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Abstract: Mycobacterium tuberculosis remains one of the world’s most devastating pathogens. For this
reason, we developed a study involving 3D pharmacophore searching, selectivity analysis and
database screening for a series of anti-tuberculosis compounds, associated with the protein kinases A,
B, and G. This theoretical study is expected to shed some light onto some molecular aspects that could
contribute to the knowledge of the molecular mechanics behind interactions of these compounds, with
anti-tuberculosis activity. Using the Molecular Quantum Similarity field and reactivity descriptors
supported in the Density Functional Theory, it was possible to measure the quantification of the
steric and electrostatic effects through the Overlap and Coulomb quantitative convergence (alpha
and beta) scales. In addition, an analysis of reactivity indices using global and local descriptors was
developed, identifying the binding sites and selectivity on these anti-tuberculosis compounds in
the active sites. Finally, the reported pharmacophores to PKn A, B and G, were used to carry out
database screening, using a database with anti-tuberculosis drugs from the Kelly Chibale research
group (http://www.kellychibaleresearch.uct.ac.za/), to find the compounds with affinity for the
specific protein targets associated with PKn A, B and G. In this regard, this hybrid methodology
(Molecular Mechanic/Quantum Chemistry) shows new insights into drug design that may be useful
in the tuberculosis treatment today.

Keywords: tuberculosis; protein kinases A, B, G; 3D pharmacophores; molecular quantum similarity
indices; chemical reactivity indices; database screening

1. Introduction

One of the United Nations’ main focuses is to eradicate communicable diseases such as
tuberculosis, which affect millions of people worldwide and causing more critical problems in countries
with low- and middle-income. Mycobacterium tuberculosis, the causative agent of tuberculosis, is one
of the most lethal human pathogens, further characterized by being strongly resistant to current
treatments. Despite more than 100 years of research performed to date, the disease still kills about
two million people every year around the world. According to the World Health Organization
(WHO), a third of the world’s population carries the infection in an inactive form known as latency [1].
Our current inability to control the spread can be explained by the lack of an effective vaccine,
multidrug-resistance [2–4] and the great adaptability of Mycobacterium tuberculosis, which has great
capacity for mutation, in different environments, it [5–10].

In order to find new drug targets for tuberculosis treatment, in this study we analyzed the
Protein Kinases (PKs) involved in tuberculosis. PKs, which are enzymes that catalyze the protein
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phosphorylation process, play an important role in controlling the proliferation and differentiation
of eukaryotic cells in living organisms. One reason to investigate protein phosphorylation is that
this rationalization represents an attractive drug target for a variety of diseases such as cancer [11],
Alzheimer’s [12], chronic inflammations [13], etc. PKs present in the human body have been widely
studied due to their use in therapeutic targets. However, not much is known about the PKs involved
in tuberculosis. Therefore the binding sites associated to PKs A, B, and G of Mycobacterium tuberculosis
are studied with a particular set of inhibitors to each PK.

The inhibitors used are a series of compounds of Pkn A reported by Sipos et al. [14], of Pkn
B reported by Székely et al. [15], Loughheed et al. [16], Chapman et al. [17] and Naqvi et al. [18],
finally of PKn G reported by Sipos et al. [14]. These ligands were used with the aim of obtaining new
information about their stabilization in the active site.

The process of drug discovery is very complex and requires an interdisciplinary effort to design
effective and commercially feasible drugs. In addition, the objective of drug design is to find a drug
that can interact with a specific drug target and modify its activity. For this reason, we used a hybrid
methodology to search new insights for tuberculosis treatment involving the application of Molecular
Mechanics (MM) to protein treatment and consequently identifying the more active poses of the ligands
involved in the anti-tuberculosis activity using computational techniques such as 3D pharmacophore
searching and docking molecular [19–21] to each PK.

With the goal of studying the selectivity of these inhibitors in the active site, we used
considerations of Quantum Chemistry (QC), specifically the Molecular Quantum Similarity (MQS)
field [22–25] and chemical reactivity descriptors within the Density Functional Theory (DFT)
framework [26]. In previous works, the present author has reported his approaches to relate Molecular
Mechanics with Quantum Chemistry (MM/QM) [27]. Hopefully, this hybrid approach (MM/QM)
provides new considerations about the interactions and selectivity of these ligands in the active sites of
the PKs. Taking into account that selectivity is a very important aspect that is today widely studied in
drug development with selective targets in diseases which are difficult to control like tuberculosis.

The final aspect of our work is to carry out a database screening using the 3D pharmacophores
of PKn A, B and G reported on a database with anti-tuberculosis drugs, to find the compounds
with affinity for the specific protein target associated with PKn A, B or G. To accomplish this we
created a database using 183 anti-tuberculosis compounds reported by the Chibale group [28–32].
The compounds reported by Chibale are racemic mixtures. Taking this into account, the chiral isomers
were characterized from the computational viewpoint to find the specific isomers interacting with each
characterized pharmacophore.

2. Results

The outcomes in this work are distributed as follows: (i) 3D pharmacophore searching for the protein
kinases A, B and G, (ii) analysis of the 3D pharmacophores using molecular quantum similarity and
chemical reactivity descriptors (selectivity analysis), and (iii) 3D pharmacophore-based database screening.

2.1. 3D Pharmacophore Searching: Mechanic Molecular Approach

For the 3D pharmacophores analysis, we considered the classification given by Zuccotto’s group [33].
Zuccotto’s work explains the active kinase conformation through the “gatekeeper door”. In this sense, the
compounds were classified as type I1/2 inhibitors; recognize the target kinases in the DFG “out” form for
PKn A and DFG “in” for Pkn B, the Pkn G have DLG instead of DFG and is DLG “in”. While developing
the docking analysis, hydrogen bonds on the hinge zone and the non-covalent interactions near the
“gatekeeper door”, helix-αC, C-terminal and N-terminal, were taken into account. The non-covalent
interaction involved backbone, side chain hydrogen bonding and aromatic-aromatic interactions. Ligands
with high scores have combinations of these non-covalent interactions, while the ligands with lower
scores have few to no interaction forces. Many of the top scoring ligands that form hydrogen bonds and
aromatic-aromatic interactions with the amino acid residues, are close to the hinge zone.
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The PKs A and B are transmembrane proteins, while the Pkn G is a cytosolic protein, therefore their
active sites have different characteristics. The Pkn A and B consist of a transmembrane receptor with a
tyrosine kinase domain, protruding into the cytoplasm. As for the Pkn G, the unique multidomain
topology of Pkn G reveals a central kinase domain that is flanked by N- and C-terminal rubredoxin
and tetratrico-peptide repeat domains. Directed mutagenesis suggests that the rubredoxin domain
functions as a regulator of Pkn G kinase activity [34], which was taken with its respective ligand to
develop the docking analysis. To generate the pharmacophores the hypotheses with highest scoring
were chosen, its features are shown in Table 1.

Table 1. Statistical data for the hypothesis of Pkn A, B and G, respectively.

PKn A Survival Site Vector Volume Matches

AAAD * 3.145 0.85 0.956 0.484 4 of 4 compounds
ADRR 3.680 0.458 0.854 0.421 3 compounds
AADR 3.845 0.569 0.548 0.401 3 compounds

PKn B Survival Site Vector Volume Matches
AADR * 4.316 0.93 0.992 0.627 9 of 13 compounds
AADR 4.308 0.91 0.988 0.640 7 compounds
DHRR 4.253 0.80 0.962 0.547 8 compounds

PKn G Survival Site Vector Volume Matches
AADR * 3.056 0.47 0.888 0.696 10 of 10 compounds
AADR 2.466 0.46 0.753 0.257 10 compounds
AADR 2.180 0.16 0.710 0.311 10 compounds

* Hyphotheses selected.

