List of changes:

Graphical Abstract: Corrected version of graphical abstract was submitted after revision (and it was not skipped during proof preparation.

Page No	Line No	Old version	Corrected version
1	4	Marek Kobylański	Marek P. Kobylański
1	13	M.K.	M.P.K.
4		Figure 2. Proposed growth	Figure 2. Proposed growth
		mechanism of MnO ₂ –TiO ₂ NTs.	mechanism of TiO ₂ –MnO ₂ NTs.
5	1	Table 1. Sample labels, preparation	Table 1. Sample labels, preparation
		conditions, and selected properties of	conditions, and selected properties of
		pristine TiO ₂ and MnO ₂ –TiO ₂	pristine TiO ₂ and TiO ₂ –MnO ₂
		nanotubes.	nanotubes.
10	17 - 26	The morphology of synthesized	The morphology of synthesized
		pristine TiO ₂ and TiO ₂ –MnO ₂	pristine TiO ₂ and TiO ₂ –MnO ₂
		nanotubes was determined by using	nanotubes was determined by using
		scanning electron microscopy (SEM,	scanning electron microscopy (SEM,
		FEI QUANTA 3D FEG). Energy-	FEI QUANTA 3D FEG, <mark>FEI</mark>
		dispersive X-ray spectroscopy	Company, Brno, Czech Republic).
		(EDX) analysis were performed with	Energy-dispersive X-ray
		a scanning electron microscope	spectroscopy (EDX) analysis were
		(SEM, Zeiss, Leo 1430 VP) coupled	performed with a scanning electron
		to an energy-dispersive X-ray	microscope (SEM, <mark>Zeiss</mark> , Leo 1430
		fluorescence spectrometer (EDX)	VP, Carl Zeiss, Oberkochen,
		Quantax 200 with the XFlash 4010	Germany) coupled to an energy-
		(Bruker AXS) detector. The crystal	dispersive X-ray fluorescence
		structure of the samples was	spectrometer (EDX) Quantax 200
		determined from X-ray diffraction	with the XFlash 4010 (Bruker AXS,
		patterns recorded in the range of 2θ	Karlsruhe, Germany) detector. The
		$= 20^{\circ}-90^{\circ}$, using an X-ray	crystal structure of the samples was
		diffractometer (X'Pert Pro,	determined from X-ray diffraction
		Panalytical,) with Cu Kα radiation.	patterns recorded in the range of 2θ
		The crystallite size was calculated	$= 20^{\circ}-90^{\circ}$, using an X-ray

		based on the Scherrer formula.	diffractometer (X'Pert Pro,
		Raman spectra were measured with a	Panalytical, Almelo, The
		micro-Raman spectrometer	Netherlands) with Cu K α radiation.
		(Senterra, Bruker Optik,)	The crystallite size was calculated
			based on the Scherrer formula.
			Raman spectra were measured with a
			micro-Raman spectrometer
			(<mark>Senterra</mark> , Bruker Optik <mark>, Billerica,</mark>
			MA, USA)
10	39	Optel, Poland	Optel, <mark>Opole</mark> , Poland
10	44	Thermo Scientific	Thermo Scientific <mark>,</mark> Waltham <mark>, MA,</mark>
			USA
10	47	Hamamatsu City	Hamamatsu City <mark>, Japan</mark>
11	25	М.К.	M.P.K.
11	26	M.K.	M.P.K.