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Abstract: Quantitative determination of multiple effective components in a given plant usually
requires a very large amount of authentic natural products. In this study, we proposed a rapid and
non-destructive method for the simultaneous determination of echinacoside, verbascoside, mannitol,
sucrose, glucose and fructose in Cistanche tubulosa by near infrared spectroscopy (NIRS). Near infrared
diffuse reflectance spectroscopy (DRS) and high performance liquid chromatography (HPLC) were
conducted on 116 batches of C. tubulosa samples. The DRS data were processed using standard normal
variety (SNV) and multiplicative scatter correction (MSC) methods. Partial least squares regression
(PLSR) was utilized to build calibration models for components-of-interest in C. tubulosa. All models
were then assessed by calculating the root mean square error of calibration (RMSEC), correlation
coefficient of calibration (r). The r values of all six calibration models were determined to be greater
than 0.94, suggesting each model is reliable. Therefore, the quantitative NIR models reported in this
study can be qualified to accurately quantify the contents of six medicinal components in C. tubulosa.

Keywords: Cistanche tubulosa; high performance liquid chromatography; near infrared spectroscopy;
partial least squares

1. Introduction

Cistanche (Hoffmg. Et Link) is a perennial phanerogamic genera of the Orobanchaceae family of
plants. Most species belonging to Cistanche genus have been used as a medicinal plants for millennia
in China; have a reputation as a superior tonic; and are known as “Ginseng of the Deserts” [1,2].
Cistanche tubulosa is an obligate parasite of the roots of perennial plant Tamarix chinensis. It has been
documented in the Chinese Pharmacopoeia as the authentic source of Cistanches Herba (Chinese name:
Roucongrong) from 2005 edition [3]. Modern pharmacological researches on Cistanche species initiated
at the 1980s [4]. Pharmacological investigations showed that the extracts of Cistanche plants possess a
wide spectrum of activities, such as curing kidney deficiency and senile constipation, advancing the
ability to learn and memorize, anti-Alzheimer’s disease, enhancing immunity, anti-aging, anti-fatigue,
etc. [1,5–7]. In the last three decades, comprehensive and systematic pharmacological studies have
been combined with phytochemical investigations to illuminate the material basis of the beneficial
effects of the roots of Cistanche plants. These surveys indicate that phenylethanoid glycosides (PhGs)
were the main effective components in Cistanche plants playing key roles for the treatment of kidney
deficiency, impotence [8], anti-aging [9] and anti-Alzheimer’s disease [10]. The contents of two PhGs
(echinacoside and verbascoside) were required in Chinese Pharmacopoeia. Meanwhile, carbohydrates
such as mannitol, sucrose, glucose and fructose in Cistanche plants own the laxative function and the
carbohydrate clusters of Cistanche plants have been used for the treatment of constipation [11].
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Wild resources of C. tubulosa are mainly distributed in the area surrounding the Taklamakan
Desert in the southern Xinjiang Autonomous Region in China. Similar to many other species used as
traditional Chinese medicines (TCMs), C. tubulosa is of great economic value and almost extinct in its
wild habitat because of over-collection. Cultivation of C. tubulosa began in the 1990s in China to ensure
the supply of raw materials for Cistanches Herba as well as protect wild plant resources. As of 2017,
nearly 13 thousand ha of cultivated C. tubulosa exist in Hotan Prefecture in Xinjiang [12,13]. Advances
in planting technology are demanded for expanding the cultivation as well as improving the quality of
C. tubulosa.

The primary purpose of cultivating C. tubulosa is to produce Cistanches Herba, being rich of those
effective components. However, the contents of the effective components in Cistanches Herba, such as
PhGs and oligosaccharides, can be significantly affected by many factors during production [12,13].
A real-time detection system of quality of C. tubulosa should be explored. Therefore, it is necessary to
develop a high throughput method to fulfill the requirement of analyzing a large number of samples
within a short period of time. Traditionally, the determination of those primary effective components,
such as PhGs and carbohydrates, in C. tubulosa was usually achieved using high performance liquid
chromatography (HPLC) [14,15]. Although being accurate and reliable, it is time-consuming and
laborious for data collection and processing. In addition, a great deal of time and efforts are also
required for sample preparation that usually involves pulverization, extraction, and filtration, of HPLC
assays. Therefore, a clear principle and easy-to-operate tool are needed to obtain a relatively large
amount of data. Fortunately, near infrared spectroscopy (NIRS) has been extensively used to assess
agricultural products [16], food [17], medical samples [18], and pharmaceutical products [19] because
it is rapid as well as nondestructive. Therefore, NIRS could exactly matching the requirements for
efficient measurements of TCMs, and it is unsurprising that NIRS has been applied for qualitative
identification [20,21] and the quantification of compounds [22] in TCMs.