In Table 1 we can see a good reproducibility of each hypothesis shown above 70% to the molecular
groups studied, these hypotheses are shown and characterized in Figures 1–3.
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Figure 1. (a) Hypotheses AAAD to Pkn A on the Compound 1, pIC50 = −1.569; (b) Ligands interactions 
between Gly 100, Val 98, Lys 42, 143, Asn 146 and Asp 159 residues and finally (c) Ligands interactions 
between Val 98 and Gly 100 residues on the Hinge zone to the compound 1. PKn A (PBD code: 4OW8). 

Figure 1. (a) Hypotheses AAAD to Pkn A on the Compound 1, pIC50 =−1.569; (b) Ligands interactions
between Gly 100, Val 98, Lys 42, 143, Asn 146 and Asp 159 residues and finally (c) Ligands interactions
between Val 98 and Gly 100 residues on the Hinge zone to the compound 1. PKn A (PBD code: 4OW8).
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Figure 2. (a) Hypotheses AADR to Pk B on the Compound 7, pIC50 = 1.066; (b) Zuccotto classification: 
type I1/2-Hinge Region/Back Pocket pharmacophore, DFG “in” Kinase (see Ref. [33]) and ligand 
interactions between Val 95 residues in the Hinge zone with the compound 7. Pkn B (PBD code: 1O6Y). 
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type I1/2-Hinge Region/Back Pocket pharmacophore, DFG “in” Kinase (see Ref. [33]) and ligand
interactions between Val 95 residues in the Hinge zone with the compound 7. Pkn B (PBD code: 1O6Y).
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Figure 3. (a) Hypotheses AADR to Pk G on compound 23 (R isomer), pIC50 = 1.699; (b) Ligand interactions 
between Glu 233, Val 235 and Ile 292 residues in the hinge zone with compound 23. PKn G (PBD code: 2PZI). 
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Figure 3. (a) Hypotheses AADR to Pk G on compound 23 (R isomer), pIC50 = 1.699; (b) Ligand
interactions between Glu 233, Val 235 and Ile 292 residues in the hinge zone with compound 23. PKn G
(PBD code: 2PZI).

In Figures 1–3 are shown the interactions of the compounds 1 (Pkn A inhibitor), 7 (Pkn B inhibitor)
and 23 (Pkn G inhibitor). Compound 1 presents three interactions on the hinge zone, while compound
7 presents two, and compound 23 also has three interactions. This criterion was crucial to define the
actives poses and generate the hypothesis for each characterized pharmacophore. The results show the
sites -H bond acceptor and -H bond donor on the hinge zone to all the ligands, establishing a structural
model of the ligands on the active site with two or three interactions on this zone. With the focus to
study the stabilization on the active site, we developed a study about chemical reactivity using DFT.
The steric and electronic effects are characterized in terms of their chemical reactivity properties in the
quantum chemistry context.

2.2. Selectivity Analysis: Quantum Chemistry Approach

2.2.1. Molecular Quantum Similarity Study

To analyze the steric and electronic effects, we calculate the Carbó indices to and the overlap and
Coulomb similarity, the Carbó indices are restring on the interval (0, 1] where 1 means self-similarity
and 0 means null quantum similarity.

One election characteristic of the molecular groups, is that they must have the highest structural
difference in order to generate 3D pharmacophores that may have the largest possible chemical
information. This can be seen in Table S6, see Supporting Information (SI), where the majority of values
corresponding to the structural similarity have low values, considering the fact that a good index of
Carbó begins above 0.500. The highest comparison is between the compounds 2 and 3 with a value of
0.684 (see Table S6) and an Euclidean distance of 4.191 (Table S7, see SI). The lowest value is found in
the comparison between the compounds 1 and 4, with a value of 0.250 and an Euclidean distance of
6.317 (see Table S7, in the SI). Compound 1 has the highest activity (pIC50 = −1.568). We can see high
structure differences along this molecular set. To study these features from the electronic point of view,
the Coulomb indices are shown in Table S8, see SI.

The highest value using the Coulomb index is between the compounds 3 and 4 (0.902), and an
Euclidean distance of 29.140 (Table S9, in SI). However, the lowest value is between compounds 1 and
4 (0.779), and Euclidean distance of 40.699. To analyze the steric effects and electronic effects reported
on the most active compound 1 we propose the convergence quantitative alpha (α) scales for steric
effect and beta (β) for electronic effect (Figure 4), with the goal of studying the variability of the steric
and electronic effects along the Pkn A inhibitors from the biological activity point of view.
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In Figure 4 we can see the variability in the steric and electronic effects with the Carbó indices of the
most active compound 1. For this compound the highest similarity is with compound 2 (0.798) using the
Coulomb operator (electronic effect) and with compound 3 (0.369) using the Dirac delta (steric effect).Molecules 2017, 22, 1027 6 of 23 
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for this molecular group we obtained high values in the Carbó index of overlap; this fact is consistent 
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is obtained in the comparison between compounds 23 and 24 with the value of 0.993 and Euclidean 
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Figure 4. Convergence quantitative scales α to steric effects (overlap similarity) and β to electronic
effects (coulomb similarity) for Pkn A inhibitors with respect to the most active compound 1.

For the Pkn B inhibitors, we can see the Carbó index in Tables S10–S13. For the overlap similarity,
the highest comparison is between compounds 10 and 12 with a value of 0.832 (see Table S10) and
Euclidean distance of 2.512 (see Table S11). The lowest value is obtained in the comparison between the
compounds 10 and 16 with a value of 0.234 and Euclidean distance of 6.584 (see Table S11 in the SI).
Among these Pkn B inhibitors, the compound with highest activity is 11 with pIC50 = 1.638, it has the
highest structural difference with the compound 10 with a value of 0.741 (Table S10) and Euclidean
distance of 3.241 (Table S11). The lowest structural difference for compound 7 is with compound 11
with a value of 0.388 and Euclidean distance of 4.825. To analyze the electronic effects, we calculated
the Carbó indices (Table S12) using the Coulomb operators. The highest value in the Carbó index is
obtain in the comparison between compounds 10 and 11 with the value 0.961 and Euclidean distance
of 14.026 (see Table S13). The lowest value is obtained between the compounds 9 and 13 with a value
of 0.589 and Euclidean distance of 43.709. To analyse the steric effects and electronic effects on the most
active compound 11, we can see the alpha (α) and beta (β) scales in Figure 5, to study the variability of
the steric and electronic effects along the Pkn B inhibitors from the biological activity viewpoint.
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effects (Coulomb similarity) for Pkn B inhibitors with respect to the most active compound 11.

In Figure 5 we can see the variability of the steric and electronic effects with the Carbó indices of
the most active compound 11. In both scales, compound 10 has the highest similarity and compound
16 has the lowest. These scales show how the chemical diversity selected can have influence on the
biological activity, and also on the molecular space of the reported pharmacophore.

On the other hand, to the Pkn G inhibitors, the steric effects are shown in Table S14, see SI.
In general, for this molecular group we obtained high values in the Carbó index of overlap; this fact is
consistent with the common structural nucleus for this particular group. The highest value of overlap
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Similarity is obtained in the comparison between compounds 23 and 24 with the value of 0.993 and
Euclidean distance of 0.492 (see Table S15), while the lowest value is obtained in the comparison
between compounds 20 and 27 with a value of 0.532 and Euclidean distance of 4.556. These values
show that the chemical diversity for this particular group is restricted with respect to the chemical
diversity offered by the Pkn B inhibitors.

In general, the Coulomb indices show Carbó indices above of 0.900 (see Table S16). The highest
value is obtained in the comparison between compounds 23 and 24 with a value of 0.999 and Euclidean
distance of 1.246 (see Table S17, SI). The lowest value is obtained between compounds 24 and 27 with
a value of 0.910 and Euclidean distance of 22.609. To analyze the variability of the steric and electronic
effects on the biological activity, the alpha (α) and beta (β) scales are shown in Figure 6.
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Figure 6 shows the variability of the steric and electronic effects on the biological activity of
compound 26, the most active in this molecular group. In both scales, compound 19 has the highest
structural and electronic similarity with compound 26.

