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Abstract: An efficient and practical synthetic route toward chiral matsutakeol and analogs was
developed by asymmetric addition of terminal alkyne to aldehydes. (R)-matsutakeol and other
flavored substances were feasibly synthesized from various alkylaldehydes in high yield (up to 49.5%,
in three steps) and excellent enantiomeric excess (up to >99%). The protocols may serve as
an alternative asymmetric synthetic method for active small-molecule library of natural fatty acid
metabolites and analogs. These chiral allyl alcohols are prepared for food analysis and screening
insect attractants.
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1. Introduction

Many natural unsaturated alcohols 1–6 (Figure 1) are very important fatty acid metabolites
derived from fungi [1] and plants [2]. These substances have been found in nutrient, pharmaceutical,
and agricultural use, as their structural diversity and variety of biological activities. For examples,
the chiral allyl alcohols 6a–c (Figure 1) are a class of important flavor substances and dietary
supplements which are widely used in the food industry [3–5]. (R)-matsutakeol 6a isolated from
matsutake [6], has been found to possess antitumor properties [3]. Effects of inhibition on fungal
spore germination and mushroom and plant development have also been discovered [7]. Recently,
(R)-matsutakeol 6a and its analogs are widely used in insecticidal compositions as effective attractants
for some harmful hematophagous insects [8,9]. In particular, the enantioselectivity and chiral
configuration of the compounds directly determined biological activities such as smell and taste [10].

Inspired by potential applications above, great attention has been paid to preparation of
compounds 6 with high enantioselectivity and structural diversity [11–19]. To take (R)-matsutakeol 6a
as an example, in 1987, 6a and its enantiomer were obtained by Helmchen through the asymmetric
retro Diels-Alder reaction [11]. In the same year, Takano prepared the (R)-matsutakeol by using
the optically active starting material of (R)-epichlorohydrin [12]. In 1988, Kitamura obtained
(R)-matsutakeol (21% ee) via kinetic resolution of racemic allylic alcohols [13]. Oppolzer developed
an enantioseletive synthesis of (R)-matsutakeol (96% ee) by catalytic asymmetric addition of
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divinylzinc to hexanal [14]. In 2005, a chiral resolution of racemic matsutakeol was conducted
using (S)-(+)-2-methoxy-2-(1-naphthyl) propionic acid (MαNP acid) by Kusuda [15]. In addition,
various enzymatic kinetic resolution and enzyme-catalyzed reactions have also been used in
preparation of chiral matsutakeol. In 2010, Bisogno developed an efficient oxidoreductase-catalyzed
system to obtain (R)-matsutakeol in 86% ee [16]. Recently, Rej prepared (S)-matsutakeol as
an important intermediate, by ME-DKR (metal enzyme combined dynamic kinetic resolution) of
(±)-oct-1-en-3-ol [17,18]. In 2016, Lee developed a synthetic strategy towards (S)-matsutakeol in
10 steps from inexpensive, natural (2S,3S)-D-tartaric acid with 32% yield [19].
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Figure 1. Natural unsaturated alcohols derived from fungi and plant.

In summary, matsutakeol could be prepared by chiral pool synthesis [19], enzymatic kinetic
resolution [17,18], and asymmetric synthesis [14] (Scheme 1). Although, several synthetic routes
have been developed, there is still a lack of efficient method for obtaining a highly enantioselective
allyl alcohols library in screening for flavors or attractants. Compared to asymmetric synthesis
(Scheme 1, method 3), the structural diversity of the reaction products is limited by chiral sources
(Scheme 1, method 1) [19], and the effect of enzymatic reaction (Scheme 1, method 2) is constrained
by stability and activity of enzymes [17,18]. By retro-synthetic analysis, the chiral olefinic alcohol
6 could be formed from propargyl alcohol 12, and chiral propargyl alcohol 12 can be synthesized
from the corresponding methyl propiolate 13 (Scheme 1, method 3). Highly enantioselective methyl
propiolate (S)-13 is obtained by Zn-catalyzed asymmetric addition of terminal alkynes 15 to various
aldehydes 14. This reaction has been widely studied (Scheme 2) [20–50], in which numerous chiral
ligands are applied, such as (R,R)-ProPhenol 16a [24,39], (R)-BINOL 17a, and its derivatives [28,30],
β-Sulfonamide Alcohol 18 [31,32], Wolf’s ligand 19 [41], and Wang’s ligand 20 (our previous group
research) [33]. Among the numerous catalysts, (R,R)-ProPhenol 16a and (R)-BINOL 17a are readily
available and well-established [20–50].
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2. Results and Discussion

Herein we report the asymmetric synthesis of (R)-matsutakeol and its natural analogs. In our
previous work (Scheme 2) [50], the reaction conditions were optimized for the stereoselective addition
of methyl propiolate to aliphatic aldehydes, and the highest enantiomeric excess values (97%–99% ee)
of (S)-alkynol product 13 were afforded by (R,R)-ProPhenol/Zn complex. It is developed in a general
strategy toward the total synthesis of C17 polyacetylenes such as virol A and virol C [50].

