Supplementary Information

Contents

Contents	page
Figure S1. UV spectrum and of 1 in MeOH	S2
Figure S2. Positive ESI-MS spectrum of 1	S2
Figure S3. 600 MHz ¹ H NMR spectra of 1 in CDCl ₃	S3
Figure S4. 150 MHz ¹³ C NMR spectra of 1 in CDCl ₃	S3
Figure S5. DEPT spectrum of 1 in CDCl₃	S4
Figure S6. HMQC spectrum of 1 in CDCl ₃	S4
Figure S7. 1H-1H COSY spectrum of 1 in CDCl3	S5
Figure S8. HMBC spectrum of 1 in CDCl ₃	S5
Figure S9. NOE difference experiment spectra of 1 in CDCl ₃	S6
Figure S10. IR spectrum of 1	S7
Figure S11. CD spectrum of 1 in MeOH	S7
Figure S12. UV spectrum and of 2 in MeOH	S 8
Figure S13. Positive ESI-MS spectrum of 2	S 8
Figure S14. 600 MHz ¹ H spectra of 2 in CDCl ₃	S9
Figure S15. 150 MHz ¹³ C NMR spectra of 2 in CDCl ₃	S9
Figure S16. DEPT spectrum of 2 in CDCl ₃	S10
Figure S17. HMQC spectrum of 2 in CDCl ₃	S10
Figure S18. 1H-1H COSY spectrum of 2 in CDCl3	S11
Figure S19. HMBC spectrum of 2 in CDCl ₃	S11
Figure S20. NOE difference experiment spectra of 2 in CDCl ₃	S12
Figure S21. IR spectrum of 2	S13
Figure S22. CD spectrum of 2 in MeOH	S14
Figure S23. ¹ H NMR spectrum of the <i>S</i> and <i>R</i> MTPA esters of 2	S14
Figure S24 . Flow Cytometric Histogram of tsFT210 Cells Treated with 1 and 2	S15
Table S1. 600 MHz ¹ H and 150 MHz ¹³ C NMR Data for1 in CDCl ³	S16
Table S2. 600 MHz ¹ H and 150 MHz ¹³ C NMR Data for2 in CDCl ³	S17

Figure S9 (A). NOE difference experiment spectrum of 1 in CDCl₃

Figure S9 (B). NOE difference experiment spectrum of 1 in CDCl₃

Figure S11. CD spectrum of 1 in CH₃OH

Figure S12. UV spectrum of 2 in MeOH

Figure S13. Positive ESI-MS spectrum of 2

Figure S15. 150 MHz $^{\rm 13}C$ NMR spectrum of 2 in CDCl3

Figure S21. IR spectrum of **2** (in KBr)

Figure S22. CD spectrum of 2 in MeOH

Figure S23. 400 MHz ¹H NMR spectrum of the S and R MTPA esters of 2 in pyridine-d₅

Figure S24 (A). Flow Cytometric Histogram of tsFT210 Cells Treated with 1

Figure S24 (B). Flow Cytometric Histogram of tsFT210 Cells Treated with 2

No		$\delta_{\rm H}$ (Lip Hz)	COSVb)	NOF'c ⁰	δα	
110.		он () штих)	0031%	INGES ⁷	be	TIMDC
1					212.10 s	
2	Ha	2.57 dd (18.4, 1.4)	H-3		39.53 t	C-1, C-3, C-4
	He	2.94 dd (18.4, 3.2)	H-3			C-1, C-3, C-4, C-6
3		4.57 m	Ha-2, He-2, H-4	Ha-2, He-2, H-4	71.34 d	C-1, C-5, C-8
4		4.79 m	H-3, Ha-5, He-5	Ha-2, H-3, Ha-5, He-5	73.38 d	C-6, C-8
5	Ha	2.22 dd (13.8, 1.8)	H-4, He-5	H-4, He-5, 6-O <u>H</u> , Ha-7	35.73 t	C-1, C-3, C-4, C-6, C-7
	He	1.930 dd (13.8, 2.8, 1.6)	H-4, Ha-5, He-7 ^{e)}	Ha-2, H-4, Ha-5, 6-O <u>H</u>		C-1, C-3, C-4, C-6, C-7
6					74.22 s	
7	Ha	1.935 d (13.3)	He-7	Ha-5, 6-O <u>H</u> , He-7, H-9, H-10	46.02 t	C-1, C-5, C-6, C-8, C-9
	He	1.87 dd (13.3, 1.6)	He-5 ^{e)} , Ha-7	6-O <u>H</u> , Ha-7, H-9, H-10		C-1, C-5, C-6, C-8, C-9
8					107.63 s	
9		1.72 (2H) m	H-10		36.10 t	C-7, C-8, C-10, C-11
10		1.42 (2H) m	H-9, H-11		23.13 t	C-8, C-9, C-11, C-12
11		1.24-1.29 ^{f)} m			29.67 t	C-9, C-10, C-12, C-13
12		1.24-1.29 ^{f)} m			29.28 t	C-10, C-11, C-13, C-14
13-17		1.24-1.29 ^{f)} m			29.3-29.5 ^{f)} t	C-11,12,14-16, C-18,19
18		$1.29-1.35^{f_{j}}$ m	H-19		29.58 t	C-16, C-17, C-19, C-20
19		2.02 (2H) m	H-18, H-20		26.88 ^{g)} t	C-17, C-18, C-20, C-21
20		5.35 AB type	H-19, H-21		129.88 ^{h)} d	C-18, C-19, C-22
21		5.35 AB type	H-20, H-22		129.82 ^{h)} d	C-19, C-22
22		2.02 (2H) m	H-21, H-23		27.17 ^{g)} t	C-20, C-21, C-23, C-24
23		1.29-1.35 ^{f)} m	H-22, H-24		22.32 t	C-21, C-22, C-24, C-25
24		1.29-1.35 ^{f)} m	H-23, H-25		31.93 t	C-22, C-23, C-25
25		0.90 (3H) t (7.1)	H-24		13.98 q	C-23, C-24
6-0 <u>H</u>		3.77 s				C-1, C-5, C-6