In this study, the contents of six effective components, including echinacoside, verbascoside,
mannitol, sucrose, glucose and fructose in 116 batches of C. tubulosa samples that were collected
from Hotan Prefecture in Xinjiang among 2013–2015 were firstly determined by HPLC. Afterwards,
the calibration models of these six components were established with the partial least squares regression
(PLSR) method. These models were then validated with the correlation coefficients and prediction
errors in the calibration sets. The results demonstrated that the developed method could be employed
as a reliable method for quantitative analysis of C. tubulosa.

2. Results

2.1. HPLC Analysis

The contents of echinacoside and verbascoside were determined by a well-defined HPLC-UV
method in the literature [3,23] and four carbohydrates (mannitol, sucrose, glucose, and fructose) were
determined by a well-defined HPLC-ELSD method in the literature [24] for all the 116 samples. Sample
preparation and determination methods were described in Sections 3.1 and 3.3. Figure 1 shows the
characteristic chromatograms of the mixed standards. It can be seen that all six effective components
were baseline separated and therefore could be quantified. The HPLC method was validated before the
sample testing. The main results of the HPLC method are listed in Table 1. A favorable linear relation
(r = 0.9998) and recovery (98.5%) of the echinacoside determination method are shown in the results,
the same result as all the five components. Therefore, the contents of the six effective components can
be determine accurately. All determined content ranges are summarized in Table 1.
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Table 1 Main results of the HPLC method. 

Medicinal 
Components 

tR (min) 
Standard Sample 

Range (mg/g) 
Calibration Curve r 

Recovery 
(%, n = 3) 

Sample Value 
Range (mg/g) 

Echinacoside 5.79 1.00–1000.00 Y = 1.106 × 10−4X + 2.50 0.9998 98.5 6.50–535.45 
Verbascoside 8.10 1.00–250.00 Y = 8.100 × 10−5X + 0.03 0.9995 103.8 1.35–212.88 

Fructose 12.50 1.00–250.00 Y = 4.195 × 10−2X + 2.13 0.9999 100.5 13.36–104.78 
Mannitol 14.70 1.00–100.00 Y = 4.954 × 10−3X + 0.113 0.9990 99.6 12.52–88.70 
Glucose 15.70 1.00–100.00 Y = 1.857 × 10−2X + 0.104 0.9999 100.2 15.84–75.36 
Sucrose 21.60 1.00–100.00 Y = 6.816 × 10−3X + 0.156 0.9996 98.5 16.22–43.43 

 
Figure 1. Representative chromatograms of the mixed standards using HPLC-UV (upper) and HPLC-
ELSD (lower) 1, echinacoside; 2, verbascoside; 3, fructose; 4, mannitol; 5, glucose, 6, sucrose. 

2.2. NIRS Analysis 

Figure 2 shows the NIR spectra (4000–10,000 cm−1) of the C. tubulosa samples. Significant absorption 
peaks appeared from 4000 cm−1 to 7500 cm−1 in all samples, while gentle fluctuations appeared from 
7500 cm−1 to 10,000 cm−1. Baseline drift of the NIR spectra occurred because the sample was easily 
affected by factors such as particle size and color (Figure 2A). Mathematical pretreatments of the spectra 
were used to reduce the influence of unnecessary information to some degree. The mathematical 
pretreatments included first derivation (1st derivation), second derivation (2nd derivation), standard 
normal variety (SNV) and multiplicative scatter correction (MSC). Figure 2B shows the 2nd derivation 
of the NIR spectra of C. tubulosa, and the significant variations occurred from three regions, 4000–4500 
cm−1, 5000–5500 cm−1, and 7000–7500 cm−1, are obviously observed. 

Figure 1. Representative chromatograms of the mixed standards using HPLC-UV (upper) and
HPLC-ELSD (lower) 1, echinacoside; 2, verbascoside; 3, fructose; 4, mannitol; 5, glucose, 6, sucrose.

Table 1. Main results of the HPLC method.