On the basis of previous work [24,25,39,50], we expanded substrate scope of the (S,S)-ProPhenol-
catalyzed direct asymmetric addition, affording the corresponding (R)-configured propargyl alcohols 13
in moderated yields (63%–73%) and with excellent enantioselectivities (97%–99% ee) (Table 1). Thus,
we developed a general method with two steps to obtain highly enantioselective allyl alcohol flavors.

Table 1. Synthesis of chiral alkynol units 13a–e of C17 polyacetylenes via the asymmetric addition of
methyl propiolate to aliphatic aldehydes a.
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As shown in Scheme 3, treatment of compounds 13a–c with LiOH in THF gave the corresponding
carboxylic acid intermediates [38], which were then subjected to the CuCl-catalyzed decarboxylation
directly, producing the chiral propargyl alcohols 12a–c in good yields (83%–86%) and without loss of
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enantio-selectivity (99% ee). Reduction of compounds 12a–c with NaBH4 in the presence of Ni(OAc)2

gave (R)-matsutakeol 6a and its natural analogs 6b and 6c in good yields (82%–85%) [51]. However,
the ee values of (R)-matsutakeol and analogs could not be directly resolved by HPLC on a chiral column
conveniently. Therefore, derivatization of compounds 6a–c through introducing 3,5-dinitrobenzoyl
moiety to the natural molecules, directly afforded compounds 21a–c in nearly quantitative yields
(93%–95%) and 99% ee.
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(b) Ni(OAc)2, NaBH4, EDA, EtOH, 0~25 ◦C; (c) 3,5-Dinitrobenzoyl chloride, Et3N, 0~25 ◦C, overnight;
* The ee value is determined by HPLC on a chiral column after derivatization.

The BINOL-ZnEt2-Ti (IV) complex catalyzed asymmetric addition of trimethylsilylacetylene to
the aliphatic aldehydes was well developed by Pu’s group [20,22,34]. It is also a practical approach
for providing chiral acetylene alcohols. In the optimization procedure, to increase the catalyst
loading of (R,R)-ProPhenol 16b (entry 1 and 2) and to reduce the temperature (entry 2 and 3) could
slightly improve the ee value, of product 13a′ (Table 2, entry 2, 72% yield, 78% ee). Compared to
addition catalyzed by (R,R)-ProPhenol 16b, almost no product was detected at −10 ◦C (Table 2,
entry 4). The reaction yields and optical yields were increased on increasing the amount of BINOL
(Table 2, entry 5–7). When the amount of BINOL was increased to 60%, there was no obvious
improvement in yield and ee value (entry 7, 67% yield, 81 % ee). Compared to the reaction catalyzed
by (R,R)-ProPhenol 16b (entry 2, 72% yield, 78% ee and entry 3, 74% yield, 76% ee), the asymmetric
addition of trimethylsilylacetylene by using BINOL as chiral ligand could be smoothly carried out at
room temperature, affording higher ee value and almost the same yield (entry 6, 71% yield, 80% ee).

Table 2. Screening of reaction conditions and ligands of asymmetric addition of 15′ with 14a.
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1 a 16b 20 −10 70 75
2 a 16b 40 −10 72 78
3 a 16b 40 25 74 76
4 b 17b 40 −10 – –
5 b 17b 20 25 52 70
6 b 17b 40 25 71 80
7 b 17b 60 25 67 81

a The reaction was carried out on a 0.5 mmol scale in toluene (0.5 mL), the organozinc reagent was Me2Zn;
b The reaction was carried out on a 0.5 mmol scale in DCM (6.0 mL), the organozinc reagent was Et2Zn,
Et2Zn:Ti(OiPr)4:aldehyde = 4:1:1; c Isolated yields; d The ee values were determined by chiral HPLC.

Herein, we attempted to synthesize the above natural products 6a–c on gram scale, by employing
the (S)-BINOL 17b as the catalyst. As shown in Scheme 4, (S)-BINOL efficiently catalyzed the
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asymmetric addition of trimethylsilylacetylene with the corresponding aliphatic aldehydes 14a–c,
affording compounds 13a′–c′ in moderate yields (71%–72%) and enantioselectivities (80%–82% ee),
slightly lower than those of compounds 13a–c. K2CO3-promoted deprotection of trimethyl group
of compounds 13a′–c′ under mild conditions gave compounds 12a–c in good yields (87%–89%) [52].
Following the same procedures as shown in Scheme 3, compounds 6a–c were obtained in moderate
yields (81%–83%) and nearly without loss of enantioselectivities (79%–82% ee, the ee values were
measured by HPLC after derived by 3,5-dinitrobenzoyl chloride). The enantiomeric purity of 21a–c
could be improved to over 99% ee by slow recrystallization from diethylether/n-hexane (1:5) at a low
temperature. Subsequently, the esters 21a–c could be quantitatively hydrolyzed to the corresponding
chiral alcohols 6a–c followed in our previous group research [22].
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Scheme 4. Total synthesis of (R)-matsutakeol and its natural analogs 6a–c by using (S)-BINOL
(Scheme 1, Method 3). Reagents and conditions: (a) (i) ZnEt2, THF, N2, rt; (ii) Ti(iPrO)4, THF, N2,
rt; (b) K2CO3, MeOH, 0~25 ◦C; (c) Ni(OAc)2, NaBH4, EDA, EtOH, 0~25 ◦C; (d) 3,5-Dinitrobenzoyl
chloride, Et3N, 0~25 ◦C, overnight; (e) Recrystallization from diethylether/n-hexane (1/5) at 0~25 ◦C,
* The ee value is determined by HPLC on a chiral column after derivatization.

