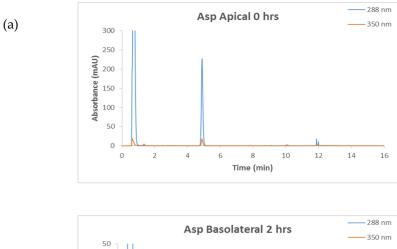

Supplementary material for:

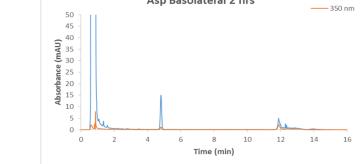
Intestinal Transport Characteristics and Metabolism of *C*-Glucosyl Dihydrochalcone, Aspalathin

Sandra Bowles ^{1,*}, Elizabeth Joubert ^{2,3}, Dalene de Beer ^{2,3}, Johan Louw ^{1,4}, Christel Brunschwig ^{5,6,7}, Mathew Njoroge ^{5,6,7}, Nina Lawrence ⁶, Lubbe Wiesner ⁷, Kelly Chibale ^{5,6,8,9}, and Christo Muller ^{1,4,10}

- ¹ Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7130, South Africa; johan.louw@mrc.ac.za (J.L.); christo.muller@mrc.ac.za (C.M.)
- ² Plant Bioactives Group, Post-Harvest and Wine Technology Division, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7600, South Africa; JoubertL@arc.agric.za (E.J.); DBeerD@arc.agric.za (D.d.B.)
- ³ Department of Food Science, Stellenbosch University, Stellenbosch 7600, South Africa
- ⁴ Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa 3886, South Africa
- ⁵ Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; CA.brunschwig@uct.ac.za (C.B.); Mathew.Njoroge@uct.ac.za (M.N.); kelly.chibale@uct.ac.za (K.C.);
- ⁶ Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; nina.lawrence@uct.ac.za
- ⁷ Division of Clinical Pharmacology, University of Cape Town, Observatory, Cape Town 7925, South Africa; lubbe.wiesner@uct.ac.za
- ⁸ Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
- ⁹ South African Medical Research Council Drug, Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- ¹⁰ Department of Medical Physiology, Stellenbosch University, Tygerberg 7507, South Africa
- * Correspondence: sandra.bowles@mrc.ac.za; Tel./Fax: +27-219-380-479

1. Caco-2 Transport Experiments


Figure S1: The cytotoxic effects of aspalathin at various concentrations in HBSS buffer (pH 6.0) on Caco-2 cells was assessed by the VialightTM plus kit. Caco-2 cells were seeded at a density of 4 x 10^4 cells/cm² into white clear bottomed 96-well plates and cytotoxicity was assessed according to the manufacturer's recommendation after 12–13 days.


1.2. Analytical Conditions of High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD) with Example Chromatograms.

HPLC-DAD analysis was performed on an Agilent 1200 system (Agilent Technologies, Inc., Santa Clara, CA) equipped with an in-line degasser, quaternary pump, autosampler, column thermostat, and DAD, controlled by Chemstation software (Agilent Technologies, Waldbronn, Germany). The chromatographic conditions were as follows: Separation was performed at 30 °C on a Poroshell SB-C18 column ($50 \times 4.6 \text{ mm}$, $2.7 \mu \text{m}$ particle size; Agilent Technologies, Inc.) protected by an Acquity UPLC in-line filter (Waters; $0.2 \mu \text{m}$) and an Acquity UPLC VanGuard pre-column (Waters; stationary phase: BEH C18 1.7 µm). The flow rate was 1.0 mL/min, and a multilinear gradient was performed as follows: $0.0-10.0 \min$, 12.4-16.6%B; $10.0-10.5 \min$, 16.6-80.0% B; $10.5-11.5 \min$, 80.0% B; $11.5-12.0 \min$, 80.0-12.4% B; $12.0-16.0 \min$, 12.4% B, with solvents A and B being acetonitrile and 0.1% aqueous formic acid, respectively. UV spectra were recorded between 220 and 450 nm.

Stock solutions of the phenolic standards were prepared in dimethylsulfoxide (DMSO) at concentrations of approximately 1 mg/mL and diluted with water according to experimental requirements. All diluted solutions were filtered through 0.22 μ m polyvinylidene difluoride (PVDF) filters (Merck Millipore) prior to use.

Six-point calibration curves were set up for all standards. The calibration mixtures were injected at different injection volumes, giving on-column levels of $0.008-1.7 \mu g$ for aspalathin, $0.04-0.8 \mu g$ for caffeine, and $0.01-0.2 \mu g$ for both isoorientin and orientin. Nothofagin was quantified using a previously determined response factor applied to the aspalathin calibration curve. Linear regression, using the least-squares method (Microsoft Excel 2013, Microsoft Corporation, Redmond, WA), was performed on the calibration curve data for each compound to determine the slope and *y*-intercept. Dihydrochalcones (aspalathin and nothofagin) and caffeine were quantified using their respective peak areas at 288 nm, while the flavones (isoorientin and orientin) were quantified at 350 nm.