Medicinal
Components tR (min) Standard Sample

Range (mg/g) Calibration Curve r Recovery
(%, n = 3)

Sample Value
Range (mg/g)

Echinacoside 5.79 1.00–1000.00 Y = 1.106 × 10−4X + 2.50 0.9998 98.5 6.50–535.45
Verbascoside 8.10 1.00–250.00 Y = 8.100 × 10−5X + 0.03 0.9995 103.8 1.35–212.88

Fructose 12.50 1.00–250.00 Y = 4.195 × 10−2X + 2.13 0.9999 100.5 13.36–104.78
Mannitol 14.70 1.00–100.00 Y = 4.954 × 10−3X + 0.113 0.9990 99.6 12.52–88.70
Glucose 15.70 1.00–100.00 Y = 1.857 × 10−2X + 0.104 0.9999 100.2 15.84–75.36
Sucrose 21.60 1.00–100.00 Y = 6.816 × 10−3X + 0.156 0.9996 98.5 16.22–43.43

2.2. NIRS Analysis

Figure 2 shows the NIR spectra (4000–10,000 cm−1) of the C. tubulosa samples. Significant
absorption peaks appeared from 4000 cm−1 to 7500 cm−1 in all samples, while gentle fluctuations
appeared from 7500 cm−1 to 10,000 cm−1. Baseline drift of the NIR spectra occurred because the
sample was easily affected by factors such as particle size and color (Figure 2A). Mathematical
pretreatments of the spectra were used to reduce the influence of unnecessary information to some
degree. The mathematical pretreatments included first derivation (1st derivation), second derivation
(2nd derivation), standard normal variety (SNV) and multiplicative scatter correction (MSC). Figure 2B
shows the 2nd derivation of the NIR spectra of C. tubulosa, and the significant variations occurred from
three regions, 4000–4500 cm−1, 5000–5500 cm−1, and 7000–7500 cm−1, are obviously observed.
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Figure 2. Near Infrared spectra of the C. tubulosa samples (n = 116) and the spectra processed with 
2nd derivation. 

2.3. Establishment of Quantitative Calibration Models 

Partial least squares regression (PLSR) is a classic modeling method and it has been widely applied 
in quantitative models because of the high quality of the results. The advantages of PLSR include its 
good forecasting ability and relatively simplicity. PLSR has also widely applied in the establishment of 
quantitative calibration models of TCMs [25]. Based on the pretreated NIR spectra, an NIR quantitative 
analysis model for the six effective components in C. tubulosa was established using the PLSR method 
with HPLC analysis data as the true values. The 116 samples were randomly divided into calibration 
and validation sets with a 3:1 ratio. The most suitable conditions for the calibration were chosen by 
low RMSEC and high correlation coefficient.  
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intervals for the six chemical constituents were all selected from the interval from 4000 to 10,000 cm−1 
by comparing the performances of RMSEC and correlation coefficient. 
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2.3.2. Selection of the Optimum Number of Factors for the Calibration Models 

The PLSR explains the maximum amount of variability in the data through reducing the 
dimensionality of the spectra data by the calculation of factors. The “underfittedness” problem 

Figure 2. Near Infrared spectra of the C. tubulosa samples (A) and the spectra processed with 2nd
derivation (B) (n = 116).

2.3. Establishment of Quantitative Calibration Models

Partial least squares regression (PLSR) is a classic modeling method and it has been widely applied
in quantitative models because of the high quality of the results. The advantages of PLSR include its
good forecasting ability and relatively simplicity. PLSR has also widely applied in the establishment of
quantitative calibration models of TCMs [25]. Based on the pretreated NIR spectra, an NIR quantitative
analysis model for the six effective components in C. tubulosa was established using the PLSR method
with HPLC analysis data as the true values. The 116 samples were randomly divided into calibration
and validation sets with a 3:1 ratio. The most suitable conditions for the calibration were chosen by
low RMSEC and high correlation coefficient.

2.3.1. Selection of the Wave Band for the Calibration Models

The selection of suitable wave band was an important step for calibration models building.
In this study, the NIR interval spectra of 4000–7500 cm−1 (recommend by TQ analyst software) and
4000–10,000 cm−1 were compared. It was observed that this range unsuitable for the calibration at
the interval between 4000 cm−1 and 7500 cm−1 from Table 2. Hence, in the current study, the spectral
intervals for the six chemical constituents were all selected from the interval from 4000 to 10,000 cm−1

by comparing the performances of RMSEC and correlation coefficient.