3. Materials and Methods

All reactions were performed under an argon atmosphere. Solvents were dried according to
standard procedures and distilled before use. All reagents were purchased commercially and used
without further purification, unless stated otherwise. 1H- and 13C-NMR spectra were recorded at
300 and 75 MHz, respectively. High-resolution mass spectra were recorded on an agilent instrument
by the TOF MS technique. Enantiomeric excesses (ee) were determined by chiral HPLC analyses using
a chiral column (Chiralpak OD-H, AD-H, OJ-H), and elution with isopropanol-hexane. The optical
rotations were measured on PERKIN ELMER 341 Polarimeter. 1H-, 13C-NMR spectra and HPLC
chromatography of the chiral products are in the Supplementary Materials.

3.1. General Procedure of Asymmetric Addition of Methyl Propiolate to Aliphatic Aldehydes (Table 1)

To a stirred solution of methyl propiolate (84 mg, 1 mmol), (S,S)-ProPhenol (128 mg, 0.2 mmol),
triphenylphosphine oxide (111 mg, 0.4 mmol) in toluene (1 mL), dimethylzinc (2.5 mL, 1.2 M in
toluene, 3 mmol) was added slowly at−10 ◦C. After stirring for 1.5 h at−10 ◦C, aldehyde (1.5 mmol)
in toluene (3 mL) was added via syringe at a slow rate in 24 h at −10 ◦C, and quenched with
water (10 mL). The mixture was filtered through a celite pad. The aqueous phase was extracted
with ether. The combined organic phases were washed with saturated brine solution, dried over
anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by silica gel
chromatography to get the product [25,36].
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3.1.1. Synthesis of (R)-Methyl-4-hydroxynon-2-ynoate: (R)-13a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13a (131 mg, 71% yield, 99% ee) as colorless oil. [α]25

D = +5.7
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.76 (s, 3H), 2.66 (d, J = 4.7 Hz,
1H), 1.80–1.67 (m, 2H), 1.52–1.38 (m, 2H), 1.35–1.25 (m, 4H), 0.88 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz,
CDCl3) δ (ppm): 153.57, 88.19, 75.78, 61.71, 52.40, 36.46, 30.95, 24.23, 22.08, 13.54. HRMS ESI [M + Na]+

calcd for C10H16NaO3
+ 207.0992, found 207.0992. Enantiomeric excess was determined by HPLC with

a Chiralcel OD-H column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer
tr = 14.93 min, minor (S)-enantiomer tr = 16.73 min.

3.1.2. Synthesis of (R)-Methyl-4-hydroxydec-2-ynoate: (R)-13b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13b (131 mg, 66% yield, 99% ee) as colorless oil. [α]25

D = +5.8
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.77 (s, 3H), 2.36 (d, J = 5.7 Hz,
1H), 1.84–1.71 (m, 2H), 1.51–1.24 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm):
153.51, 88.07, 75.85, 61.76, 52.40, 36.53, 31.25, 28.44, 24.51, 22.16, 13.62. HRMS ESI [M + Na]+ calcd
for C11H18NaO3

+ 221.1148, found 221.1150. Enantiomeric excess was determined by HPLC with
a Chiralcel OD-H column (99:1 n-hexanes:isopropanol, 0.7 mL/min, 210 nm), major (R)-enantiomer
tr = 31.48 min, minor (S)-enantiomer tr = 37.63 min.

3.1.3. Synthesis of (R)-Methyl-4-hydroxyundec-2-ynoate: (R)-13c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13c (155 mg, 73% yield, 99% ee) as colorless oil. [α]25

D = +6.7
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.76 (s, 3H), 2.67 (d,
J = 5.8 Hz, 1H), 1.76–1.70 (m, 2H), 1.46–1.42 (m, 2H), 1.35–1.23 (m, 8H), 0.92–0.82 (m, 3H). 13C-NMR
(75 MHz, CDCl3) δ (ppm): 153.58, 88.22, 75.77, 61.70, 52.41, 36.50, 31.36, 28.75, 28.72, 24.56, 22.23,
13.66. HRMS ESI [M + Na]+ calcd for C12H20NaO3

+ 235.1305, found 235.1305. Enantiomeric excess
was determined by HPLC with a Chiralcel OD-H column (99:1 n-hexanes:isopropanol, 1.0 mL/min,
210 nm), major (R)-enantiomer tr = 13.97 min, minor (S)-enantiomer tr = 15.47 min.

3.1.4. Synthesis of (R)-Methyl-4-hydroxypent-2-ynoate: (R)-13d

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13d (81 mg, 63% yield, 99% ee) as colorless oil. [α]25

D = +3.4
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.80 (s, 3H), 2.97 (d, J = 5.6 Hz,
1H), 1.53 (d, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 153.61, 88.72, 74.99, 57.53, 52.48,
22.85. HRMS ESI [M + Na]+ calcd for C6H8NaO3

+ 151.0366, found 151.0365. Enantiomeric excess
was determined by HPLC with a Chiralcel OD-H column (98:2 n-hexanes:isopropanol, 1.0 mL/min,
220 nm), major (R)-enantiomer tr = 23.06 min, minor (S)-enantiomer tr = 26.75 min.