On the other hand, in the analyses for the Pkn A, B and G inhibitors, the highest values were
obtained using the Carbó Coulomb index. Taking into account these facts, we can say that the electronic
effects have higher effect that the steric effects in the stabilization of these compounds in the active
site associated to the Pkn A, B and G. With the aim to explore these outcomes a study on the chemical
reactivity using global and local reactivity descriptors is developed in the DFT context.

2.2.2. Chemistry Reactivity Study

To study the electronic effects reported by the Carbó indices in the previous section, we calculated
the global reactivity indices such as chemical potential, hardness, softness, electrophilicity (see
Tables 2–4), and local as the Fukui functions in order to analyze the stabilization and interactions of
these compounds in the active site.

Table 2. Global Chemical Reactivity Indices for Pkn A inhibitors. Chemical Potential (µ), Chemical
Hardness (η) and Electrophilicity (ω) in eV and Softness (S) in (eV)−1.

Compound C. Potential (µ) C. Hardness (η) Softness (S) Electrophilicity (ω)

1 −4.124 3.839 0.261 2.215
2 −3.485 3.543 0.282 1.714
3 −3.418 3.959 0.253 1.476
4 −3.491 3.154 0.317 1.932
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In Table 2, compound 1 has the lowest chemical potential (−4.124 eV), hardness (3.839 eV),
softness (0.261 eV−1) and the highest electrophilicity (2.215 eV). This electrophilicity value can be
related with the highest biological activity for this series, compound pIC50 = −1.568. Compound 1
shows the highest electronic and structural similarity when it is compared with compound 2 (0.787) and
(0.369) (see Figure 4). Therefore, an electronic parameter such as the electrophilicity can be important
in the stabilization of these anti-tuberculosis compounds in the active site. Table 3 shows the reactivity
values to Pkn B inhibitors.

Table 3. Global Chemical Reactivity Indices for Pkn B inhibitors. Chemical Potential (µ), Chemical
Hardness (η) and Electrophilicity (ω) in eV and Softness (S) in (eV)−1.

Compound C. Potential (µ) C. Hardness (η) Softness (S) Electrophilicity (ω)

5 −3.575 5.655 0.177 1.129
6 −2.965 4.118 0.243 1.067
7 −3.575 4.089 0.245 1.563
8 −2.621 5.030 0.199 0.683
9 −2.981 4.351 0.230 1.021
10 −3.531 4.937 0.202 1.268
11 −3.313 3.764 0.266 1.458
12 −2.769 5.888 0.170 0.651
13 −2.887 4.630 0.216 0.900
14 −3.494 4.399 0.227 1.386
15 −3.111 4.705 0.213 1.028
16 −3.549 3.642 0.275 1.721
17 −3.252 3.428 0.292 1.543

In Table 3, compound 12 has the highest chemical potential and hardness with a value of −2.769
eV and 5.888 eV. Consequently, with these values this compound has the lowest softness (S = 0.170
eV−1) and electrophilicity (ω = 0.651 eV). These values are consistent with the lowest biological
activity of this compound (pIC50 = −1.200). On the other hand, the highest values of softness and
electrophilicity correspond to compound 16, S = 0.275 eV−1 andω = 1.721 eV. This compound shows
the highest steric and electronic effects when is compared with the most active compound 11, with
a Carbó index of overlap 0.327 and Coulomb index of 0.733 (see Figure 5), therefore the steric and
electronic effects large can have influence in the stability of such compounds, in the active site and
consequently these aspects show low biological activity from experimental point of view. To analyze
the chemical reactivity associated to the Pkn G inhibitors, we can consider their global indices listed in
Table 4.

Table 4. Global Chemical Reactivity Indices for Pkn G inhibitors. Chemical Potential (µ), Chemical
Hardness (η) and Electrophilicity (ω) in eV and Softness (S) in (eV)−1.

Compound C. Potential (µ) C. Hardness (η) Softness (S) Electrophilicity (ω)

18 −3.730 5.103 0.196 1.363
19 −3.386 3.940 0.254 1.455
20 −3.905 5.127 0.195 1.487
21 −3.622 4.471 0.224 1.467
22 −3.731 4.473 0.224 1.556
23 −3.745 4.478 0.223 1.566
24 −4.131 4.651 0.215 1.835
25 −3.241 4.407 0.227 1.198
26 −3.623 4.375 0.229 1.500
27 −3.611 4.490 0.223 1.459

In Table 4 we can see the values of electrophility (1.500 eV) and softness (0.229 eV−1) of compound
26. These values are consistent with the highest biological activity to this compound (pIC50 = 2.000).
However, the lowest values of electrophility and softness are found in compound 18 with 1.363 eV and
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0.196 eV−1. Compound 18’s values are related to the steric and electronic effects, quantified by the
Carbó index of overlap 0.651 and Coulomb index of 0.960, with respect to the most active compound
of this series compound 26 (Figure 6). Therefore, for this molecular group, the high biological activity
may be related to the ability of the inhibitors, to receive electrons from the external environment.
The stabilization can be determined by the retro-donor process on the hinge zone.

2.2.3. Local Reactivity Study

To quantify the molecular interactions and selectivity of the Pkn A, B and G inhibitors, we
calculated the Fukui functions f(r) −,+,0 on the most active compounds 1 of Pkn A, 7 of Pkn B and 23
of Pkn G. The most significant values of these functions are shown in Figures 7–9.
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In Figure 7 we can see the interactions of N43 (f(r)−:0.022) with GLY 100, N33 (f(r)−:0.117) and
N32 (f(r)−:0.047) with the VAL 98. The sites with affinity to nucleophilic attack are of the oxygen atoms
(O12 (f(r)+:0.185) and O13 f(r)+:0.183) and on the nitrogen atom f(r)+:0.220. Finally, the site with neutral
affinity is of the oxygen atom O12 (f(r)0:0.093) these interactions are responsible for the stabilization of
the hinge zone and of the active site for these anti-tuberculosis compounds (see Figure 1).
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Figure 8 shows the Fukui functions f(r)− of the nitrogen atoms N12 (0.131), responsible for the
hydrogen bond donor, and N11 (0.193) responsible for the acceptor site on the hinge zone. The other
nitrogen atom, N5, besides showing a high f(r)− = 0.225, shows a f(r)0 = 0.1138, representing that it can
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have either susceptibility to electrophilic attack, or toward neutral species. Therefore, this N5 can be
crucial for the stabilization in the active site. The most sensitive values in the Fukui functions f(r)+ are
shown on the carbon atoms C26 and C28, with values of 0.1173 and 0.1105. These values show the
most susceptible zone to nucleophilic attacks. We can appreciate the nature of the molecular behaviour
associated with the Pkn B inhibitors, and the type of stabilization that can happen on the active site.
To know the nature of the chemical selectivity associated with the Pkn G inhibitors, is to know the
Fukui functions of compound 23.Molecules 2017, 22, 1027 10 of 23 

 

 

Figure 9. Local reactivity indices (Fukui functions) on the compound 23, see Figure 3. 

Figure 9 shows the Fukui functions f(r)+,0 of the nitrogen atom N13, with values of 0.0304 and 
0.0221. These values justify the interactions between the nitrogen atom N13 and the residues Ile 292 
and Glu 233 on the hinge zone (one interaction of nucleophilic character and another of neutral 
nature). Another important interaction is between the oxygen atom O12 and the residue Val 235, 
which can be related to the value of f(r)+ = 0.0688. 

The values of f(r)− relevant are shown in the carbon atoms C8 and C3 with 0.109 and 0.116, 
representing the areas susceptible to electrophilic attacks. In general, these values show the Fukui 
functions and the molecular behaviour of these Pkn G inhibitors. Compound 23 can also have 
intramolecular hydrogen bonds, that may be important in the stabilization of the active site. We can 
see the nature of the selectivity and the interactions of Pkn G inhibitors and how they can interact 
with the residues on the hinge zone (see Figure 3). 