Table S1. 600 MHz ¹H and 150 MHz ¹³C NMR Data for1 in CDCl₃^{a)}

a) Signal assignments were based on the results of DEPT, PFG ¹H-¹H COSY, PFG HMQC, PFG HMBC and difference NOE experiments. b) Numbers in the column indicate the protons that correlated with the proton on the line in the PFG ¹H-¹H COSY. c) Numbers in the column indicate the protons at which NOE's were detected in the difference NOE experiment under irradiation at the proton on the line. d) Numbers in the column indicate the carbons that showed HMBC correlations with the proton on the line in the PFG HMBC spectrum. e) The W-form long-range correlation was detected between H-5*e* and H-7*e* in the PFG ¹H-¹H COSY. f) The signal could not be assigned exactly because of the signal overlapping. g) and h) Signal assignments may be interchanged between two signals with the same superscript.

5-0<u>H</u>

2.36 br s

No.		δн (<i>J</i> in Hz)	COSY ^{b)}	NOE's ^{c)}	δc	HMBC ^{d)}
1					205.99 s	
2	Ha He	2.47 dd (15.8, 2.1) 2.68 ddd (15.8, 3.7, 2.8)	He-2, H-3 Ha-2, H-3, He-6°)	He-2, H-3, H-4 Ha-2, H-3	48.08 t	C-1, C-3, C-4 C-1, C-3, C-4, C-6
3		4.43 m	Ha-2, He-2, H-4		72.59 d	C-1, C-2, C-4, C-5, C-8
4		4.03 br s	H-3, 4-O <u>H</u>	Ha-2 ^{f)} , H-3, 4-O <u>H</u> , Ha-6 ^{f)}	75.20 d	C-2, C-3, C-5, C-6, C-7
5					70.45 s	
6	Ha He	2.52 dd (15.5, 1.4) 2.70 dd (15.5, 2.8)	He-6, He-7 ^{g)} He-2 ^{e)} , Ha-6	H-4, He-6 Ha-6, Ha-7	55.48 t	C-1, C-4, C-5, C-7 C-1, C-2, C-4, C-5, C-7
7	Ha He	1.73 dd (14.2, 11.1) 1.99 ddd (14.2, 5.0, 1.4)	He-7, H-8 Ha-6 ⁸⁾ , Ha-7, H-8	He-6, He-7, Ha-9, Hb-9 4-OH, 5-OH, Ha-7, H-8, H2-10	43.68 t	C-4, C-5, C-6, C-8, C-9 C-4, C-5, C-6, C-8, C-9
8		4.25 m	Ha-7, He-7, Ha-9, Hb-9	H-3, 4-OH, 5-OH, He-7, H2-9	69.35 d	C-3, C-9, C-10
9	Ha Hb	1.38 m 1.24 m	H-8, Hb-9, H2-10 H-8, Ha-9, H2-10		36.77 t	C-7, C-8, C-10, C-11 C-7, C-8, C-10, C-11
10	Ha Hb	1.29-1.35 ^{h)} m 1.24 m	Ha-9, Hb-9, Hb-10, H-11 Ha-9, H-11		25.38 t	C-9, C-11, C-12 C-11, C-12
11-16		1.22-1.29 ⁱ) m	H-10, H-17		29.5-29.7 ⁱ⁾ t	C10, C-12~C-17,18,19
17		1.22-1.29 ⁱ) m	H-16, H-18		29.75 t	C-15, C-16, C-18, C-19
18		1.29-1.35 ^{h)} m	H-17, H-19		29.29 t	C-16, C-17, C-19, C-20
19		2.02 (2H) m	H-18, H-20		$26.88^{k)}$ t	C-17, C-18, C-20, C-21
20		5.35 AB type	H-19, H-21		129.90 ¹⁾ d	C-19, C-22
21		5.35 AB type	H-20, H-22		129.81 ¹⁾ d	C-19, C-22
22		2.02 (2H) m	H-21, H-23		$27.17^{k)}$ t	C-20, C-21, C-23, C-24
23		1.29-1.35 ^{h)} m	H-22, H-24		22.32 t	C-21, C-22, C-24
24		1.29-1.35 ^{h)} m	H-23, H-25		31.93 t	C-22, C-23
25		0.90 (3H) t (7.1)	H-24		13.98 q	C-23, C-24
4-0 <u>H</u>		2.84 br s	H-4			C-3

Table S2. 600 MHz ¹H and 150 MHz ¹³C NMR Data for 2 in CDCl₃^{a)}

a) Signal assignments were based on the results of DEPT, PFG ¹H-¹H COSY, PFG HMQC, PFG HMBC and difference NOE experiments. b) Numbers in the column indicate the protons that correlated with the proton on the line in the PFG ¹H-¹H COSY. c) Numbers in the column indicate the protons at which NOE's were detected in the difference NOE experiment under irradiation at the proton on the line. d) Numbers in the column indicate the carbons that showed HMBC correlations with the proton on the line in the PFG HMBC spectrum. e) and g) The W-form long-range couplings were observed between He-2 and He-6 and between Ha-6 and He-7 respectively in the PFG ¹H-¹H COSY. f) Negative NOE's were observed on He-2 and He-6 in the difference NOE experiment under irradiation at H-4. h), i) and j) The signals could not be assigned exactly because of the signal overlapping. k) and l) Signal assignments may be interchanged between two signals with the same superscript.