3.1.5. Synthesis of Methyl (R)-Methyl-4-hydroxyhex-2-ynoate: (R)-13e

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13e (101 mg, 71% yield, 99% ee) as colorless oil. [α]25

D = +8.2
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.79 (s, 3H), 3.09
(d, J = 5.8 Hz, 1H), 1.87–1.75 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ

(ppm): 153.64, 88.07, 75.76, 62.84, 52.45, 29.64, 8.88. HRMS ESI [M + Na]+ calcd for C7H10NaO3
+

165.0522, found 165.0522. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 220 nm), major (R)-enantiomer tr = 20.98 min,
minor (S)-enantiomer tr = 23.86 min.
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3.1.6. Synthesis of (R)-Methyl-4-hydroxyhept-2-ynoate: (R)-13f

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13f (105 mg, 67% yield, 99% ee) as colorless oil. [α]25

D = +5.4
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.57–4.44 (m, 1H), 3.79 (s, 3H), 3.02 (d, J = 5.8 Hz,
1H), 1.83–1.66 (m, 2H), 1.58–1.41 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm):
153.64, 88.29, 75.69, 61.40, 52.45, 38.47, 17.88, 13.22. HRMS ESI [M + Na]+ calcd for C8H12NaO3

+

179.0679, found 179.0681. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 220 nm), major (R)-enantiomer tr = 24.14 min,
minor (S)-enantiomer tr = 25.45 min.

3.1.7. Synthesis of (R)-Methyl-4-hydroxyoct-2-ynoate: (R)-13g

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13g (116 mg, 68% yield, 99% ee) as colorless oil. [α]25

D = +2.3
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.55–4.44 (m, 1H), 3.77 (s, 3H), 2.39 (d, J = 5.8 Hz,
1H), 1.82–1.68 (m, 2H), 1.48–1.31 (m, 4H), 0.91 (t, J = 7.1 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm):
153.51, 88.06, 75.85, 61.75, 52.40, 36.23, 26.66, 21.88, 13.48. HRMS ESI [M + Na]+ calcd for C9H14NaO3

+

193.0835, found 193.0835. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H
column (95:5 n-hexanes:isopropanol, 1.0 mL/min, 220 nm), major (R)-enantiomer tr = 7.45 min,
minor (S)-enantiomer tr = 8.02 min.

3.1.8. Synthesis of (R)-Methyl-4-hydroxy-5-methylhex-2-ynoate: (R)-13h

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13h (111 mg, 71% yield, 99% ee) as colorless oil. [α]25

D = +7.2
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.27 (t, J = 5.9 Hz, 1H), 3.76 (s, 3H), 3.11
(d, J = 5.9 Hz, 1H), 1.97–1.90 (m, 1H), 1.00 (dd, J = 6.8, 4.4 Hz, 6H). 13C-NMR (75 MHz, CDCl3) δ
(ppm): 153.64, 87.36, 67.05, 52.44, 33.79, 17.58, 17.09. HRMS ESI [M + Na]+ calcd for C8H12NaO3

+

179.0679, found 179.0680. Enantiomeric excess was determined by HPLC with a Chiralcel OJ-H
column (95:5 n-hexanes:isopropanol, 1.0 mL/min, 220 nm), major (R)-enantiomer tr = 8.66 min,
minor (S)-enantiomer tr = 10.71 min.

3.1.9. Synthesis of (R)-Methyl-4-hydroxyoct-7-en-2-ynoate: (R)-13i

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-13i (114 mg, 68% yield, 97% ee) as colorless oil. [α]25

D =−10.1
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 5.89–5.75 (m, 1H), 5.12–4.96 (m, 2H), 4.52 (q,
J = 6.4 Hz, 1H), 3.79 (s, 3H), 2.64 (d, J = 5.5 Hz, 1H), 2.26 (dd, J = 14.4, 6.8 Hz, 2H), 1.92–1.81 (m, 2H).
13C-NMR (75 MHz, CDCl3) δ (ppm): 153.53, 136.64, 115.46, 87.75, 76.03, 61.08, 52.48, 35.48, 28.73.
HRMS ESI [M + Na]+ calcd for C9H12NaO3

+ 191.0679, found 191.0679. Enantiomeric excess was
determined by HPLC with a Chiralcel OJ-H column (95:5 n-hexanes:isopropanol, 1.0 mL/min, 220 nm),
major (R)-enantiomer tr = 9.01 min, minor (S)-enantiomer tr = 9.75 min.