2.3. 3D Pharmacophore-Based Database Screening on the Chibale’s Database (CD) 

The database screening [35] is carried out using the Chibale database (see SI), with the 
pharmacophores reported in Figures 1–3, to determine the compounds that can have affinity to each 
pharmacophores. The CD was created with 183 compounds [28–32] (see SI) and resulted in the 
following; 60 compounds have affinity with the Pkn A pharmacophore, 50 have affinity with the Pkn B, 
and other group of 30 compounds presented affinity with the Pkn G pharmacophore. These respectively 
affinities are shown in Tables 5 and 7 through matching properties such as QPpolz: Predicted 
polarizability in Å3, SASA: Total Solvent-accessible Surface are in Å2, FOSA: Hydrophobic component 
of the SASA (saturated carbons and attached hydrogen), FISA: Hydrophilic component of the SASA 
(SASA on N, O and H on heteroatom), PISA: Pi (carbon and attached hydrogen) component of the 
SASA and finally WPS: Weakly polar component of the SASA (halogens, P and S). 

In Tables 5 and 6 we can see the 60 compounds matching the Pkn A pharmacophore. 50 compounds 
matching Pkn B, and 30 compounds with affinity to the Pkn G. In these tables there are also compounds 
with affinities to Pkn A, B and G simultaneously, compounds only with affinity to Pkn B and G, and 
finally compounds with only affinity to the Pkn A and B pharmacophores. The Tables predicted that 
polarizability values are into the recommended ranges for 95% of known drugs (13.0 to 70.0). On the 
other hand, the volume Vmol (the total volume of molecule enclosed by solvent-accessible molecular 
surface, in Å3 (probe radius 1.4 Å)) and the globularity descriptor Glob = (4πr2 )/Smol, where r is the 
radius of the sphere whose volume is equal to the molecular volume, are also in the recommended 
ranges (Vmol: 500 to 2000 Å3) and (Glob: 0.75 to 0.95) [36–44]. 
  

Figure 9. Local reactivity indices (Fukui functions) on the compound 23, see Figure 3.

Figure 9 shows the Fukui functions f(r)+,0 of the nitrogen atom N13, with values of 0.0304 and
0.0221. These values justify the interactions between the nitrogen atom N13 and the residues Ile 292
and Glu 233 on the hinge zone (one interaction of nucleophilic character and another of neutral nature).
Another important interaction is between the oxygen atom O12 and the residue Val 235, which can be
related to the value of f(r)+ = 0.0688.

The values of f(r)− relevant are shown in the carbon atoms C8 and C3 with 0.109 and 0.116,
representing the areas susceptible to electrophilic attacks. In general, these values show the Fukui
functions and the molecular behaviour of these Pkn G inhibitors. Compound 23 can also have
intramolecular hydrogen bonds, that may be important in the stabilization of the active site. We can
see the nature of the selectivity and the interactions of Pkn G inhibitors and how they can interact with
the residues on the hinge zone (see Figure 3).

2.3. 3D Pharmacophore-Based Database Screening on the Chibale’s Database (CD)

The database screening [35] is carried out using the Chibale database (see SI), with the
pharmacophores reported in Figures 1–3, to determine the compounds that can have affinity to
each pharmacophores. The CD was created with 183 compounds [28–32] (see SI) and resulted in the
following; 60 compounds have affinity with the Pkn A pharmacophore, 50 have affinity with the Pkn B,
and other group of 30 compounds presented affinity with the Pkn G pharmacophore. These respectively
affinities are shown in Table 5 and Table 7 through matching properties such as QPpolz: Predicted
polarizability in Å3, SASA: Total Solvent-accessible Surface are in Å2, FOSA: Hydrophobic component
of the SASA (saturated carbons and attached hydrogen), FISA: Hydrophilic component of the SASA
(SASA on N, O and H on heteroatom), PISA: Pi (carbon and attached hydrogen) component of the
SASA and finally WPS: Weakly polar component of the SASA (halogens, P and S).

In Tables 5 and 6 we can see the 60 compounds matching the Pkn A pharmacophore.
50 compounds matching Pkn B, and 30 compounds with affinity to the Pkn G. In these tables there
are also compounds with affinities to Pkn A, B and G simultaneously, compounds only with affinity
to Pkn B and G, and finally compounds with only affinity to the Pkn A and B pharmacophores.
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The Tables predicted that polarizability values are into the recommended ranges for 95% of known
drugs (13.0 to 70.0). On the other hand, the volume Vmol (the total volume of molecule enclosed
by solvent-accessible molecular surface, in Å3 (probe radius 1.4 Å)) and the globularity descriptor
Glob = (4πr2 )/Smol, where r is the radius of the sphere whose volume is equal to the molecular
volume, are also in the recommended ranges (Vmol: 500 to 2000 Å3) and (Glob: 0.75 to 0.95) [36–44].

Table 5. Properties related and selected from the virtual screening on the Chibale’s Database (CB).

Compound with Pkn A Affinity R n QPpolz d SASA e FOSA f FISA g PISA h WPSA i Clog P

CB a-11 b RR c′ H 3 33.435 519.287 246.394 108.866 134.095 29.932 2.12
CB-11RS ′ H 3 33.444 519.272 263.242 77.672 149.322 29.035 2.12
CB-11SR * H 3 32.996 509.874 250.606 107.808 124.503 26.957 2.12
CB-11SS * H 3 33.785 524.334 265.154 85.176 149.124 24.881 2.12
CB-12RR ′ Br 3 35.103 548.141 246.203 108.886 86.116 106.937 3.12
CB-12RS ′ Br 3 35.102 548.265 263.252 77.672 101.105 106.237 3.12
CB-12SR ′ Br 3 34.852 533.186 249.293 105.638 76.888 101.367 3.12
CB-12SS * Br 3 35.515 554.864 265.193 85.184 102.419 102.068 3.12
CB-13RR ′ I 3 35.500 553.805 246.169 108.885 85.600 113.151 3.38
CB-13RS * I 3 35.055 542.675 250.252 106.173 78.136 108.114 3.38
CB-13SR ′ I 3 35.498 553.944 263.253 77.671 100.562 112.458 3.38
CB-13SS * I 3 35.911 560.530 265.180 85.178 101.877 108.294 3.38
CB-14RR ′ F 3 33.723 528.294 246.429 108.875 96.135 76.855 2.40
CB-14RS * F 3 33.510 515.890 249.540 107.362 85.703 73.284 2.40
CB-14SR ′ F 3 33.727 528.286 263.248 77.672 111.462 75.905 2.40
CB-14SS * F 3 34.140 534.883 265.189 85.187 85.187 71.739 2.40
CB-15RR ′ Cl 3 34.752 543.124 246.230 108.883 86.801 101.210 2.97
CB-15RS * Cl 3 34.511 528.669 249.320 105.938 77.560 95.851 2.97
CB-15SR ′ Cl 3 34.752 543.237 263.253 77.672 101.828 100.483 2.97
CB-15SS * Cl 3 35.165 549.828 265.186 85.186 103.137 96.319 2.97
CB-16RR ′ CH3 3 35.277 549.512 331.983 108.869 78.728 29.933 2.62
CB-16RS* CH3 3 34.849 538.256 333.659 105.147 72.444 27.006 2.62
CB-16SR ′ CH3 3 35.306 551.436 351.239 77.670 93.498 29.029 2.62
CB-16SS* CH3 3 35.715 557.934 353.127 85.178 112.768 24.885 2.62
CB-17RR ′ NO2 3 35.116 556.139 245.355 204.840 76.018 29.927 2.16
CB-17RS * NO2 3 34.684 544.945 250.325 198.137 69.525 26.958 2.16
CB-17SR ′ NO2 3 35.157 557.839 263.310 174.709 90.792 29.029 2.16
CB-17SS ′ NO2 3 34.555 548.924 242.772 205.494 70.921 29.737 2.16
CB-22RR ′ H 5 36.703 547.504 292.222 101.786 124.211 29.285 3.24
CB-22RS* H 5 37.311 561.538 269.138 131.258 151.763 9.379 3.24
CB-22SR ′ H 5 36.593 545.737 297.895 97.651 122.486 27.705 3.24
CB-22SS* H 5 37.288 558.397 290.577 105.866 137.393 24.561 3.24
CB-23RR ′ Cl 5 38.013 571.319 292.026 101.818 76.893 100.582 4.09
CB-23RS ′ Cl 5 38.624 585.586 269.148 131.276 104.292 104.292 4.09
CB-23SR * Cl 5 38.638 587.477 314.807 77.673 95.413 99.584 4.09
CB-23SS * Cl 5 38.182 578.661 287.071 124.580 95.665 71.345 4.09
CB-24RR ′ F 5 36.985 556.516 292.243 101.807 86.274 76.192 3.52
CB-24RS ′ F 5 37.595 570.571 269.155 131.263 113.869 56.283 3.52
CB-24SR ′ F 5 37.691 574.185 314.788 77.664 106.723 75.009 3.52
CB-24SS * F 5 37.061 548.024 313.187 78.434 97.486 58.918 3.52
CB-25RR ′ Br 5 38.384 576.756 291.976 101.823 101.823 106.298 4.24
CB-25RS * Br 5 38.799 586.992 267.539 128.972 104.130 86.352 4.24
CB-25SR ′ Br 5 38.987 592.508 314.806 77.674 94.692 105.336 4.24
CB-25SS * Br 5 38.522 583.254 287.106 124.245 94.983 76.920 4.24
CB-26RR ′ I 5 38.781 582.399 291.923 101.820 76.160 112.495 4.50
CB-26RS * I 5 39.003 590.994 269.419 128.332 100.816 92.427 4.50
CB-26SR ′ I 5 39.384 598.197 314.810 77.679 94.151 111.557 4.50
CB-26SS * I 5 39.003 582.006 283.206 121.666 94.068 83.066 4.50

