine receptors A1, A2A and A2B

have been shown to play important roles in the peripheral cardiovascular system; for instance, A1 and
A2B play a role in the vasomotor response of the mesenteric artery, and play a role in lipolysis from
adipose tissue, as well as other diverse effects including inflammation and oxidative stress [6–8].

Adenosine A1 receptor couples to Gαi (1–3) and Gαo receptors, and currently is thought to be
the main signaling mechanism that leads to a decrease in intracellular cAMP, and activates the RISK
kinase ERK1/2 [5,9]. Alternatively, the adenosine A1 receptor can also signal via interaction with the
b-arrestins, which can also lead to the activation of ERK1/2 kinases [10]. See Figure 1 for a schematic
overview of the adenosine receptor signaling cascade. The adenosine A2A receptor couples to Gαs
and the Golf proteins and stimulation of the receptor leads to the accumulation of cAMP, as well as
mediating the activation of ERK1/2 [11,12].Molecules 2017, 21, 917 3 of 11 

 

 
Figure 1. The role of adenosine receptors in vascular tone regulation. See text for details. A1AR: adenosine 
A1 receptor; A2AAR: adenonsine A2A receptor; AA: arachidonic acid; 20-HETE: 20-hydroxyeicosatetraenoic 
acid; EETs: epoxyeicosatrienoic acids; and DHETs: dihydroxyeicosatrienoic acids. 

3. Medicinal Chemistry 

The adenosine receptor family has been targeted by several groups to discover novel compounds 
which can modulate the function of these receptors [5,25]. One major breakthrough in this field was 
the crystallization of the adenosine A2A receptor by the group of Jaakola et al. [26]. 

Table 1 shows the different adenosine receptors which have been crystallized and the protein data 
bank access codes (PDB). GPCRs and transmembrane receptors were notoriously difficult to crystallize 
before the adenosine A2A receptor crystal was solved. The subtype selective antagonist ZM241385 was 
co-crystalized and was shown to bind in a manner which changed the interaction between the helical 
loops and the internal core of the protein (PDB file 3EML). Of note with GPCRs is the extracellular loops 
(ECL), which have been shown to play an important role in the GPCR function, with noted specific 
structural changes with agonist and antagonist interactions. Table 1 shows the deposited Protein Data 
Bank codes for the selected different crystal structures of the adenosine A2A receptor, as well as 
adenosine A1 receptor. Recently, the adenosine A1 receptor was crystallized by the group of Glukhova 
et al. [27] and revealed an interesting difference in the binding pocket between the adenosine A2A and 
A1 receptors. A few noticeable differences include the ECL, which was significantly different in the 
adenosine A1 receptor, and the presence of a wider extracellular binding cavity for ligands. 
Additionally, a secondary binding pocket of the primary binding pocket of adenosine A1 receptor was 
found, when compared to the A2A receptor (Figures 2 and 3). 

Table 1. Crystal structures of the adenosine receptors which can be used for drug discovery projects.  
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Figure 1. The role of adenosine receptors in vascular tone regulation. See text for details. A1AR: adenosine
A1 receptor; A2AAR: adenonsine A2A receptor; AA: arachidonic acid; 20-HETE: 20-hydroxyeicosatetraenoic
acid; EETs: epoxyeicosatrienoic acids; and DHETs: dihydroxyeicosatrienoic acids.

Adenosine receptors play an important role in the physiology of the cardiovascular system.
For instance, in coronary smooth muscle cells (CSMC), the activation of adenosine A1 receptors can
be protective against ischemic events in cell culture. The stimulation of the adenosine A1 receptor
in these cells was found to upregulate iNOS, HSP27, as well as PKC-epsilon signaling in the CSMC.
Additional studies indicated that the activation of the adenosine A1 receptors stimulate the PKC
kinases alpha, beta, gamma, epsilon and zeta, but not delta and mu. Overexpression of adenosine
A1 receptors was shown to offer protection against ischemic stress, primarily via the iNOS and KATP

channel interaction [13–16].
Adenosine A2A receptors play a role in vascular tone where they cause vasodilation. This