3.2. General Procedure for the Synthesis of Chiral Alkynols 12 from Propargyl Alcohols 13

A solution of the chiral alkynol (5 mmol) and THF (60 mL) were cooled to 0 ◦C, 1 M aq LiOH
(25 mmol, 5 eq) was added at a slow rate. The solution was warmed to rt and stirred for an additional
1 h before it was quenched with 1M aq NaHSO4 (50 mL). The aqueous phase was extracted by ethyl
acetate. The combined organic phases were dried over anhydrous Na2SO4, and concentrated under
reduced pressure. The residue was dissolved in acetonitrile (12 mL), CuCl (0.5940 g, 6 mmol, 1.2 eq)
was added in one portion to the mixture. The mixture was allowed to warm to r.t. and stirred for
another 13 h. The aqueous phase was extracted by ether. The combined organic phases were dried
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over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by silica
gel chromatography to get the product.

3.2.1. Synthesis of (R)-Oct-1-yn-3-ol: (R)-12a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12a (536 mg, 85% yield) as colorless oil. [α]25

D = +18.5 (c 1.0,
ethyl ether), lit. [53] [α]25

D = +19.3 (c 1.0, ethyl ether), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.33–4.27
(m, 1H), 3.10 (s, 1H), 2.40 (d, J = 2.1 Hz, 1H), 1.69–1.60 (m, 2H), 1.46–1.33 (m, 2H), 1.33–1.11 (m, 4H),
0.83 (t, J = 7.0 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 84.82, 72.31, 61.71, 37.15, 31.03, 24.33,
22.11, 13.53. HRMS ESI [M + Na]+ calcd for C8H14NaO+ 149.0937, found 149.0938.

3.2.2. Synthesis of (R)-Non-1-yn-3-ol: (R)-12b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12b (603 mg, 86% yield) as colorless oil. [α]25

D = +5.3 (c 2.0,
CHCl3), lit. [54] [α]25

D = +4.6 (c 1.92, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.37 (t, J = 5.9 Hz,
1H), 2.47 (d, J = 5.9 Hz, 1H), 2.38 (s, 1H), 1.75–1.68 (m, 2H), 1.52–1.41 (m, 2H), 1.38–1.27 (m, 6H),
0.89 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 84.78, 72.38, 61.90, 37.28, 31.35, 28.53,
24.62, 22.19, 13.66. HRMS ESI [M + Na]+ calcd for C9H16NaO+ Exact Mass: 163.1093, found 163.1093.

3.2.3. Synthesis of (R)-Dec-1-yn-3-ol: (R)-12c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12c (640 mg, 83% yield) as colorless oil. [α]25

D = +6.2 (c 1.1,
CHCl3), lit. [55] [α]25

D = +4.2 (c 1.1, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.35 (dd, J = 6.5,
4.9 Hz, 1H), 2.44 (d, J = 2.1 Hz, 1H), 2.33 (s, 1H), 1.78–1.60 (m, 2H), 1.50–1.38 (m, 2H), 1.32–1.26 (m, 8H),
0.86 (t, J = 6.8 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 84.74, 72.41, 61.97, 37.31, 31.40, 29.34,
28.83, 24.66, 22.26, 13.69. HRMS ESI [M + Na]+ calcd for C10H18NaO+ 177.1250, found 177.1250.

3.3. General Procedure for the Selective Reduction of the Chiral Alkynols 12

To a stirred solution of nickel acetate tetrahydrate (352 mg, 2 mmol) in ethanol (5 mL) under
hydrogen, sodium borohydride (76 mg, 2 mmol) in ethanol (2 mL) was added at 0 ◦C. After stirring
for 1 h at 25 ◦C, ethylenediamine (481 mg, 8 mmol) was added. The reaction mixture was stirred for
another 10 min before chiral alkynol (2 mmol) in ethanol (2 mL) was added slowly to the reaction
mixture at 0 ◦C. The reaction was allowed to proceed at 25 ◦C under hydrogen for 6 h at 25 ◦C.
The mixture was filtered through a celite pad, diluted with ether, and concentrated under reduced
pressure. The residue was purified by silica gel chromatography to get the product.

3.3.1. Synthesis of (R)-Oct-1-en-3-ol: (R)-6a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6a (210 mg, 82% yield) as colorless oil. [α]25

D =−10.8 (c 1.1,
CHCl3), lit. [56] [α]25

D =−10.0 (c 1.67, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 5.95–5.83 (m, 1H),
5.27–5.21 (m, 1H), 5.14–5.10 (m, 1H), 4.12 (d, J = 4.8 Hz, 1H), 1.61 (d, J = 2.8 Hz, 1H), 1.58–1.48 (m, 2H),
1.44–1.25 (m, 6H), 0.91 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 141.02, 114.12, 72.92,
36.68, 31.40, 24.64, 22.23, 13.64. HRMS ESI [M + Na]+ calcd for C8H16NaO+ 151.1093, found 151.1093.

3.3.2. Synthesis of (R)-Non-1-en-3-ol: (R)-6b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6b (242 mg, 85% yield) as colorless oil. [α]25

D =−11.5 (c 1.1,
ethanol), lit. [57] [α]25

D = −13.4 (c 1.12, ethanol), 1H-NMR (300 MHz, CDCl3) δ (ppm): 5.94–5.83
(m, 1H), 5.27–5.20 (m, 1H), 5.14–5.09 (m, 1H), 4.12 (d, J = 5.9 Hz, 1H), 1.67 (d, J = 3.5 Hz, 1H), 1.60–1.49
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(m, 2H), 1.40–1.29 (m, 8H), 0.90 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 141.03, 114.10,
72.91, 36.72, 31.43, 28.86, 24.93, 22.22, 13.68. HRMS ESI [M + Na]+ calcd for C9H18NaO+ 165.1250,
found 165.1250.

