Next Article in Journal
Transparent Nanotubular TiO2 Photoanodes Grown Directly on FTO Substrates
Previous Article in Journal
Synthesis and Characterization of Nano-Conducting Copolymer Composites: Efficient Sorbents for Organic Pollutants
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(5), 771; doi:10.3390/molecules22050771

Comparative Analysis of the Major Chemical Constituents in Salvia miltiorrhiza Roots, Stems, Leaves and Flowers during Different Growth Periods by UPLC-TQ-MS/MS and HPLC-ELSD Methods

1
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Key Laboratory of Chinese Medicinal Resources Recycling Utilization, State Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
2
Department of Traditional Chinese Medicine, Jiangxi Province Academy of Traditional Chinese Medicine, Nanchang 330046, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 18 April 2017 / Revised: 4 May 2017 / Accepted: 8 May 2017 / Published: 10 May 2017
View Full-Text   |   Download PDF [13706 KB, uploaded 10 May 2017]   |  

Abstract

Salvia miltiorrhiza is a traditional Chinese herbal medicine containing multiple components that contribute to its notable bioactivities. This article investigated the distribution and dynamic changes of chemical constituents in various parts of S. miltiorrhiza from different growth periods. An ultra-high performance liquid chromatography-triple quadrupole mass spectrometer (UPLC-TQ-MS/MS) and high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD) methods were developed for accurate determination of 24 compounds (including phenolic acids, flavonoids, triterpenes, and saccharides) in S. miltiorrhiza. The established methods were validated with good linearity, precision, repeatability, stability, and recovery. Results indicated that there were category and quantity discrepancies in different parts of the plant, for the roots mainly contained salvianolic acids and tanshinones, and most of the saccharides are stachyose. In the aerial parts, salvianolic acids, flavonoids, and triterpenes, except the tanshinones, were detected, and the saccharides were mainly monosaccharides. Dynamic accumulation analysis suggested the proper harvest time for S. miltiorrhiza Bunge was the seedling stage in spring, and for the aerial parts was July to August. This study provided valuable information for the development and utilization value of the aerial parts of S. miltiorrhiza and was useful for determining the optimal harvest time of the plant. View Full-Text
Keywords: aerial parts; distribution; dynamic changes; harvest time; S. miltiorrhiza Bunge aerial parts; distribution; dynamic changes; harvest time; S. miltiorrhiza Bunge
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Zeng, H.; Su, S.; Xiang, X.; Sha, X.; Zhu, Z.; Wang, Y.; Guo, S.; Yan, H.; Qian, D.; Duan, J. Comparative Analysis of the Major Chemical Constituents in Salvia miltiorrhiza Roots, Stems, Leaves and Flowers during Different Growth Periods by UPLC-TQ-MS/MS and HPLC-ELSD Methods. Molecules 2017, 22, 771.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top