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Abstract: 5′-4-Alkyl/aryl-1H-1,2,3-triazole derivatives PILAB 1–12 were synthesized and a
pharmacological screening of these derivatives was performed to identify a possible effect on the
Central Nervous System (CNS) and to explore the associated mechanisms of action. The mice received
a peritoneal injection (100 µmol/kg) of each of the 12 PILAB derivatives 10 min prior to the injection
of pentobarbital and the mean hypnosis times were recorded. The mean hypnosis time increased for
the mice treated with PILAB 8, which was prevented when mice were administered CTOP, a µ-opioid
antagonist. Locomotor and motor activities were not affected by PILAB 8. The anxiolytic effect of
PILAB 8 was evaluated next in an elevated-plus maze apparatus. PILAB 8 and midazolam increased
a percentage of entries and spent time in the open arms of the apparatus compared with the control
group. Conversely, a decrease in the percentages of entries and time spent in the closed arms were
observed. Pretreatment with naloxone, a non-specific opioid antagonist, prior to administration of
PILAB 8 exhibited a reverted anxiolytic effect. PILAB 8 exhibited antinociceptive activity in the
hot plate test, and reduced reactivity to formalin in the neurogenic and the inflammatory phases.
These data suggest that PILAB 8 can activate µ-opioid receptors to provoke antinociceptive and
anti-inflammatory effects in mice.
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1. Introduction

Pain is defined as an unpleasant sensory feeling that results from activation of sensory nerve
endings in response to a stimulus which can vary among individuals due to emotional state,
gender, ethnicity, anxiety level, early experiences and memories [1–6]. Pain management to
improve quality of life depends on agents with analgesic properties such as non-narcotic analgesics
(e.g., acetominophen and aspirin), narcotic analgesics (opioids), and other drug classes, including
antidepressants and anticonvulsants [7,8]. However, reduction of pain is limited, which is the main
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reason for the development of new therapies [9]. Isatin (1H-indole-2,3-dione, 1, Figure 1), is distributed
among various regions of the brain and heart, thereby indicating that this substance has important
physiological functions. Isatin and its derivatives act by inhibiting the enzyme monoamine oxidase
B (MAO-B) in the brain and reducing the formation of cyclic guanosine monophosphate (cGMP).
In addition, isatin interacts with benzodiazepine receptors such as the ligand-gated ion channel
receptor γ-aminobutyric acid (GABA), which can mediate sedative, hypnotic, analgesic, and other
important effects on the central nervous system (CNS) [10–13]. Several studies have demonstrated
that isatin derivatives could promote actions on the CNS. Thus, compound 2 (Figure 1) was described
as anticonvulsant agent [14], compounds 3 and 4 (Figure 1) inhibited human GABA transporter 3 [15]
and compound 5 (Figure 1) produced a positive allosteric modulation of human muscarinic M1
receptor [16].
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Figure 1. Structure of isatins 1–5 and triazoles derivatives 6–7. 

Triazoles containing oxazolidinone rings mediate inhibition of MAO and the presence of the 
methyl group on the triazolic ring (e.g., compound 6, Figure 1) provides selectivity for the MAO-B 
isoform [17]. Carbazole derivatives containing the N-benzyl-1,2,3-triazole moiety like 7 (Figure 1) 
also exhibit significant anti-acetylcholinesterase activity (IC50 ≤ 3.8 µM). Meanwhile, molecular 
modeling studies have shown the existence of π-π interactions between the triazole ring and Tyr334 
in the anionic binding site of the enzyme [18]. 

Previously, we reported that dioxolane ketal isatin derivatives such as 8 (Figure 2) exhibited 
beneficial effects on sleep disorders and represented an alternative for the maintenance of anesthesia 
[19]. Fix figure: R1 and R4 are electron donating or withdrawing groups; there is no R″ in the Figures. 
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Figure 1. Structure of isatins 1–5 and triazoles derivatives 6–7.