a CB: Chibale’s Database; b Numeration in the Chibale’s Database (see SI); c Chiral isomers: RR, RS, SR and SS;
d QPpolz: Predicted polarizability in Å3; e SASA: Total Solvent-accessible Surface are in Å2; f FOSA: Hydrophobic
component of the SASA (saturated carbons and attached hydrogen); g FISA: Hydrophilic component of the SASA
(SASA on N, O and H on heteroatom); h PISA: Pi (carbon and attached hydrogen) component of the SASA; i WPS:
Weakly polar component of the SASA (halogens, P and S); * Compound with Pkn A, B and G affinity; ′ Compound
with only Pkn A and B affinity.
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Table 6. The virtual screening on Chibale’s Database (CD).
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CB-61S ′ CH(CH3)2 
1,2-Dimethoxy-

phenylethylamine 
- - −2.699 

CB-83 H C2H5 NH H - 
CB-84 C6H5 C2H5 NH H - 
CB-85 H C2H5 NH C6H5CH2 - 
CB-86  C6H5 C2H5 NH C6H5CH2 −1.805 
CB-88 ′ C6H5 C2H5 NH (CH2)3OH >−2.107 
CB-90 C6H5 C2H5 NH n-C4H9 −2.071 

CB-92 ″ C6H5 C2H5 NH 2-OHC6H4 −2.086 
CB-93 ′ C6H5 C2H5 NH 4-OHC6H4 - 
CB-94 ″ C6H5 C2H5 NH 3-NH2C6H4 −1.494 

CB-98 ′ 3-Methoxy-4-
hydroxyphenyl 

H - - >−2.107 

a CB: Chibale’s Database; b Numbering in the Chibale Database (see SI); c Chiral isomerism; ′ Compound with Pkn 
A and G affinity; ″ Compound with Pkn A and B affinity. 

Table 7. Properties related and selected from the virtual screening to the compounds of Table 6. 

Compound QPpolz d SASA e FOSA f FISA g PISA h WPSA i 
CB a-61 b R c ′ 46.733 809.665 554.715 61.543 193.408 0.000 

CB-61S ′ 46.917 824.012 572.502 56.988 194.522 0.000 
CB-83 18.594 409.242 196.278 155.093 57.871 0.000 
CB-84 27.711 506.534 191.029 126.786 188.719 0.000 
CB-85 31.732 572.272 279.927 91.991 200.354 0.000 
CB-86 41.980 693.239 280.021 62.464 350.753 0.000 
CB-88 ′ 34.639 641.288 314.312 123.633 203.343 0.000 
CB-90 36.787 661.635 391.158 67.097 203.379 0.000 

CB-92 ″ 39.959 668.341 190.827 95.529 381.985 0.000 
CB-93 ′ 39.974 673.321 191.826 117.150 364.345 0.000 
CB-94 ″ 40.209 675.980 191.376 123.448 361.156 0.000 
CB-98 ′ 21.225 452.473 106.409 133.125 139.416 73.522 

a CB: Chibale’s Database; b Numbering in Chibale’s Database (see SI); c Chiral isomerism d QPpolz: 
Predicted polarizability in Å3; e SASA: Total Solvent-accessible Surface are in Å2; f FOSA: Hydrophobic 
component of the SASA (saturated carbons and attached hydrogen); g FISA: Hydrophilic component 
of the SASA (SASA on N, O and H on heteroatom); h PISA: Pi (carbon and attached hydrogen) 
component of the SASA; i WPS: Weakly polar component of the SASA (halogens, P and S); ′ 
Compound with Pkn A and G affinity; ″ Compound with Pkn A and B affinity. 

In Table 7 we can see that the R and S isomers of compound 61 only present affinities to the 
pharmacophore Pkn G. Other important properties are the predicted skin permeability (Qlog Kp) and 
the number of likely metabolic reactions (#metab). These properties also are in the recommended 
range (Qlog Kp: −8.0 to −1.0) [45,46] and (#metab: 1 to 8) [36–44]. The results of this database screening 
may be helpful to characterize, from an experimental point of view, the R and S isomers, which is the 
goal of this work. We hope that this information can provide insights about the stereoisomers for a specific 
target Pkn A, B or G. To assess the ligands reported by the database screening, we used docking molecular 
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CB-93 ′ C6H5 C2H5 NH 4-OHC6H4 - 
CB-94 ″ C6H5 C2H5 NH 3-NH2C6H4 −1.494 

CB-98 ′ 3-Methoxy-4-
hydroxyphenyl 

H - - >−2.107 

a CB: Chibale’s Database; b Numbering in the Chibale Database (see SI); c Chiral isomerism; ′ Compound with Pkn 
A and G affinity; ″ Compound with Pkn A and B affinity. 

Table 7. Properties related and selected from the virtual screening to the compounds of Table 6. 

Compound QPpolz d SASA e FOSA f FISA g PISA h WPSA i 
CB a-61 b R c ′ 46.733 809.665 554.715 61.543 193.408 0.000 

CB-61S ′ 46.917 824.012 572.502 56.988 194.522 0.000 
CB-83 18.594 409.242 196.278 155.093 57.871 0.000 
CB-84 27.711 506.534 191.029 126.786 188.719 0.000 
CB-85 31.732 572.272 279.927 91.991 200.354 0.000 
CB-86 41.980 693.239 280.021 62.464 350.753 0.000 
CB-88 ′ 34.639 641.288 314.312 123.633 203.343 0.000 
CB-90 36.787 661.635 391.158 67.097 203.379 0.000 

CB-92 ″ 39.959 668.341 190.827 95.529 381.985 0.000 
CB-93 ′ 39.974 673.321 191.826 117.150 364.345 0.000 
CB-94 ″ 40.209 675.980 191.376 123.448 361.156 0.000 
CB-98 ′ 21.225 452.473 106.409 133.125 139.416 73.522 

a CB: Chibale’s Database; b Numbering in Chibale’s Database (see SI); c Chiral isomerism d QPpolz: 
Predicted polarizability in Å3; e SASA: Total Solvent-accessible Surface are in Å2; f FOSA: Hydrophobic 
component of the SASA (saturated carbons and attached hydrogen); g FISA: Hydrophilic component 
of the SASA (SASA on N, O and H on heteroatom); h PISA: Pi (carbon and attached hydrogen) 
component of the SASA; i WPS: Weakly polar component of the SASA (halogens, P and S); ′ 
Compound with Pkn A and G affinity; ″ Compound with Pkn A and B affinity. 