3.3.3. Synthesis of (R)-Dec-1-en-3-ol: (R)-6c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6c (259 mg, 83% yield) as colorless oil. [α]25

D = −16.7 (c 1.1,
CHCl3), lit. [58] [α]25

D =−18.1 (c 1.22, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 5.92–5.81 (m, 1H),
5.32–5.17 (m, 1H), 5.16–5.06 (m, 1H), 4.15–4.05 (m, 1H), 1.91 (d, J = 3.7 Hz, 1H), 1.58–1.46 (m, 2H),
1.40–1.22 (m, 10H), 0.89 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 141.04, 114.04, 72.86,
36.70, 31.45, 29.16, 28.88, 24.97, 22.27, 13.68. HRMS ESI [M + Na]+ calcd for C10H20NaO+ 179.1406,
found 179.1408.

3.4. General Procedure for the Esterification Reaction and Determination of Enantiomeric Excess by HPLC

Triethylamine (152 mg, 1.5 mmol) and 3,5-dinitrobenzoyl chloride (277 mg, 1.2 mmol) were added
to a stirred solution of the chiral alcohol (1 mmol) in CH2Cl2 (6 mL) at −5 ◦C. The mixture was
stirred for 5 h at 25 ◦C before water (2 mL) was poured into the mixture at 0 ◦C. The aqueous phase
was extracted with ether, and combined organic phases were washed with saturated brine solution,
dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by
silica gel chromatography to get the product.

3.4.1. Synthesis of (R)-Oct-1-en-3-yl-3,5-dinitrobenzoate: (R)-21a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21a (306 mg, 95% yield, 99% ee) as white solid. [α]25

D =−16.2
(c 1.1, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 9.22 (t, J = 2.1 Hz, 1H), 9.16 (d, J = 2.1 Hz,
2H), 5.92 (m 1H), 5.56 (q, J = 6.9 Hz, 1H), 5.36 (m, 2H), 1.96–1.72 (m, 2H), 1.48–1.26 (m, 6H), 0.89 (t,
J = 6.9 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 161.45, 148.34, 135.09, 134.00, 129.02, 121.92,
118.05, 77.82, 33.69, 31.09, 24.40, 22.10, 13.57. HRMS ESI [M + Na]+ calcd for C15H18N2NaO6

+

345.1057, found 345.1057. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (99:1 n-hexanes: isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 17.74 min,
minor (S)-enantiomer tr = 14.46 min.

3.4.2. Synthesis of (R)-Non-1-en-3-yl-3,5-dinitrobenzoate: (R)-21b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21b (312 mg, 93% yield, 99% ee) as colorless oil. [α]25

D =−18.3
(c 1.1, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 9.21 (t, J = 2.1 Hz, 1H), 9.15 (d, J = 2.1 Hz,
2H), 6.01–5.84 (m, 1H), 5.56 (d, J = 6.6 Hz, 1H), 5.34 (dd, J = 26.1, 13.8 Hz, 2H), 1.95–1.70 (m, 2H),
1.45–1.26 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 161.45, 148.33, 135.11,
133.99, 129.02, 121.92, 118.01, 77.81, 33.73, 31.27, 28.59, 24.70, 22.17, 13.63. HRMS ESI [M + Na]+ calcd
for C16H20N2NaO6

+ 359.1214, found 359.1214. Enantiomeric excess was determined by HPLC with
a Chiralcel OD-H column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer
tr = 15.27 min, minor (S)-enantiomer tr = 12.67 min.

3.4.3. Synthesis of (R)-Dec-1-en-3-yl-3,5-dinitrobenzoate: (R)-21c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-6c (332 mg, 95% yield, 99% ee) as white solid. [α]25

D =−21.2
(c 1.05, CH2Cl2), 1H-NMR (300 MHz, CDCl3) δ (ppm): 9.23 (t, J = 2.1 Hz, 1H), 9.16 (d, J = 2.1 Hz, 2H),
5.98–5.87 (m, 1H), 5.57 (q, J = 6.8 Hz, 1H), 5.35 (dd, J = 25.1, 13.8 Hz, 2H), 1.99–1.71 (m, 2H), 1.40–1.28
(m, 10H), 0.88 (t, J = 6.6 Hz, 3H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 161.45, 148.35, 135.09, 134.02,
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129.03, 121.92, 118.08, 77.85, 33.74, 31.37, 28.90, 28.75, 24.76, 22.24, 13.68. HRMS ESI [M + Na]+ calcd
for C17H22N2NaO6

+ 373.1370, found 373.1370. Enantiomeric excess was determined by HPLC with
a Chiralcel OD-H column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer
tr = 16.89 min, minor (S)-enantiomer tr = 13.50 min.