Triazoles containing oxazolidinone rings mediate inhibition of MAO and the presence of the
methyl group on the triazolic ring (e.g., compound 6, Figure 1) provides selectivity for the MAO-B
isoform [17]. Carbazole derivatives containing the N-benzyl-1,2,3-triazole moiety like 7 (Figure 1) also
exhibit significant anti-acetylcholinesterase activity (IC50 ≤ 3.8 µM). Meanwhile, molecular modeling
studies have shown the existence of π-π interactions between the triazole ring and Tyr334 in the anionic
binding site of the enzyme [18].

Previously, we reported that dioxolane ketal isatin derivatives such as 8 (Figure 2) exhibited
beneficial effects on sleep disorders and represented an alternative for the maintenance of
anesthesia [19]. Fix figure: R1 and R4 are electron donating or withdrawing groups; there is no
R” in the Figures.
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The compounds were initially synthesized using a 1,3-dipolar cycloaddition reaction catalyzed
by acetic acid [20] and then, the route was improved using ultrasound irradiation, which reduced
the reaction time to 5 min, with no need of purification using column chromatography [21]. Thus,
the present work reports the action of isatin-type 5′-4-akyl/aryl-1H-1,2,3-triazoles PILAB 1–PILAB 12
on the CNS through the evaluation of their sedative-hypnotic profile. The compound with optimal
activity was selected and further evaluated to elucidate the mechanisms involved in its action.

2. Results

2.1. Effect of PILABs on Pentobarbital-Induced Sleep

As illustrated in Figure 3, the duration of pentobarbital-induced sleep increased from 30.0 ± 2.2 s
in the animals that received vehicle to 75.1± 9.9 s, 105.4± 7.8 s, 67.2± 7.7 s, 114.6± 11.8 s, 86.6 ± 5.7 s,
65.3± 6.8 s and 66.8± 11.4 s when the mice were treated with PILAB 4, 6, 7, 8, 9, 11 and 12, respectively.
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2.2. Hypnosis Following i.v. Injections of the Various PILABs and an Evaluation of the Mechanism of Action 

PILAB 4, 6, 7, 8, 9, 11 and 12 were selected for testing if they alone could induce hypnosis after 
intravenous injection. PILAB 6 and PILAB 8 enhanced the hypnosis time from 12.2 ± 6.3 s (vehicle) 
to 127.8 ± 31.7 s and 260.0 ± 58.9 s, respectively (Figure 4). 

Figure 3. Effect of PILABs (100 µmol/kg) on the duration of pentobarbital-induced sleep. Mice
received i.p. injections of the PILABs indicated 30 min prior to an i.v. injection of sodium pentobarbital
(20 mg/kg). Hypnosis time was recorded based on the loss and recovery of the righting reflex. Data
are expressed as the mean ± SEM (n = 10). * p < 0.05, and *** p < 0.001 compared to the vehicle-treated
group, one-way ANOVA followed by Dunnett’s multiple comparison test for parametric measures.

2.2. Hypnosis Following i.v. Injections of the Various PILABs and an Evaluation of the Mechanism of Action

PILAB 4, 6, 7, 8, 9, 11 and 12 were selected for testing if they alone could induce hypnosis after
intravenous injection. PILAB 6 and PILAB 8 enhanced the hypnosis time from 12.2 ± 6.3 s (vehicle) to
127.8 ± 31.7 s and 260.0 ± 58.9 s, respectively (Figure 4).
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Figure 4. Hypnosis time following i.v. administration of the PILABs (100 µmol/kg). Time intervals 
between loss and recovery of righting reflex were recorded. Data are expressed as the mean ± SEM (n 
= 10). * p < 0.05 and *** p < 0.001 compared to the vehicle-treated group, one-way ANOVA followed 
by Dunnett's multiple comparison test for parametric measures. 

PILAB 8 promoted hypnosis in a dose dependent manner because when it was administered at 
doses of 150 µmol/kg and 300 µmol/kg, a further increase in hypnosis time was observed (439.8 ± 
82.7 s and 1017.0 ± 313.0 s, respectively (Figure 5). 

 
Figure 5. Hypnosis time following the i.v. administration of varying doses of PILAB 8. Time 
intervals between loss and recovery of the righting reflex were recorded. Data are expressed as the 
mean ± SEM (n = 6). * p < 0.05 and ** p < 0.01 and *** p < 0.001 compared to PILAB 8 (50 µmol/kg), 
one-way ANOVA followed by Student’s unpaired t-test. 