In Table 7 we can see that the R and S isomers of compound 61 only present affinities to the 
pharmacophore Pkn G. Other important properties are the predicted skin permeability (Qlog Kp) and 
the number of likely metabolic reactions (#metab). These properties also are in the recommended 
range (Qlog Kp: −8.0 to −1.0) [45,46] and (#metab: 1 to 8) [36–44]. The results of this database screening 
may be helpful to characterize, from an experimental point of view, the R and S isomers, which is the 
goal of this work. We hope that this information can provide insights about the stereoisomers for a specific 
target Pkn A, B or G. To assess the ligands reported by the database screening, we used docking molecular 
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CB-61 CB-83-94 CB-90-98

Compound with
Pkn A Affinity R1 R2 X R3 pIC50

CB a-61 b R c ′ CH(CH3)2
1,2-Dimethoxy-

phenylethylamine - - −2.699

CB-61S ′ CH(CH3)2
1,2-Dimethoxy-

phenylethylamine - - −2.699

CB-83 H C2H5 NH H -
CB-84 C6H5 C2H5 NH H -
CB-85 H C2H5 NH C6H5CH2 -
CB-86 C6H5 C2H5 NH C6H5CH2 −1.805

CB-88 ′ C6H5 C2H5 NH (CH2)3OH >−2.107
CB-90 C6H5 C2H5 NH n-C4H9 −2.071

CB-92 ” C6H5 C2H5 NH 2-OHC6H4 −2.086
CB-93 ′ C6H5 C2H5 NH 4-OHC6H4 -
CB-94 ” C6H5 C2H5 NH 3-NH2C6H4 −1.494

CB-98 ′ 3-Methoxy-4-
hydroxyphenyl H - - >−2.107

a CB: Chibale’s Database; b Numbering in the Chibale Database (see SI); c Chiral isomerism; ′ Compound with Pkn
A and G affinity; ” Compound with Pkn A and B affinity.

In Table 7 we can see that the R and S isomers of compound 61 only present affinities to the
pharmacophore Pkn G. Other important properties are the predicted skin permeability (Qlog Kp) and
the number of likely metabolic reactions (#metab). These properties also are in the recommended range
(Qlog Kp: −8.0 to −1.0) [45,46] and (#metab: 1 to 8) [36–44]. The results of this database screening
may be helpful to characterize, from an experimental point of view, the R and S isomers, which is
the goal of this work. We hope that this information can provide insights about the stereoisomers
for a specific target Pkn A, B or G. To assess the ligands reported by the database screening, we used
docking molecular with the structural model generated by the 3D pharmacophores, in order to verify
the interaction of these ligands on the active site in each protein kinase.

Table 7. Properties related and selected from the virtual screening to the compounds of Table 6.

Compound QPpolz d SASA e FOSA f FISA g PISA h WPSA i

CB a-61 b R c ′ 46.733 809.665 554.715 61.543 193.408 0.000
CB-61S ′ 46.917 824.012 572.502 56.988 194.522 0.000

CB-83 18.594 409.242 196.278 155.093 57.871 0.000
CB-84 27.711 506.534 191.029 126.786 188.719 0.000
CB-85 31.732 572.272 279.927 91.991 200.354 0.000
CB-86 41.980 693.239 280.021 62.464 350.753 0.000

CB-88 ′ 34.639 641.288 314.312 123.633 203.343 0.000
CB-90 36.787 661.635 391.158 67.097 203.379 0.000

CB-92 ” 39.959 668.341 190.827 95.529 381.985 0.000
CB-93 ′ 39.974 673.321 191.826 117.150 364.345 0.000
CB-94 ” 40.209 675.980 191.376 123.448 361.156 0.000
CB-98 ′ 21.225 452.473 106.409 133.125 139.416 73.522

a CB: Chibale’s Database; b Numbering in Chibale’s Database (see SI); c Chiral isomerism d QPpolz: Predicted
polarizability in Å3; e SASA: Total Solvent-accessible Surface are in Å2; f FOSA: Hydrophobic component of the
SASA (saturated carbons and attached hydrogen); g FISA: Hydrophilic component of the SASA (SASA on N, O
and H on heteroatom); h PISA: Pi (carbon and attached hydrogen) component of the SASA; i WPS: Weakly polar
component of the SASA (halogens, P and S); ′ Compound with Pkn A and G affinity; ” Compound with Pkn A and
B affinity.
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3. Materials and Methods

The molecular dataset used in this study was taken from the literature as follow: four Pkn A
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15],
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution
of IC50. Logarithmic IC50 (µM) (pIC50 = −log IC50) was employed as a dependent variable instead of
IC50. The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn
B and Table 10 for Pkn G.

Table 8. Structures, pIC50 values of the Pkn A inhibitors.

Compound Structure pIC50

1

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

−1.569

2

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

−1.839

3

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

−1.875

4

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

−1.934

Table 9. Structures, pIC50 values of the Pkn B inhibitors.

Compound Structure pIC50

5

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

0.800

6

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 

0.971

7

Molecules 2017, 22, 1027 13 of 23 

 

with the structural model generated by the 3D pharmacophores, in order to verify the interaction of 
these ligands on the active site in each protein kinase. 

3. Materials and Methods 

The molecular dataset used in this study was taken from the literature as follow: four Pkn A 
inhibitors reported by Sipos et al. [14], 13 Pkn B inhibitor selected from the works of Székely et al. [15], 
Lougheed et al. [16], Chapman et al. [17] and Naqvi et al. [18] and 10 Pkn G inhibitors reported by 
Sipos et al. [14]). In this molecular dataset we considered structural diversity and uniform distribution of 
IC50. Logarithmic IC50 (μM) (pIC50 = −log IC50) was employed as a dependent variable instead of IC50. 
The pIC50 values of inhibition of the compounds are shown in Table 8 for Pkn A, Table 9 for Pkn B 
and Table 10 for Pkn G. 

Table 8. Structures, pIC50 values of the Pkn A inhibitors. 

Compound Structure pIC50

1 −1.569 

2 −1.839 

3 −1.875 

4 −1.934 

Table 9. Structures, pIC50 values of the Pkn B inhibitors. 

Compound Structure pIC50 

5 0.800 

6 0.971 

7 1.066 1.066



Molecules 2017, 22, 1027 14 of 23

Table 9. Cont.