3.5. General Procedure of Asymmetric Addition of Ethynyltrimethylsilane to Aliphatic Aldehydes

To a stirred solution of ethynyltrimethylsilane (3922 mg, 40 mmol), (S)-BINOL (1144 mg, 4 mmol),
HMPA (3584 mg, 20 mmol) in methylene chloride (120 mL), diethylzinc (40 mL, 40 mmol) was added
slowly at 0 ◦C. After stirring for 16 h at 25 ◦C, Titanium(IV) isopropoxide (2842 mg, 10 mmol) was
added and the stirring was continued for another 1 h at 25 ◦C. Then an aldehyde (10 mmol) was
added and the reaction was allowed to proceed at 25 ◦C for another 6 h before being quenched with
water (20 mL). The mixture was filtered through a celite pad. The aqueous phase was extracted with
ether. The combined organic phases were washed with saturated brine, dried over anhydrous Na2SO4,
and concentrated under reduced pressure. The residue was purified by silica gel chromatography to
get the product [34,40].

3.5.1. Synthesis of (R)-1-(Trimethylsilyl)oct-1-yn-3-ol: (R)-13a′

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 20:1) to offer (R)-13a′ (1408 mg, 71% yield, 80% ee) as colorless oil. [α]25

D = +8.2
(c 1.1, CHCl3), lit. [56] [α]25

D = +13.6 (c 1.1, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.38 (dd,
J = 12.2, 6.4 Hz, 1H), 1.80 (d, J = 5.5 Hz, 1H), 1.76–1.68 (m, 2H), 1.47 (d, J = 7.3 Hz, 2H), 1.35 (dd,
J = 7.1, 3.5 Hz, 4H), 0.92 (t, J = 6.7 Hz, 3H), 0.20 (s, 9H). 13C-NMR (75 MHz, CDCl3) δ (ppm): 106.61,
88.96, 62.61, 37.35, 31.04, 24.41, 22.16, 13.59, −0.47. HRMS ESI [M + Na]+ calcd for C11H22NaOSi+

221.1332, found 221.1332. Enantiomeric excess was determined by HPLC with a Chiralcel AD-H
column (99:1 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 14.72 min,
minor (S)-enantiomer tr = 13.52 min.

3.5.2. Synthesis of (R)-1-(Trimethylsilyl)non-1-yn-3-ol: (R)-13b′

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 20:1) to offer (R)-13b′ (1529 mg, 72% yield, 82% ee) as colorless oil. [α]25

D = +2.3
(c 1.1, CHCl3), 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.38 (dd, J = 12.3, 6.5 Hz, 1H), 1.78–1.68 (m, 3H),
1.46 (d, J = 6.5 Hz, 2H), 1.38–1.27 (m, 6H), 0.92 (t, J = 6.7 Hz, 3H), 0.20 (s, 9H). 13C-NMR (75 MHz, CDCl3)
δ (ppm): 106.68, 88.89, 62.54, 37.36, 31.34, 28.52, 24.70, 22.17, 13.67,−0.48. HRMS ESI [M + Na]+ calcd
for C12H24NaOSi+ 235.1489, 235.1490. Enantiomeric excess was determined by HPLC with a Chiralcel
AD-H column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 13.68 min,
minor (S)-enantiomer tr = 12.42 min.

3.5.3. Synthesis of (R)-1-(Trimethylsilyl)dec-1-yn-3-ol: (R)-13c′

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 20:1) to offer (R)-13c′ (1608 mg, 71% yield, 80% ee) as colorless oil. [α]25

D = +3.2
(c 1.1, CHCl3). 1H-NMR (300 MHz, CDCl3) δ (ppm): 4.36 (dd, J = 12.3, 6.5 Hz, 1H), 2.00 (m, 1H),
1.83–1.61 (m, 2H), 1.53–1.40 (m, 2H), 1.40–1.31 (m, 8H), 0.90 (t, J = 6.7 Hz, 3H), 0.18 (m, 9H). 13C-NMR
(75 MHz, CDCl3) δ (ppm): 106.70, 88.87, 62.54, 37.36, 31.39, 28.81, 28.79, 24.74, 22.26, 13.70, −0.48.
HRMS ESI [M + Na]+ calcd for C13H26NaOSi+ 249.1645, found 249.1645. Enantiomeric excess was
determined by HPLC with a Chiralcel AD-H column (99:1 n-hexanes:isopropanol, 0.9 mL/min, 210 nm),
major (R)-enantiomer tr = 18.90 min, minor (S)-enantiomer tr = 16.94 min.
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3.6. General Procedure for the Synthesis of chIral Alkynols 12 from Propargyl Alcohols 13′

To a stirred solution of chiral alkynol (10 mmol) in methanol (20 mL), potassium carbonate
(2764 mg, 20 mmol) was added slowly at 0 ◦C. After stirring for 20 h at 25 ◦C, water (20 mL) was added
slowly at 0 ◦C. The reaction mixture was concentrated under reduced pressure. The aqueous phase
was extracted with ether. The combined organic phases were washed with saturated brine solution,
dried over anhydrous Na2SO4, concentrated under reduced pressure. The residue was purified by
silica gel chromatography to get the product.

3.6.1. Synthesis of (R)-Oct-1-yn-3-ol: (R)-12a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12a (1098 mg, 87% yield) as colorless oil. [α]25

D = +16.2
(c 1.0, ethyl ether), lit. [53] [α]25

D = +19.3 (c 1.0, ethyl ether). HRMS ESI [M + Na]+ calcd for C8H14NaO+

149.0937, found 149.0937.