To evaluate the mechanism mediating the observed increase in hypnosis time following 
administration of PILAB 8, mice were pre-treated with naloxone and other specific opioid pathway 
antagonists. The hypnosis time associated with naxolone decreased to 55.7 ± 14.3 s, while the 
administration of naltrindole, nor-binaltorphimine, and CTOP reduced the hypnosis times to 156.1 ± 
37.0 s, 142.6 ± 45.1 s and 10.6 ± 2.8 s, respectively (Figure 6). 

Figure 4. Hypnosis time following i.v. administration of the PILABs (100 µmol/kg). Time intervals
between loss and recovery of righting reflex were recorded. Data are expressed as the mean ± SEM
(n = 10). * p < 0.05 and *** p < 0.001 compared to the vehicle-treated group, one-way ANOVA followed
by Dunnett's multiple comparison test for parametric measures.

PILAB 8 promoted hypnosis in a dose dependent manner because when it was administered
at doses of 150 µmol/kg and 300 µmol/kg, a further increase in hypnosis time was observed
(439.8 ± 82.7 s and 1017.0 ± 313.0 s, respectively (Figure 5).
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Figure 5. Hypnosis time following the i.v. administration of varying doses of PILAB 8. Time intervals
between loss and recovery of the righting reflex were recorded. Data are expressed as the mean ± SEM
(n = 6). * p < 0.05 and ** p < 0.01 and *** p < 0.001 compared to PILAB 8 (50 µmol/kg), one-way ANOVA
followed by Student’s unpaired t-test.

To evaluate the mechanism mediating the observed increase in hypnosis time following
administration of PILAB 8, mice were pre-treated with naloxone and other specific opioid pathway
antagonists. The hypnosis time associated with naxolone decreased to 55.7 ± 14.3 s, while the
administration of naltrindole, nor-binaltorphimine, and CTOP reduced the hypnosis times to
156.1 ± 37.0 s, 142.6 ± 45.1 s and 10.6 ± 2.8 s, respectively (Figure 6).
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Data are expressed as the mean ± SEM (n = 10). ** p < 0.01 compared to PILAB 8 (100 µmol/kg i.v.),
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2.3. Effect of PILAB 8 on Locomotor Activity and Performance in the Moto Coordination (Rotarod Test)

None significant impairment in motor activity was detected following an i.p. injection of PILAB 8
(25 µmol/kg) in the rotarod test compared with the mice that received an i.p. injection of vehicle
(Figure 7).
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Figure 7. Effects of vehicle versus PILAB 8 on motor coordination. Mice received an i.p. injection
of vehicle or PILAB 8 (100 µmol/kg) and then underwent a rotarod test 15, 30, 45, 60, 75, 90, and
120 min later. Data are expressed as the mean time spent walking on the rotating rod ± SEM (n = 10)
and were analyzed with the Kruskal-Wallis test followed by Dunnett’s multiple comparison test for
parametric measures.
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2.4. Effect of PILAB 8 on the Anxiolytic Response

Figure 8 shows the percentage of the number of entries into the open and closed arms on the EPM
by the various groups. The percentage of entries into the open arms by the mice that were treated with
PILAB 8 and midazolam increased from 32 ± 4% (value for the control group treated with vehicle) to
64 ± 11% and 65 ± 7%, respectively. For entries into the closed arms, the percentage values decreased
from 66 ± 5 (for the control group treated with vehicle) to 35 ± 11% and 34 ± 7% respectively.
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Figure 8. Effects of PILAB 8 (25 µmol/kg) or midazolam (6.15 µmol/kg) with or without prior
administration of naloxone (3.1 µmol/kg). The percentage of entries into the open arms (A) and the
closed arms (B) of the EPM over a 5 min interval are presented. * p < 0.05, ** p < 0.01, and *** p < 0.001
vs. vehicle; ## p < 0.01 vs. PILAB 8. The time spent in the open arms (C) and the closed arms (D) of the
EPM over a 5 min interval. * p < 0.05, ** p < 0.01 and *** p < 0.001 vs. vehicle; # p < 0.05, ## p < 0.01 vs.
PILAB 8.