Table 2. Performance comparison of different wave band choose of calibration models.

Medicinal
Components

Performances of
RMSEC and r

Wave Band

4000–10,000 cm−1 4000–7500 cm−1

Echinacoside
RMSEC 27.9 136.0

r 0.9813 0.3431

Verbascoside
RMSEC 6.69 11.00

r 0.9629 0.8956

Mannitol
RMSEC 3.05 12.5

r 0.9747 0.4029

Sucrose
RMSEC 1.21 2.63

r 0.9584 0.786

Glucose
RMSEC 1.22 2.16

r 0.9426 0.8074

Fructose
RMSEC 1.57 6.75

r 0.99 0.7951

2.3.2. Selection of the Optimum Number of Factors for the Calibration Models

The PLSR explains the maximum amount of variability in the data through reducing the dimensionality
of the spectra data by the calculation of factors. The “underfittedness” problem appeared due to
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insufficient information which resulted from limited number of factors; however, choosing the factors
greater than the optimum values introduced in the model will bring about the “overfittedness” problem.
Either “underfittedness” or “overfittedness” will reduce the predictive power of the established
models [22]. Figure 3 shows the relation between RMSECV and factors for all six compounds. Therefore,
we selected those factors corresponding to the lowest values of RMSECV. The optimum selection of
factors for the calibration models is listed in Table 3.
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pretreatment and its results for the calibration models. 

Figure 3. The root mean square errors of cross validation with different number of factors: (A) Echinacoside;
(B) Verbascoside; (C) Mannitol; (D) Sucrose; (E) Glucose; and (F) Fructose.

Table 3. Most suitable pretreatment and performance comparison of results for the calibration models.

Medicinal
Components

Optimum NO.
of Factors

Pretreatment
Spectral

Calibration Set Validation Set

RMSEC r RMSEP Rp

Echinacoside 7
MSV, 1st D, SG (7, 3) 44.00 0.9531 42.70 0.9601
MSV, 2nd D, SG (7, 3) 27.60 0.9808 24.53 0.9688

Verbascoside 7
SNV, 1st D, SG (15, 3) 6.84 0.9612 7.28 0.9637
SNV, 2nd D, SG (15, 3) 6.76 0.9627 6.57 0.9617

mannitol 9
SNV, 1st D, SG (7, 3) 10.50 0.6350 14.00 0.1287
SNV, 2nd D, SG (7, 3) 2.85 0.9775 3.32 0.9460

Sucrose 9
MSV, 1st D, SG (7, 3) 1.63 0.9228 1.34 0.9456
MSV, 2nd D, SG (7, 3) 1.19 0.9597 1.02 0.9449

Glucose 7
SNV, 1st D, SG (17, 3) 1.21 0.9437 1.09 0.9006
SNV, 2nd D, SG (17, 3) 1.20 0.9441 1.00 0.9336

Fructose 10
SNV, 1st D, SG (13, 3) 3.70 0.9432 4.75 0.9252
SNV, 2nd D, SG (13, 3) 1.55 0.9902 1.74 0.9689

2.3.3. Selection of Spectral Pretreatment for the Calibration Models

Another most critical influential factor for calibration models is spectral pretreatment which
aimed at reducing the influence of scattering and baseline drift, enhancing signal-to-noise ratios and
removing irregular variations. Multiplicative scatter correction (MSC) and standard normal variate
(SNV) methods were used to eliminate the influence of radiation scattering customary. To solve the
effects of baseline drift, 1st and 2nd derivative spectra were compared and the 2nd derivation was
selected [26]. For the desirable effect, we smoothed the spectra with the Savitzky–Golay (SG) filter
algorithm before derivation to prevent noise magnification. Table 3 shows the information of spectral
pretreatment and its results for the calibration models.
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2.4. Evaluation of the Established Models

A good NIRS calibration model should have low RMSEC and RMSEP values, as well as a high
correlation coefficient (r) and small differences between RMSEC and RMSEP [27–29]. The calibration
models of the six selected compounds were established according to the procedures mentioned above
(Table 3). The RMSEC and r values for the calibration set of echinacoside were 27.6 and 0.9808,
respectively. The performance parameters of other chemical compound models are listed in Table 3,
from which we can concluded that the established models emerges satisfactory prediction results,
and can be used for the rapid quantitative analysis of C. tubulosa. Scatter plots of the six chemical
compounds are shown in Figure 4 to make the calibration models more descriptive and observed
visually. As shown in Figure 4, minor differences occurred between the predictive and measured
values, because most dots were distributed around the regressive curve with an equation as y = x.
Therefore, excellent predictive performances were observed in Figure 4.
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3. Materials and Methods