Compound Structure pIC50

8

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

1.076

9

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

1.137

10

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

−0.360

11

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

1.638

12

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

−1.200

13

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

1.276

14

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

0.285

15

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

1.187

16

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

−0.375

17

Molecules 2017, 22, 1027 14 of 23 

 

8 1.076 

9 1.137 

10 −0.360 

11 1.638 

12 −1.200 

13 1.276 

14 0.285 

15 1.187 

16 −0.375 

17 0.086 

  

0.086



Molecules 2017, 22, 1027 15 of 23

Table 10. Structures, pIC50 values of the Pkn G inhibitors.
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C a R1 R2 R3 R4 X Bond C3-X Bond C1-C2 pIC50 

18 Cyclopropyl H H H C C3-X C1-C2 0.523 
19 Cyclohexyl H - H O C3-X C1-C2 0.167 
20 Cyclopropyl H - H O C3-X C1-C2 0.276 
21 Isopropyl H –OH H C C3=X C1=C2 1.523 
22 Cyclopropyl Br –OH H C C3=X C1=C2 1.699 
23 Methylcyclopropyl Cl –OH H C C3=X C1=C2 1.699 
24 Cyclopropyl Cl –OCH3 Cl C C3=X C1=C2 1.398 
25 Ethanol H –OH H C C3=X C1=C2 1.301 
26 1,3-Benzodioxole Cl –OH H C C3=X C1=C2 2.000 
27 Methylcyclopropyl H –OH H C C3=X C3=X 1.301 

a C: compound. 

3.1. System Preparation to the Molecular Mechanic (MM) Approach 

The crystal structure of PKn A (PBD code: 4OW8 [47]), B (PBD code: 1O6Y [48]) and PKn G (PBD 
code: 2PZI [34]) was prepared using Schrödinger Suite 2014-1’s Protein Preparation Wizard module 
[49,50], which refines the protein structure and optimizes the hydrogen bond (H-bond) network. 
Protonation states were determined using PropKa utility at a physiological pH. This was followed by 
a restrained molecular minimization using the Impact Refinement (Impref) module [51,52], with the 
heavy atoms restrained to remain within a root-mean-square deviation (RMSD) of 0.18 Å from the 
initial coordinates. The 3D molecular structures of the compounds were built using Maestro [53] and 
optimized using a B3LYP (hybrid-GGA exchange-correlation functional) at 6-311++G (2d,2p) level of 
theory [54,55] using Gaussian 09 [56], the ionization/tautomeric states were predicted at physiological 
pH conditions using Epik [57]. 

3.2. Docking Studies and Pharmacophore Research 

Docking studies were carried out with Glide [58], using the Standard Precision (SP) mode with 
default parameters. Docking grid was generated with default settings centered at the co-crystallized 
ligand. A scaling factor down to 0.8 for the van der Waals radii of nonpolar protein atoms was used 
to accommodate the fact that the protein structure will not be optimized to fit larger ligands such as 
the studied in this work. The Induced Fit Docking (IFD) workflow [59,60] was employed to generate 
an alternative conformation of the receptor suitable to bind the studied ligands, by allowing the 
protein to undergo side-chain or backbone movements, or both, upon ligand docking. To develop the 
docking analysis we used protein-ligand complex molecular dynamics simulation of 25 ns in vacuo 
using GROMOS11 force field set, implemented through Gromacs 5.1.2 [61,62], to analyze the stability 
of each protein-ligand complex. 

Finally, for the pharmacophore research we compared all the poses of the most and less active 
ligands for each congeneric family (PKn A, B and G), taking into account the extent of residue 
movement generated by the IFD calculation. The most energetically favourable conformation was 
selected by the best pose of each compound for further analysis, also ensuring that it exhibited 
interactions with the “hinge” residues of the PKs (i.e., Donor-Acceptor-Donor, DAD system). The 
pharmacophore research was carried out with Phase 3.7 [63] using four pharmacophore features: 
Hydrogen bond acceptor (A), Hydrogen bond donor (D), Hydrophobic group (H) and Aromatic ring (R); 
the pharmacophores of the best ligand poses in the active sites of the PKn A, B and G were examined 
and we chose the hypothesis with the highest score. 

C a R1 R2 R3 R4 X Bond
C3-X

Bond
C1-C2 pIC50

18 Cyclopropyl H H H C C3-X C1-C2 0.523
19 Cyclohexyl H - H O C3-X C1-C2 0.167
20 Cyclopropyl H - H O C3-X C1-C2 0.276
21 Isopropyl H –OH H C C3=X C1=C2 1.523
22 Cyclopropyl Br –OH H C C3=X C1=C2 1.699
23 Methylcyclopropyl Cl –OH H C C3=X C1=C2 1.699
24 Cyclopropyl Cl –OCH3 Cl C C3=X C1=C2 1.398
25 Ethanol H –OH H C C3=X C1=C2 1.301
26 1,3-Benzodioxole Cl –OH H C C3=X C1=C2 2.000
27 Methylcyclopropyl H –OH H C C3=X C3=X 1.301

a C: compound.

3.1. System Preparation to the Molecular Mechanic (MM) Approach

The crystal structure of PKn A (PBD code: 4OW8 [47]), B (PBD code: 1O6Y [48]) and PKn G
(PBD code: 2PZI [34]) was prepared using Schrödinger Suite 2014-1’s Protein Preparation Wizard
module [49,50], which refines the protein structure and optimizes the hydrogen bond (H-bond)
network. Protonation states were determined using PropKa utility at a physiological pH. This was
followed by a restrained molecular minimization using the Impact Refinement (Impref) module [51,52],
with the heavy atoms restrained to remain within a root-mean-square deviation (RMSD) of 0.18 Å from
the initial coordinates. The 3D molecular structures of the compounds were built using Maestro [53]
and optimized using a B3LYP (hybrid-GGA exchange-correlation functional) at 6-311++G (2d,2p)
level of theory [54,55] using Gaussian 09 [56], the ionization/tautomeric states were predicted at
physiological pH conditions using Epik [57].

3.2. Docking Studies and Pharmacophore Research

Docking studies were carried out with Glide [58], using the Standard Precision (SP) mode with
default parameters. Docking grid was generated with default settings centered at the co-crystallized
ligand. A scaling factor down to 0.8 for the van der Waals radii of nonpolar protein atoms was used to
accommodate the fact that the protein structure will not be optimized to fit larger ligands such as the
studied in this work. The Induced Fit Docking (IFD) workflow [59,60] was employed to generate an
alternative conformation of the receptor suitable to bind the studied ligands, by allowing the protein
to undergo side-chain or backbone movements, or both, upon ligand docking. To develop the docking
analysis we used protein-ligand complex molecular dynamics simulation of 25 ns in vacuo using
GROMOS11 force field set, implemented through Gromacs 5.1.2 [61,62], to analyze the stability of each
protein-ligand complex.

Finally, for the pharmacophore research we compared all the poses of the most and less active
ligands for each congeneric family (PKn A, B and G), taking into account the extent of residue
movement generated by the IFD calculation. The most energetically favourable conformation was
selected by the best pose of each compound for further analysis, also ensuring that it exhibited
interactions with the “hinge” residues of the PKs (i.e., Donor-Acceptor-Donor, DAD system).
The pharmacophore research was carried out with Phase 3.7 [63] using four pharmacophore features:
Hydrogen bond acceptor (A), Hydrogen bond donor (D), Hydrophobic group (H) and Aromatic
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ring (R); the pharmacophores of the best ligand poses in the active sites of the PKn A, B and G were
examined and we chose the hypothesis with the highest score.

4. Theoretical and Computational Details to the Quantum Chemistry Approach

In this work, with the goal of studying the inhibitor from the quantum chemistry point of
view, we used the MQS field and chemical descriptors within the DFT context, to analyze the group
correlation and look for the facts that can determine the anti-tuberculosis activity of the Pkn A, B and
G inhibitors considered.