Treatment with PILAB 8 and midazolam also increased the time spent in the open arms from
41.3 ± 6 s (vehicle group) to 161 ± 26 s and 129 ± 35 s, respectively. Conversely, the time spent in the
closed arms decreased from 203 ± 11 s to 66 ± 19 s and 70 ± 30 s, respectively. When the mice were
pre-treated with naloxone and then were treated with PILAB 8, the percentages for open and closed
arm entries were 34 ± 4% and 66 ± 4%, respectively. The time spent in the open and closed arms were
37 ± 7 s and 188 ± 13 s, respectively.

2.5. Effect of PILAB 8 on Formalin-Induced Nociception Response

An i.pl. injection of formalin (20 µL) was performed to provoke a classical nociceptive response
(time of flinching, lifting, licking, shaking, biting behavior) in two phases. In the neurogenic phase, mice
that were administered PILAB 8 or morphine exhibited reduced formalin responsiveness from 44± 6 s
(for the vehicle group) to 21 ± 5 s and 8 ± 4 s, respectively. In contrast, administration of acetylsalicylic
acid did not attenuate formalin responsivity. In the inflammatory phase, the animals treated with
PILAB 8, morphine, or acetylsalicylic acid all exhibited a decrease in formalin responsiveness from
231 ± 54 s (for the vehicle group) to 40 ± 17 s, 10 ± 6 s and 93 ± 19 s, respectively (Figure 9).
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Figure 9. Evaluation of the antinociceptive activity of PILAB 8 (25 µmol/kg i.p.), morphine
(25 µmol/kg i.p.) and acetylsalicylic acid (833 µmol/kg i.p.) in the formalin test. Intraperitoneal
injections each substance were performed 30 min prior to the injection of formalin and subsequently
observed during 30 min. Data are expressed as the mean time of reactivity (time spent licking) ± SEM
(n = 10). * p < 0.05 and ** p < 0.01 vs vehicle-treated group, one-way ANOVA followed by Dunnett’s test.

2.6. Effect of PILAB 8 on Hot Plate-Induced Nociception Response

When mice received an i.p. injection of PILAB 8 (25 µmol/kg) prior to a hot plate test, the mice
exhibited a antinociceptive activity percentage of (38 ± 8%) 70 min later. Compared with the animals
that received vehicle (6 ± 3%), this increase in latency response to thermal stimuli was significant.

Possible involvement of the opioid system in mediating the antinociceptive effect of PILAB 8 was
subsequently examined. When mice were pre-treated with naloxone (3.1 µmol/kg, i.p.) for 15 min
prior to an i.p. injection of PILAB 8, antinociception was significantly reduced to 12± 5% at the 70 min
time point for the hot plate test (Figure 10).
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Figure 10. Effects of the intraperitoneal injection of vehicle, PILAB 8 (25 µmol/kg), morphine
(25 µmol/kg) and pretreatment with naloxone (3,1 µmol/kg) in animals received PILAB 8 (i.p.) in a
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3. Discussion

Various isatin-type 5′-4-alkyl/aryl-1H-1,2,3-triazoles PILAB 1–12 were initially evaluated in the
pentobarbital-induced sleep assay. All of the isatin-triazole derivatives significantly increased the
duration of hypnosis. PILAB 6, PILAB 8 and PILAB 9 were particularly effective, and all of these
contain a linear alkyl chain linked to the triazole ring. These results suggest that the apolar portion
present in the triazole plays a key role in facilitating the movement of this compound across the blood
brain barrier. Moreover, after an i.v. injection of PILAB 8, a hypnotic-like profile approximately 3
times greater than that achieved with PILAB 6 and PILAB 7 was observed. Compound PILAB 9,
containing a propyl group attached to the triazole ring, also induced a hypnotic-like profile, although
it was not greater than the hypnotic profiles of PILAB 6 (R′ = butyl) and PILAB 8 (R′ = pentyl).
Those results indicated that the size of the alkyl chain is an important factor to the modulation of the
activity. In contrast, compounds PILAB 1 and PILAB 10, containing a phenyl and cyclohex-1-en-1-yl
group, respectively, did not produce important effects. Similar results were observed with polar
compounds like PILAB 2 (R′ = hydroxymethyl), PILAB 3 (R′ = 2-hydroxy-propan-2-yl) and PILAB 5
(R′ = 1-hydroxycyclohexyl).