Figure S2: Example HPLC-DAD chromatograms of (**a**) apical (time = 0 h) and (**b**) basolateral (time = 2 h) samples taken from Caco-2 monolayers after incubation with aspalathin.

(b)

Protein was isolated from differentiated Caco-2 monolayer cell lysates. The total protein content was determined and analysed by SDS-PAGE. 50 ug of total protein was denatured and loaded onto a 10% SDS-polyacrylamide gel and transferred to a PVDF membrane, using a wet-blot system. Non-specific binding was blocked, using 5% w/v low-fat milk in Tris-buffered saline with Tween-20 (10 mmol/L Tris-HCl, pH 7.5, 200 mmol/L NaCl, 0.05% Tween-20) at room temperature for 2 h. Subsequently, the membrane was incubated overnight at 4°C in the presence of the following primary antibodies: anti- SGLT1 ab14686 (1:1000 dilution), anti-GLUT2 ab54460 (1:1000), anti-MDR sc55510 (1:1000), and carnitine palmitoyltransferase (CPT1; 1:1000) with the relevant horseradish peroxidase conjugated secondary antibodies applied the following day for 90 min at room temperature. β -Actin (1:4000) antibody was added as a loading control. Proteins were detected and quantified using a Chemidoc-XRS imager and Quantity One software (Bio-Rad Laboratories, Hercules, CA, USA).

Figure S3: Western Blot analysis of (a) SGLT1 (72 kDa), (b) GLUT2 (60 kDa), and (c) MDR-1 (170 kDa).

1.4. Stability of Aspalathin.

In order to determine the stability of aspalathin in the buffer employed for the Caco-2 assay, the aspalathin-enriched extract (SB1) were incubated in sealed vials with deionised water, HEPES buffer pH 6 and HEPES buffer pH 7.4, respectively. The aspalathin content were determined for these samples prior to incubation and after 2 h incubation. The percentage aspalathin degradation obtained in deionised water, HEPES buffer at pH 6 and HEPES buffer at pH 7.4 were 1, 10, and 11%, respectively.

2. In Vivo Metabolism of Aspalathin

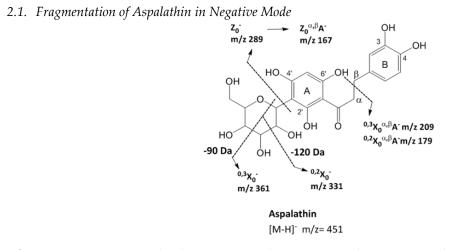


Figure S4: Diagnostic ions for the negative product ion spectra fragmentation of aspalathin and its metabolites

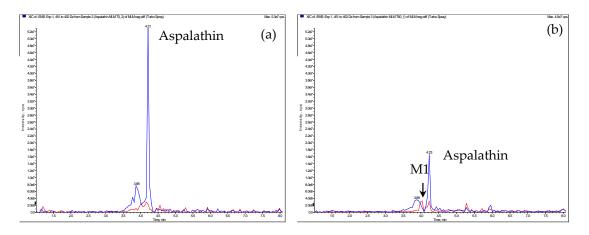
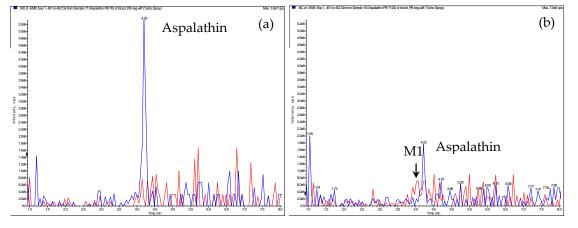



Figure S5: Extracted ion chromatograms of aspalathin and its products formed in (a) no incubation control and (b)

mouse liver microsome incubation.

Figure S6: Extracted ion chromatograms of aspalathin and its products formed in the (a) no incubation control and

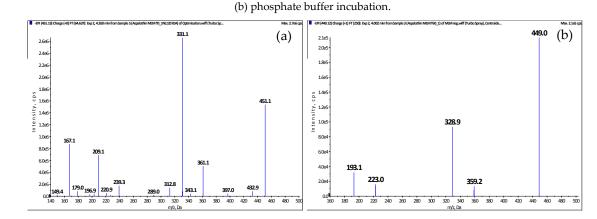


Figure S7. Product ion spectrum of the [M–H]⁻ ion of (a) aspalathin and (b) M1 (identified as *C*-glycosyl eriodictyol).