Supporting information for

AlCl₃·6H₂O-Catalyzed Friedel–Crafts Alkylation of Indoles by *para*-Quinone Methide moiety of Celastrol

Yi Zhu^{§a}, Ziwen Chen^{§a}, Zhenfei Huang^a, Siwei Yan^a, Zhuoer Li^a, Hu Zhou^{a,b}, Xiaokun Zhang^{a,b}, Ying Su^{*a,b} and Zhiping Zeng^{*a}

a School of Pharmaceutical Science, Fujian Provincial Key laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361005, China;

b Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA

§These authors contributed equally to this work.

*To whom correspondence should be addressed:

Zhi-ping Zeng, Tel: +86 592 218 1851; Fax: +86 592 218 1879;

Email: <u>zengzhiping@xmu.edu.cn</u>

Ying Su, Tel: +86 592 218 1851; Fax: +86 592 218 1879;

Email: ysu@sbpdiscovery.org

Contents

1.	Regioselectivity analysis of our reaction	. 1
2.	HPLC method for the determination of reaction yield in screening	. 2
3.	HPLC spectra and results of reaction optimization in Table 1	. 6
4.	NMR spectra of synthesized compounds	18

1. Regioselectivity analysis of our reaction

Figure S1. The 3D structure of celastrol

Scheme S1. The possible carbocationic intermediates produced by celastrol

Scheme S2. The possible intermediates produced by indole

2. HPLC method for the determination of reaction yield in screening

Figure S3. The HPLC spectrum of 1 mg/mL 3a

Figure S5. The HPLC spectrum of 0.25 mg/mL 3a

Figure S6. The HPLC spectrum of 0.125 mg/mL 3a

Table S1. The summarized HPLC results of 3a with different concentrations

	Retention	Peak	
Entry	(min)	(mg/mL)	area
1	10.698	2	38402017
2	10.690	1	21957294
3	10.657	0.5	11976743
4	10.634	0.25	6564573
5	10.568	0.125	3479918

Figure S7. Concentration – Peak area standard curve of 3a

Fitting formula:

y = 2E+07x + 4E+05 R² = 0.9977

3. HPLC spectra and results of reaction optimization in Table 1

Figure S8 The HPLC spectrum of entry 1 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.238	900867	0.6	2.0/
1a	11.711	18653791		2 %

Figure S9 The HPLC spectrum of entry 2 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.329	2835693	3.0	12.0/
1a	11.815	17472578		12 %

Figure S10 The HPLC spectrum of entry 3 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.873	6370270	7.5	20.0/
1a	12.501	13680438		28 %

Figure S11 The HPLC spectrum of entry 4 in table 1

compound	Retention time	Peak area	Amount of (mg)	Yield
2a	1	2283680	2.3	0.0/
1a	2	18204834		9 %0

Figure S12 The HPLC spectrum of entry 5 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.599	196072	0	0.0/
1a	12.212	20075636		0 %

Figure S13 The HPLC spectrum of entry 6 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.615	2731047	2.9	11.0/
1a	12.197	17571454		11 70

Figure S14 The HPLC spectrum of entry 7 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.298	13256532	16.1	64.0/
1a	11.731	9065046		64 %

Figure S15 The HPLC spectrum of entry 8 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.330	16567238	20.2	90.0/
1a	11.694	2777750		ðU %0

Figure S16 The HPLC spectrum of entry 9 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.220	19187006	23.5	03.0/
1a	11.365	2675584		95 %

Figure S17 The HPLC spectrum of entry 10 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.271	20451588	25.0	00.0/
1a	11.655	1788668		<u> </u>

Figure S18 The HPLC spectrum of entry 11 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.215	19462574	23.8	04.0/
1a	11.558	1216307		94 %0

Figure S19 The HPLC spectrum of entry 12 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.192	18035385	20.0	97.0/
1a	11.533	3064262		8/ %

Figure S20 The HPLC spectrum of entry 13 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.237	17407930	21.2	94.0/
1a	11.590	3174177		04 %

Figure S21 The HPLC spectrum of entry 14 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.207	18476421	22.7	00.0/
1a	11.554	2671724		90 %

Figure S22 The HPLC spectrum of entry 15 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.224	19068636	23.3	02.0/
1a	11.570	3174177		92 %

Figure S23 The HPLC spectrum of entry 16 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.659	20688282	25.3	00.0/
1a	12.189	141309		99 %

Figure S24 The HPLC spectrum of entry 17 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.682	25348848	62.4	00.0/
1a	12.234	395423		99 %

Figure S25 The HPLC spectrum of entry 18 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.466	13688068	16.6	
1a	12.022	5789664		00 %

Figure S26 The HPLC spectrum of entry 19 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.502	11146326	13.4	52.0/
1a	12.150	9907367		53 %0

Figure S27 The HPLC spectrum of entry 20 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.422	20854279	25.5	100.0/
1a	12.022	309109		100 %

Figure S28 The HPLC spectrum of entry 21 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	1	20375700	25.0	00.0/
1a	2	336235		99 %

Figure S29 The HPLC spectrum of entry 22 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.440	20204459	24.7	00.0/
la	12.045	898759		98 %

Figure S30 The HPLC spectrum of entry 23 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.857	25382996	124.9	99 %
1a	12.290	558067		

Figure S31 The HPLC spectrum of entry 24 in table 1

compound	Retention time	Peak area	Amount (mg)	Yield
2a	10.657	25223888	310.3	98 %
la	12.270	21666		

4. NMR spectra of synthesized compounds

The ¹H NMR spectrum of compound 3a

The ¹H NMR spectrum of compound 3b

The ¹³C NMR spectrum of compound 3b

HRMS spectrum of compound 3b

The ¹H NMR spectrum of compound 3c

The ¹³C NMR spectrum of compound 3c

HRMS spectrum of compound 3c

The ¹H NMR spectrum of compound 3d

The $^{\rm 13}{\rm C}$ NMR spectrum of compound 3d

HRMS spectrum of compound 3d

The ¹H NMR spectrum of compound 3e

The ¹³C NMR spectrum of compound 3e

HRMS spectrum of compound 3e

The ¹H NMR spectrum of compound 3f

The ¹³C NMR spectrum of compound 3f

HRMS spectrum of compound 3f

The ¹H NMR spectrum of compound 3h

The ¹³C NMR spectrum of compound 3h

HRMS spectrum of compound 3h

The ¹H NMR spectrum of compound 3i

HRMS spectrum of compound 3i

The ¹H NMR spectrum of compound 3j

The ¹³C NMR spectrum of compound 3j

HRMS spectrum of compound 3j

The ¹H NMR spectrum of compound 3k

The ¹³C NMR spectrum of compound 3k

HRMS spectrum of compound 3k

The ¹H NMR spectrum of compound 3I

The ¹³C NMR spectrum of compound 3I

HRMS spectrum of compound 3I

The ¹H NMR spectrum of compound 3m

HRMS spectrum of compound 3m

The ¹H NMR spectrum of compound 3n

The ¹³C NMR spectrum of compound 3n

HRMS spectrum of compound 3n

The ¹H NMR spectrum of compound 30

The ¹³C NMR spectrum of compound 30

HRMS spectrum of compound 3o

The ¹H NMR spectrum of compound 3p

The ¹³C NMR spectrum of compound 3p

HRMS spectrum of compound 3p

The ¹H NMR spectrum of compound 1a2b

The ¹³C NMR spectrum of compound 1a2b

HRMS spectrum of compound 1a2b

The ¹H NMR spectrum of compound 1a2c

The ¹³C NMR spectrum of compound 1a2c