The hypnotic profile of PILAB 8 was of particular interest and subsequent pretreatment
experiments with the non-selective opioid antagonist, naloxone, and the µ-opioid selective antagonist,
CTOP, were found to prevent the hypnosis induced by PILAB 8.

It is hypothesized that PILAB 8 could bind and activate the µ-opioid receptor, which represents a
coupled Gi protein. To date, agonist µ-opioid receptors induce analgesia for relief of some of the most
chronic types of pain. However, activation of these receptors may produce adverse effects such as
respiratory depression, sedation, addiction, and tolerance, and these side effects limit their clinical
use [22].

In the present study, when PILAB 8 was administered at a dose of 25 µmol/kg via an i.p. injection,
neither sedation nor locomotor activity alterations were observed. Intraperitoneal administration of
PILAB 8 did not result in locomotor activity changes, ensuring continuity for assessments of other
behavioral assessments since changes might reduce the behavioral response, thereby resulting in a
false positive effect.

The anxiolytic profile of PILAB 8 (25 µmol/kg, i.p.) was examined with an EPM test to investigate
both physiological and pharmacological behavior [23]. When animals are less anxious they tend to enter
the open arms of the device and stay there longer. Meanwhile, an anxiogenic substance produces the
opposite effects [24–28]. The opioid pathway plays an important role in the modulation of anxiety, and
activation of this pathway has been hypothesized to mediate anxiolytic responses [29]. For example,
when the µ-opioid receptor agonist, endomorphine 1, was administered intracerebroventricularly into
mice, an anxiolytic effect was observed in the EPM test [29–32]. Based on these findings and the results
of the EPM assays conducted in the present study, it appears that the anxiolytic effect of PILAB 8 is
mediated via µ-opioid receptors.

Injection of formalin induced initially a neurogenic phase followed by a inflammatory-induced
pain [33–36]. The early phase is consequent to a stimulation of nociceptors, activation of C-fiber
afferents which resulted in increased release of glutamate and aspartate into the dorsal horn [34,37,38].
The late phase is due to a local inflammatory reaction, which promotes the release of prostaglandins,
bradykinin, serotonin and histamine [34,39]. Generally, drugs such as opioids inhibit both phases
of the formalin test [40] However, the peripheral action of drugs such as non-narcotic agents have
been observed to improve the nociceptive response to formalin in the second phase, while the initial
antinociception phase remains unaffected [34]. Our results demonstrated that PILAB 8 inhibited both
phases of the formalin-induced nociception test, thus a noxious thermal stimulus induced by a hot
plate was used to investigate the analgesic drug action [33,41]. At a dose of 25 µmol/kg, PILAB 8
increased the percentage of the antinociceptive response and this response reverted when the mice were
pretreated with naloxone, an opioid antagonist. In the present study, PILAB 8 exhibited antinociceptive
action. It was previously reported that a subset of isatin analogs exhibit antinociceptive effects in both
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chemical and thermal models of nociception, and the mechanism of action may involve the opioid
pathway [42]. Primary afferent nociceptive fibers express µ-opioid receptors, and the majority of
these receptors are localized to the periphery of the fibers. Moreover, activation of these µ-opioid
receptors has been hypothesized to produce antinociceptive effect [43–45]. It is hypothesized that
PILAB 8, a µ-opioid agonist, may provide beneficial effects in animal models of pain activating the
opioid system to induce an antinociception mechanism.