vasodilatation activity is thought to be mediated by the cytochrome P-450 cyp epoxygenases, and that
the knockout of the adenosine A2A receptor leads to vasoconstriction via the CYP4a cytochrome P-450
system. Further studies showed that the role adenosine A2A receptor plays in vasodilation is thought
to help in the avoidance of salt sensitivity, and that under high salt conditions, adenosine A2A receptor
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leads to increased expression of the CYP2C29 epoxygenases. The effect of high salt concentrations
in the diet leads to increase in blood pressure. In mice fed a high-salt diet, there was an increased
expression of A2A receptors and CYP2J2, whereas the expression of soluble epoxide hydrolase (sEH),
CYP4a, and adenosine A1 receptors was decreased. The latter signaling of adenosine A1 receptor
causes vasoconstriction in the normal-salt diet. The vasodilation by adenosine A2A receptors via the
CYP epoxygenases was shown to persist in mice where endothelium NOS (eNOS) was knocked out,
and the adenosine A1 receptor-induced vasoconstriction via sEH and CYP4A was persistent, indicating
the constitutive pathway is not dependent on the NO signaling [17–20].

The role of adenosine A2A receptors in the vasodilation activity was shown to be linked to the
MAP-kinases In mice, where the adenosine A2A receptor was knocked out, mice showed increased
contraction when exposed to adenosine The increased vasoconstriction was thought to occur via an
upregulation of adenosine A1 receptors and CYP4a can lead to upregulation of PKC-alpha which
can activate the PKC-alpha-ERK1/2 pathway [20,21]. Additionally, the adenosine A2A-mediated
vasodilation was found to relate to soluble expoxide hydrolase (sEH). In sEH-knockout mice, the mice
showed an increase in adenosine A2A receptor expression, as well as CYP2J and PPAR-gamma,
whereas the adenosine A1 receptor was decreased, along with PPAR-alpha [22,23]. The high-salt diet
can augment the vascular contraction in adenosine A2A-knockout mice, due to the increased adenosine
A1 receptor levels. Normally adenosine A2A receptor shows enhanced vasodilation in a high-salt
diet due to increased cyp-expoxygenases-derived epoxyeicosatrienoic acids (EETs) in the vascular
system [23], as well as PPAR-gamma and KATP channels [24], PPAR-gamma, and KATP channels.
Furthermore, in sEH-overexpressed mice, adenosine A1 receptor levels are increased, vascular tone
is increased, and KATP channel-mediated relaxation is decreased [24]. Figure 1 summarizes the role
adenosine receptors play in the vascular tone.

3. Medicinal Chemistry

The adenosine receptor family has been targeted by several groups to discover novel compounds
which can modulate the function of these receptors [5,25]. One major breakthrough in this field was
the crystallization of the adenosine A2A receptor by the group of Jaakola et al. [26].

Table 1 shows the different adenosine receptors which have been crystallized and the protein data
bank access codes (PDB). GPCRs and transmembrane receptors were notoriously difficult to crystallize
before the adenosine A2A receptor crystal was solved. The subtype selective antagonist ZM241385 was
co-crystalized and was shown to bind in a manner which changed the interaction between the helical
loops and the internal core of the protein (PDB file 3EML). Of note with GPCRs is the extracellular
loops (ECL), which have been shown to play an important role in the GPCR function, with noted
specific structural changes with agonist and antagonist interactions. Table 1 shows the deposited
Protein Data Bank codes for the selected different crystal structures of the adenosine A2A receptor, as
well as adenosine A1 receptor. Recently, the adenosine A1 receptor was crystallized by the group of
Glukhova et al. [27] and revealed an interesting difference in the binding pocket between the adenosine
A2A and A1 receptors. A few noticeable differences include the ECL, which was significantly different
in the adenosine A1 receptor, and the presence of a wider extracellular binding cavity for ligands.
Additionally, a secondary binding pocket of the primary binding pocket of adenosine A1 receptor was
found, when compared to the A2A receptor (Figures 2 and 3).

Table 1. Crystal structures of the adenosine receptors which can be used for drug discovery projects.
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Figure 2. Structures of the adenosine A2A receptor with (A) caffeine (PDB: 3RFM); (B) the antagonist 
ZM241385 (PDB: 3EML); and (C) the agonist CGS21680 (PDB: 4UG2). It has been shown that the 
extracellular loops play an important role in the agonist/antagonist interaction of compounds with 
the receptors. These crystal structures have been used to design novel small organic compounds 
which can be used to target the adenosine receptors. 
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Figure 3. Structure of (A) adenosine A1 receptor bound with the covalent antagonist DU172 (PDB: 
5UEN); (B) overlay of the A1 (green) and A2A (red) receptors showing the significant difference in the 
extracellular loop region (ECL) between the two receptors [26,27]. 