3.1. Sample Preparation

One hundred sixteen C. tubulosa samples were collected from Hotan Prefecture in Xinjiang
autonomous region from 2013 to 2015. All samples were cultivated, but they were collected at different
growth stages. The fresh weight of the samples ranged from 20 g to 1000 g. After sun drying, the dried
samples were crushed and sifted through a 60-mesh sieve [3,23].

3.2. NIR Spectroscopic Data Collection

The NIR spectra of the samples were collected at an 8 cm−1 interval over the spectral region of
4000–10,000 cm−1 with an Antaris MXFT-NIR System (Thermo Scientific, Madison, WI, USA) equipped
with a hand-held optical fiber reflectance adapter. Each spectrum was obtained by averaging 64 scans.
All samples were allowed to equilibrate to room temperature (25 ◦C) before NIR spectra scanning to
ensure that the samples were analyzed at the same temperature. The humidity in the laboratory was
kept at an ambient level.

3.3. HPLC Data Collection

3.3.1. Extraction Preparation

One gram of C. tubulosa powder was extracted with 50 mL of 50% methanol in a conical flask with
ultra-sonication (500 W, 40 KHz) for 30 min. The extract was stored at 4 ◦C. The supernatant of the
extract was filtered to obtain a sample for HPLC analysis [3,23].

3.3.2. Simultaneous Determination of Echinacoside and Verbascoside with HPLC-UV

Liquid chromatographic analysis was conducted on a Shimadzu UHPLC system (Shimadzu,
Kyoto, Japan) consisting of two LC-20ADXR solvent delivery units, a LC-20AD pump, a SIL-20ACXR
auto sampler, a CTO-20AC column oven, a SPD-M20A DAD detector, DGU-20A3R degasser, and a
CBM-20A controller.

A Grace Prevail Carbohydrate ES column (150 × 2.1 mm, 2.7 mm) used for the chromatographic
separations was maintained at 35 ◦C. The mobile phase consisted of acetonitrile (A) and 0.1% aqueous
formic acid (B) and was delivered following the gradient program as follows: 0–7 min, linear gradient
of 10–20% A; 7–15 min, 20% A; and 15–20 min, linear gradient of 20–10% A. The flow rate of the mobile
phase was 0.4 mL/min. UV-monitoring was performed at 330 nm.

3.3.3. Simultaneous Determination of Mannitol, Sucrose, Glucose and Fructose with HPLC-ELSD

HPLC was performed on an Agilent 1100 series LC system (Palo Alto, CA, USA) consisting of a
G1322A degasser, a G1311A quaternary pump, a G1311A auto sampler, a G1316A column temperature
controller and a G1315B DAD detector.

A Sigma Prevail Carbohydrate ES column (4.6 × 250 mm, 5 µm) was employed for chromatographic
separations and maintained at a column temperature of 25 ◦C. The mobile phase was composed of
acetonitrile and water (77:23, v/v) and isocratic ally supplied at a flow-rate of 0.7 mL/min. The effluent
was monitored using an evaporative light scattering detector (ELSD) with defaulted parameters [23,24].

3.4. Data Processing

TQ Analyst (version 8.0, Thermo Scientific, Madison, WI, USA) was used to perform division
of the calibration and validation sets, mathematical pretreatment of the spectra, establishment of the
calibration models, and other computations. Origin (version 9.1) was used to make the figures.



Molecules 2017, 22, 843 8 of 9

4. Conclusions

In this study, we proposed a rapid and non-destructive method for the simultaneous analysis of
echinacoside, verbascoside, mannitol, sucrose, glucose and fructose in C. tubulosa by NIRS. Analyses of
RMSEC, correlation coefficient, RMSEP and Rp values demonstrated that the established quantitative
NIR models could be used to accurately predict the contents of the six selected effective components in
C. tubulosa. In comparison with HPLC, the NIRS method reported in this study can save significant
labor and time, while maintaining satisfactory quantitative analysis ability. Therefore, the method
reported here has the potential to be used in the quality control of C. tubulosa and thus to guide the
development of cultivation and process technology for C. tubulosa.
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