4. Material and Methods

4.1. Synthesis of Hybrid Triazole-Isatin Derivatives

Derivatives of 5′-(4-akyl/aryl-1H-1,2,3-triazole)-isatin were obtained by treating 5-azido-spiro[1,3-
dioxolane-2,3′-indol]-2′(1′H)-one with various alkynes under acidic conditions followed by the
application of ultrasound irradiation as described by Silva et al. [20,21]. The twelve 5′-(4-akyl/aryl-
1H-1,2,3-triazole)-isatin derivatives PILAB 1–12, as well as the precursors, isatin and 5-azido-spiro[1,3-
dioxolane-2,3′-indol]-2′(1′H)-one (1), were evaluated for hypnotic-sedative activity (Table S1).

4.2. Analysis of the Purity of the Compounds Evaluated by HPLC (High Performance Liquid Chromatography)

The HPLC analysis was conducted on a Shimadzu LC20AT system (Shimadzu, Kyoto, Japan).
The Shimadzu Lab solutions software was used for data acquisition. Acetonitrile/methanol (5:95 v/v)
was used as the mobile phase with a 150 × 4.6-mm Eclipse Plus C18 column. The flow rate was
1 mL/min and the injection volume was 1 µL. The wavelength of detection used was 280 nm.
The purities of the compounds are shown in Table S2.

4.3. Animals

The experimental protocols used in the present study were approved by the Animal Care and Use
Committee of the Universidade Federal do Rio de Janeiro, Brazil (CEUA/UFRJ DFBCICB068). Briefly,
male Swiss mice (25–35 g) were kept in polypropylene boxes containing sawdust and were maintained
under controlled temperature (21 ± 1 ◦C) and humidity (60%) with a 12-h light/dark cycle (lights
on at 6 a.m.). Food and water were provided ad libitum. Animals were moved into the experiment
room at least 30 min before the start of the tests in order for the mice to adapt to the new environment.
The mice were randomly divided into control and treatment groups (n = 6–10).

4.4. Drugs

The PILAB compounds, azide, and triazoles were kindly donated by the Laboratório de Produtos
Naturais e Transformações Químicas (IQ-UFRJ, Rio de Janeiro, Brazil). Acetylsalicylic acid (Sigma,
Saint Louis, MO, USA), morphine, flumazenil, midazolam, and diazepam (Cristália, Itapira, Brazil)
were freshly prepared in dimethyl sulfoxide (DMSO, Cristália) minutes prior to the experiments.
Naloxone (Cristália), formaldehyde (Isofar, Duque de Caxias, Brazil), nor-binalthophimine, naltrindole,
and CTOP and pentobarbital sodium salt (Tocris Bioscience, Minneapolis, MN, USA) were dissolved
in distilled water.

4.5. Pentobarbital-Induced Sleep Test

The hypnotic effect of the compounds investigated was examined in a pentobarbital-induced
sleep test as previously described [46]. Briefly, PILABs (100 µmol/kg) were administered via an
intraperitoneal (i.p.) injection 10 min prior to the intravenous (i.v.) administration of pentobarbital
sodium (25 mg/kg). Hypnosis time was considered to be the difference between the time of loss of the
postural reflex and the time of its recovery. A control group received an intraperitoneal (i.p.) injection
of DMSO and an i.v. injection of pentobarbital.

The time of hypnosis was further examined with the administration of vehicle and PILAB 4,
6, 7, 8, 9, 11 and 12 (100 µmol/kg i.v.) into tail of the animal. PILAB 8 was also administered
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at increasing doses to evaluate response dose in relation to hypnosis time. To investigate the
mechanisms mediating the induction of hypnosis, mice were pre-treated with an i.p. injection of:
flumazenil (33 µmol/kg), a benzodiazepine antagonist [47]; naloxone (3.1 µmol/kg), a non-selective
opioid receptor antagonist [48]; nor-binaltorphimine (1.5 µmol/kg), a selective kappa opioid receptor
antagonist); or naltrindole (2.4 µmol/kg), a selective delta opioid receptor antagonist [49]. All of these
antagonists were administered 15 min prior to the administration of PILAB 8 (i.v.), except for CTOP
(0.94 µmol/kg), a selective mu opioid receptor antagonist, which was administered 15 min prior to
PILAB 8 [50].