For adenosine A3 receptor, citations for the homology models are shown, but to this date there 
has not been a crystal structure solved for this isoform. For instance, the group of Almerico et al. [28] 
used adenosine A2A receptor structure in conjunction with homology modeling to develop a 
homology model of adenosine A3 receptor. This model was then used to mine the ZINC database for 
novel adenosine A3 receptor ligands, using a combination of docking and quantitative structure-
activity relationships (QSAR) techniques. 

The adenosine receptor has been targeted in the past few years for therapeutic drug development, 
as can be seen by the number of clinical trials featuring these ligands. Figure 4 shows several of the 
compounds which have been evaluated. The reader is referred to an excellent review on the clinical 
trials of these compounds [3]. The therapeutic areas targeted by these clinical trials range from 
cardiovascular to neurodegenerative diseases, such as Parkinson’s disease. For instance, for several 
years the adenosine A2A receptor antagonist istradefylline (KW-6002, a styrylxanthine) has been 
evaluated for clinical efficacy in Parkinson’s disease. Although istradefylline did not get approval by 

Figure 2. Structures of the adenosine A2A receptor with (A) caffeine (PDB: 3RFM); (B) the antagonist
ZM241385 (PDB: 3EML); and (C) the agonist CGS21680 (PDB: 4UG2). It has been shown that the
extracellular loops play an important role in the agonist/antagonist interaction of compounds with the
receptors. These crystal structures have been used to design novel small organic compounds which
can be used to target the adenosine receptors.
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Figure 3. Structure of (A) adenosine A1 receptor bound with the covalent antagonist DU172 (PDB:
5UEN); (B) overlay of the A1 (green) and A2A (red) receptors showing the significant difference in the
extracellular loop region (ECL) between the two receptors [26,27].

For adenosine A3 receptor, citations for the homology models are shown, but to this date there
has not been a crystal structure solved for this isoform. For instance, the group of Almerico et al. [28]
used adenosine A2A receptor structure in conjunction with homology modeling to develop a homology
model of adenosine A3 receptor. This model was then used to mine the ZINC database for novel
adenosine A3 receptor ligands, using a combination of docking and quantitative structure-activity
relationships (QSAR) techniques.

The adenosine receptor has been targeted in the past few years for therapeutic drug development,
as can be seen by the number of clinical trials featuring these ligands. Figure 4 shows several of
the compounds which have been evaluated. The reader is referred to an excellent review on the
clinical trials of these compounds [3]. The therapeutic areas targeted by these clinical trials range from
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cardiovascular to neurodegenerative diseases, such as Parkinson’s disease. For instance, for several
years the adenosine A2A receptor antagonist istradefylline (KW-6002, a styrylxanthine) has been
evaluated for clinical efficacy in Parkinson’s disease. Although istradefylline did not get approval by
the USA FDA, it was recently approved for use in Japan for the use in patients [29]. Adenosine has
been on the market for a few years in an injectable form e.g., Teva’s Adenoscan®, while caffeine is
available in several generic forms to treat sleep apnea of prematurity in infants.
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Figure 4. Structures of adenosine ligands which were evaluated in clinical trials. The therapeutic areas
represented a range from cardiovascular to neurodegenerative diseases such as Parkinson’s disease [25].
For a more in-depth review, the reader is referred to a recent review [3].