4.1. Molecular Quantum Similarity: Steric and Electronic Effects Study

The similarity indices were introduced by Carbó and co-workers (see reviews on quantum
similarity of [24,25,64–66]), and have been used to understand the steric and electronic effect on the
molecular sets. The quantum similarity measure ZAB between compounds A and B, with electron
density ρA(r1) and ρB(r2) is defined, based on the idea of the minimizing of the expression for the
Euclidean distance as:

D2
AB =

∫
|ρA(r)− ρB(r)|2dr

=
∫
(ρA(r1))

2 dr1 +
∫
(ρB(r2))

2 dr2 − 2
∫

ρA(r1)(r2)dr1dr2

= ZAA + ZBB − 2ZAB

(1)

Overlap integral involving the ZAB between the electronic density of the compound A and B, ZAA
and ZBB are the self-similarity of compounds A and B [64–66]. The most common quantum similarity
index is the one generalized by the cosine, introduced by Carbó et al. [64–66]. This index can be
expressed mathematically as:

IAB =

∫
ρA(r1)ρB(r2)dr1dr2√∫

(ρA(r1))
2dr1

∫
(ρB(r2))

2 dr2

(2)

or using the elements of Z in an operator (Ω):

IAB =
ZAB(Ω)√

ZAA(Ω)ZBB(Ω)
(3)

In Equation (3), the index is mathematically defined in the interval (0, 1) where 1 is self-similarity,
and where only the measures of “shape similarity” are included. Another alternative is the
Hodgkin-Richards index [67], which appears naturally when using the arithmetic mean and can
be defined mathematically as:

IAB =
2ZAB(Ω)

ZAA(Ω) + ZBB(Ω)
(4)

This is (Ω) an operator for the measurement of quantum similarity. The Equation (4) shows
another way to make Quantum Similarity Measures (QSM), but recent published work has shown that
in fact, it is just an Euclidean distance, like shown in Equation (1) [68].

A simple way to make Quantum Similarity Measure (QSM) [22–24] involving two density
functions, in the most usual form:

ZAB(Ω) =
x

ρA(r1)Ω(r1, r2)ρB(r2)dr1dr2 (5)

In this equation ρA(r1) and ρB(r2) are the density functions to quantum objects A and B, while
Ω(r1, r2) is a positive define weight operator. When the operator is chosen as the Dirac Delta
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function: δ(r1 − r2) we obtain overlap similarity measure, while Coulomb Similarity Measure appears
when choosing: |r1 − r2|−1 These two operators are the most popular for similarity comparisons
between molecules.

4.2. Molecular Alignment

To carry out the quantum similarity measures is an important optimal molecular alignment. As the
integrals attached to the QSM produce, real positive defined results, the relative position problem can
be addressed through a maximal QSM. For an overlap QSM, this situation can be expressed by means
of the equation:

max
T;∅

ZAB(T;∅) = max
T;∅

∫
ρA(r)ρB(r|T;∅)dr (6)

In this equation, is implicitly supposed that ρB(r) is translated and rotated by six possible ways,
(T;∅) and are shown as explicit parameters in this integral [22–24,69]. This principle is used by the
Topo Geometrical Superposition Algorithm (TGSA) [70] and is the program used in this study to
calculate the Carbó indices using Equation (2).

4.3. Chemical Reactivity Descriptors: Selectivity Study

The global reactivity descriptors are defined within the DFT framework and were interpreted
by Parr and coworkers [71–78]. The chemical potential can be written mathematically in terms of the
energy of an electron in the frontier molecular orbitals (Higher Occupied Molecular Orbital) HOMO
and (Lowest Unoccupied Molecular Orbital) LUMO as:

µ ≈ εL + εH
2

(7)

From (8), one can obtain quantitative expression for the chemical hardness (η) [79–83], meaning
that the opposition of the system to distort the electron cloud and mathematically can be written as:

η ≈ εL − εH (8)

On the other hand, we have the global electrophilicity (ω) introduced by Parr et al. [84], which is
a measure of the stabilization energy of the system when it is saturated by electrons from the external
environment and represented mathematically as:

ω =
µ2

2η
(9)

The Fukui function ( f (r)) was one of the descriptors used in this work and defined as:

f (r) =
(

∂ρ(r)
∂N

)
V
=

(
∂µ

∂V(r)

)
N

(10)

Due to that f (r) is discontinuous at integer values of N. There are three types according to
Fukui et al., f + which contain information on the reactivity local of nucleophilic attack, f− (11) which
does the same for an electrophilic attack. And finally f 0, that measures the reactivity towards neutral
or radical agents [84–91], using the condensation scheme on specific sites of the molecule to obtain the
following Fukui indices [92–95]:
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f+x (r) ≈ ρx
N+1(r)− ρx

N(r) ≈ qx(N + 1)− qx(N)

f−x (r) ≈ ρx
N(r)− ρx

N−1(r) ≈ qx(N)− qx(N − 1)

f 0
x (r) ≈

[
f+x + f−x

2

]
≈ ρx

N+1(r)−ρx
N−1(r)

2 ≈ qx(N+1)−qx(N−1)
2

(11)

Hopefully using this equation scheme will help understanding the biological activity (selectivity)
of the PKn A, B and G inhibitors studied from global and local point of view.

4.4. Creating the 3D Chibale’s Database: Database Screening

Computational Aided Drug Design (CADD) is presently a key component in the process of
drug discovery and development associated with the tuberculosis disease. It offers great promise
to drastically reduce cost and time requirements. In a pharmaceutical context, database screening is
normally regarded as the top CADD tool to screen large libraries of chemical structures, and reduce
them to a key set of likely drug candidates regarding a specific protein target [96,97].

In this work, the 3D Chibale database was created using 103 anti-tuberculosis compounds reported
by the Chibale group [28–32]. Each anti-tuberculosis compound was characterized taking account
their chiral centers (chiral isomers), which leaves the final molecular group with 183 compounds (see
Tables S1–S5 in Supporting Information (SI)). This 3D database was created using the command line
tools of Accompany Phase version 3.5, which is part of the Schrödinger Suite 2013 release [98–100].
It was used to evaluate the pharmacophores to Pkn A, B and G reported, to identify the compound
that may have affinity with these specific protein targets.

5. Conclusions

In conclusion, the 3D pharmacophore reported were selected according to the hypotheses with
highest score (Acceptor: A1/A2/A3/Donor:D) of Pkn A and (A/A/D/aromatic ring:R) of Pkn B
and G. The three 3D pharmacophores generated were characterized using the molecular quantum
similarity field and reactivity descriptors supported in the DFT framework.

To develop the study of quantum similarity, we used the Carbó indices. Through these indices are
proposed the convergence quantitative alpha (α) scale to steric effects and beta (β) to electronic effects
with respect to the most active compound of each inhibitor set. In this analysis, the Carbó indices with
the highest values are the Coulomb values. Considering that the electronic effects are more relevant
than the steric, we develop a study using global reactivity descriptors such as Chemical Potential,
Harness, Softness and the Fukui functions as local descriptor, to understand the interaction of these
compounds in the active sites.

The conclusion regarding the chemistry reactivity of Pkn A inhibitors is that the electronic factors
as the electrophilicity can be important in the stabilization of these anti-tuberculosis compounds. In the
active site of Pkn B inhibitors, there are steric and electronic effects that can have a big influence in
the stability of such compounds in the active site. Consequently these aspects show low biological
activity from experimental point of view. Regarding Pkn G inhibitors, the high biological activity
may be related to the ability of the inhibitors to receive electrons from the external environment.
The stabilization can be determined by the retro-donor process on the hinge zone. In this order of
ideas, the reactivity descriptors reported can be related to the experimental data.

Finally, the database screening was developed using the Chibale’s Database created with
183 anti-tuberculosis compounds and using the Pkn A, B and G pharmacophores reported. We found
60 compounds with affinity to the Pkn A pharmacophore, 50 compounds for the PKn B and 30
compounds to the Pkn G. These predictions were tested with properties related such as QPpolz:
Predicted Polarizability in Å3, SASA: total Solvent-Accessible Surface Are in Å2, FOSA: Hydrophobic
component of the SASA (saturated carbons and attached hydrogen) and WPS: Weakly Polar
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Component of the SASA (halogens, P and S), among others. These properties related are within
the recommended ranges for 95% of known drugs. In addition, the docking results for these ligands
show the sites –H bond acceptor and –H bond donor, which are the characteristic interactions on the
hinge zone in the active site, of each protein kinase studied.

Supplementary Materials: The Supplementary Materials following are available online.
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