4.6. Motor Coordination (Rotarod Test)

Dunham and Miya described a method for detecting motor harm in response to substances such
as skeletal muscle relaxants or CNS depressants [51,52]. A rotarod treadmill (Insight, Model EFF 411,
Ribeirão Preto, Brazil) consisting of a bar with a diameter of 2.7 cm and height of 40 cm was subdivided
into four compartments by using disks 25 cm in diameter that rotate at 8 revolutions per minute (rpm).
Male Swiss mice (20–25 g) were placed on the apparatus in three training sessions 24 h prior to testing
as previously described [53]. The mice that could not sustain themselves on the apparatus for more
than 90 s were excluded. Motor performance was evaluated based on the time spent walking on a
rotating rod (8 rpm) over a 3 min interval at various time points after an i.p. injection (15, 30, 45, 60, 75,
90 and 120 min) of vehicle, PILAB 8 or morphine (25 µmol/kg).

4.7. Anxiolytic Activity (Elevated Plus-Maze (EPM) Test)

An LE 846 apparatus (Panlab, Barcelona, Spain) was used which contains two open arms and
two closed arms connected by a central platform. Both arms are elevated to a height of 50 cm from the
floor. An animal’s position is registered by eight photoelectric cells that are arranged in each arm so
that nine sectors are defined. Data were recorded with the Mazesoft-4 Software. Male Swiss mice were
treated with an i.p. injection of vehicle, PILAB 8 (25 µmol/kg), or midazolam (6.14 µmol/kg) 10 min
before being placed on the central platform of the maze facing an open arm. The percentage of entries
into the open and closed arms, as well as the time spent in each set of arms, were counted during a
5-min test period.

4.8. Antinociceptive Activity Evaluation of PILAB 8

4.8.1. Formalin Test

A formalin test was performed based on a protocol previously described for the quantitative
study of antinociceptive effects [54]. Briefly, an intraplantar administration (i.pl.) of formalin was
performed to provoke two phases of nociception behavior. The first phase (0–5 min after the injection)
is referred to as the neurogenic phase. This phase is followed by a short quiescent period (5–15 min)
that precedes the second phase (15–30 min after the injection) that includes an inflammatory response.
For this study, formalin (20 µL, 2.5%) was administered via an i.pl. injection into the right hind paw
of each animal 30 min after an i.p. injection was made of vehicle, acetyl salicylic acid (833 µmol/kg),
morphine (25 µmol/kg), or PILAB 8 (25 µmol/kg). The total time spent by each animal licking in the
injected paw was then observed for 30 min.

4.8.2. Hot Plat Test

Central analgesic activity was evaluated in a hot plate test. Briefly, mice were placed onto a
hot plate maintained at 52 ± 1 ◦C (LE 7406, Letica, Letica Scientific Instruments, Barcelona, Spain).
The latency of their nociceptive threshold was recorded according to the time until licking or shaking of
one of their paws or jumping was observed. Maximal permanence of the animals on the hot plate was
35 s to avoid damage to the paws. Animals received an i.p. injection of vehicle, PILAB 8 (25 µmol/kg),
or morphine (25 µmol/kg). Involvement of the opioid pathway was investigated by administering
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naloxone (3.1 µmol/kg i.p.) 15 min prior to the administration of PILAB 8. Antinociceptive activity
(AA%) was calculated using Equation (1):

%AA = (postdrug latency) − (predrug latency) × 100% (35 s) − (predrug latency) (1)

4.9. Statistical Analysis

Data are expressed as the mean ± standard error of the mean (SEM) and were analyzed using
one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test. GraphPad
Prism, version 6.0 (GraphPad Software Inc., San Diego, CA, USA), was used to perform the statistical
analyses and differences with a p > 0.05 were considered significant.

5. Conclusions

In conclusion, the results of the present study provide evidence that the triazole scaffold
potentiates the activity of isatin ketals and an apolar substituent attached to this ring increases the
effects on the CNS. PILAB 8, bearing the longest alkyl chain among the tested compounds, showed
the best hypnotic profile. This compound was selected for subsequent experiments, indicating that
can activate µ-opioid receptors to provoke antinociceptive effect without morphine-like side effects.
In addition, PILAB 8 was found to effectively reverse anxiety independent of a pain response.

Supplementary Materials: Supplementary materials are available online.
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