The medicinal chemistry surrounding the development of novel adenosine receptor ligands was
largely driven in the beginning by derivatization of the adenosine scaffold to gain understanding of
the structure-activity relationships especially between adenosine A1 and A2A receptors. From these
studies, novel scaffolds were developed, such as the core styrylxanthine from which istradyfilline
(KW-6002) was derived (Figure 5).
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Exploration of the adenosine A2A receptor antagonism led to the group of Van der Walt et al. to 
evaluate the effect of the styryl-moiety. They found that the styryl moiety was important for 
developing high affinity compounds (~Ki < 100 nM) whereas the phenoxymethylxanthine and 
phenylpropylxanthines did not show similar high affinity binding to the A2A receptor (~Ki > 0.5 nM) 
(Figure 7) [31]. 
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Compounds such as the 8-styrylxanthines, of which istradyfilline is a member, can easily be
prepared by the acylation of a diaminouracil and a trans-cinnamic acid (Figure 6) [30].
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Exploration of the adenosine A2A receptor antagonism led to the group of Van der Walt et al.
to evaluate the effect of the styryl-moiety. They found that the styryl moiety was important for
developing high affinity compounds (~Ki < 100 nM) whereas the phenoxymethylxanthine and
phenylpropylxanthines did not show similar high affinity binding to the A2A receptor (~Ki > 0.5 nM)
(Figure 7) [31].
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Further studies also showed that the xanthine moiety can be replaced and still retains adenosine
receptor activity [32]. The group of Van der Walt et al., synthesized a series of sulfanylphthalimide
analogues and tested them for adenosine A1 and A2A receptor affinity. The phthalimide moiety
has been found in other drug-like compounds, such as thalidomide or pomidomide. The results
showed that the compounds were selective for adenosine A1 over A2A receptor, and that the most
potent compound was 5-[(4-methoxybenzyl) sulfanyl]phthalimide with a KI of 369 nM. Similarly,
the 5-benzylopxyphatalimide and 5-benzyloxyistatin were inactive against the A2A receptor, and the
affinity for A1 was lower (Ki ~5 µM) than for the sulfanyl-derivatives (Figure 8).
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The group of Robinson et al., characterized a small set of 2-aminopyridines as dual A1/A2A

antagonists. These compounds were thought to have utility in motor diseases such as Parkinson’s
disease but would have potential for use in the cardiovascular system as well. The most potent
compound found from this campaign was 4-(5-Methylfuran-2-yl)-6-[3-(piperidine-1-carbonyl)phenyl]
pyrimidin-2-amine which was able to bind to A1 with a Ki of 9.54 nM and to the A2A with an Ki of
6.34 nM (Figure 9). The compound did not show any toxic activity in vitro and was able to attenuate
haloperidol-induced catalepsy in rats when dosed at 1 mg/kg. This suggests that the compound
would be amenable to future development for in vivo use [33].
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Carbamate-pyrimidines were prepared to evaluate their binding to the adenosine A1 over A2A

receptors due to the carbamate moiety featuring in several drug-types. The group of Robinson et al.,
prepared a set of carbamate compounds and found that 3-(2-amino-6-phenylpyrimidin-4-yl)phenyl
morpholine-4-carboxylate compound was the most potent compound with an Ki of 2.65 nM for
adenosine A1 receptor and an Ki of 3.50 nM for the adenosine A2A receptor (Figure 10) [34].
This compound was also able to reverse catalepsy in rats when dosed at 0.4 mg/kg, suggesting
effective in vivo therapeutic potential.
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Since previous studies have suggested that the styrylxanthine can be used to develop dual
adenosine A1 and A2A receptor ligands, the group of Harmse et al., synthesized a series of
para-substituted 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine analogs [35]. They found that para
substitution on the phenoxymethyl side chain increased the affinity for the adenosine A2A receptor,
with methoxy (OCH3) being the most potent with a Ki of 237 nM (Figure 11).
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Figure 11. Phenoxymethyl-xanthine derivatives which are dual A1/A2A antagonists [35].

Additionally, it was found that this compound behaved as an antagonist when screened in the
GTP-shift assay using rat brain membranes.

Figure 12 shows a SAR synopsis from the studies of the phenoxymethyl replacement of the styryl
moiety. We employed docking studies to investigate the differences between the two compounds in
their affinity for the adenosine A2A receptor (Figure 13), using MOE 2016 [36]. We found that both
compounds orient with the xanthine pointed to the outside of the pocket, and the side chain oriented
inwards. A crystal water molecule seems to be bridging the compounds with hydrogen bonds and
allows for interaction with the protein.
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Figure 13. Docking of (A) istradyfilline (KW-6002) and the (B) phenoxymethyl-xanthine derivative in
the adenosine A2A receptor (3EML). The two compounds share a binding motif with the coordination
with the water in the binding pocket of adenosine A2A receptor.

4. Conclusions

The adenosine receptor system plays an important physiological role in the cardiovascular
response. Considering the signaling role they play, these receptors represent a novel class of drug
targets which can have phenotypic and therapeutic potential to treat people with high blood pressure
and related cardiovascular disorders. As we gain understanding in the mechanism of action of
these receptors, we will undoubtedly be able to develop effective adenosine ligands for use in
cardiovascular diseases.
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