3.6.2. Synthesis of (R)-Non-1-yn-3-ol: (R)-12b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12b (1248 mg, 89% yield) as colorless oil. [α]25

D = +4.1 (c 2.0,
CHCl3), lit. [54] [α]25

D = +4.6 (c 1.92, CHCl3). HRMS ESI [M + Na]+ calcd for C9H16NaO+ Exact mass:
163.1093, found 163.1093.

3.6.3. Synthesis of (R)-Dec-1-yn-3-ol: (R)-12c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 15:1) to offer (R)-12c (1373 mg, 89% yield) as colorless oil. [α]25

D = +5.1 (c 1.1,
CHCl3), lit. [55] [α]25

D = +4.2 (c 1.1, CHCl3). HRMS ESI [M + Na]+ calcd. for C10H18NaO+ 177.1250,
found 177.1250.

3.7. General Procedure for the Selective Reduction of the Chiral Alkynols 12

To a stirred solution of nickel acetate tetrahydrate (1408 mg, 8 mmol) in ethanol (20 mL) under
hydrogen, sodium borohydride (303 mg, 8 mmol) in ethanol (8 mL) was added at 0 ◦C. After stirring
for 1 h at 25 ◦C, ethylenediamine (481 mg, 8 mmol) was added. The reaction mixture was stirred for
another 10 min before chiral alkynol (8 mmol) in ethanol (8 mL) was added slowly to the reaction
mixture at 0 ◦C. The reaction was allowed to proceed at 25 ◦C under hydrogen for 6 h at 25 ◦C.
The mixture was filtered through a celite pad, diluted with ether, and concentrated under reduced
pressure. The residue was purified by silica gel chromatography to get the product.

3.7.1. Synthesis of (R)-Oct-1-en-3-ol: (R)-6a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6a (831 mg, 81% yield) as colorless oil. [α]25

D = −7.3 (c 1.1,
CHCl3), lit. [56] [α]25

D =−10.0 (c 1.67, CHCl3). HRMS ESI [M + Na]+ calcd. for C8H16NaO+ 151.1093,
found 151.1093.

3.7.2. Synthesis of (R)-Non-1-en-3-ol: (R)-6b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6b (944 mg, 83% yield) as colorless oil. [α]25

D =−10.5 (c 1.1,
ethanol), lit. [57] [α]25

D =−13.4 (c 1.12, ethanol). HRMS ESI [M + Na]+ calcd. for C9H18NaO+ 165.1250,
found 165.1250.
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3.7.3. Synthesis of (R)-Dec-1-en-3-ol: (R)-6c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 10:1) to offer (R)-6c (1013 mg, 81% yield) as colorless oil. [α]25

D = −14.2
(c 1.1, CHCl3), lit. [58] [α]25

D = −18.1 (c 1.22, CHCl3). HRMS ESI [M + Na]+ calcd. for C10H20NaO+

179.1406, found 179.1406.

3.8. General Procedure for the Esterification Reaction and Determination of Enantiomeric Excess by HPLC

Triethylamine (909 mg, 9 mmol) and 3,5-dinitrobenzoyl chloride (1660 mg, 7.2 mmol) were added
to a stirred solution of the chiral alcohol (6 mmol) in CH2Cl2 (40 mL) at −5 ◦C. The mixture was
stirred for 5 h at 25 ◦C before water (10 mL) was poured into the mixture at 0 ◦C. The aqueous phase
was extracted with ether and combined organic phases were washed with saturated brine solution,
dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by
silica gel chromatography to get the product.

3.8.1. Synthesis of (R)-Oct-1-en-3-yl-3,5-dinitrobenzoate: (R)-21a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21a (1837 mg, 95% yield, 80% ee) as white solid.
[α]25

D =−14.2 (c 1.1, CH2Cl2). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (99:1 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 17.80 min,
minor (S)-enantiomer tr = 14.65 min.

3.8.2. Synthesis of (R)-Non-1-en-3-yl-3,5-dinitrobenzoate: (R)-21b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21b (1987 mg, 98% yield, 82% ee) as colorless oil.
[α]25

D =−15.2 (c 1.1, CH2Cl2). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 15.76 min,
minor (S)-enantiomer tr = 12.93 min.

3.8.3. Synthesis of (R)-Dec-1-en-3-yl-3,5-dinitrobenzoate: (R)-21c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21c (2018 mg, 96% yield, 79% ee) as white solid. [α]25

D =−18.2
(c 1.05, CH2Cl2). Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 16.58 min,
minor (S)-enantiomer tr = 13.66 min.

3.9. General Procedure for the Recrystallization to Improve Optical Purity

Dinitrobenzoates (5 mmol) were dissolved in diethyl ether at room temperature, then n-hexane
was added slowly to the mixture until a white precipitate occurred. A small portion of diethyl ether
was added and the white precipitate was dissolved. The mixture was cooled to−30 ◦C and stayed for
48 h to get a white crystal of the dinitrobenzoate.

3.9.1. Recrystallization of (R)-Oct-1-en-3-yl-3,5-dinitrobenzoate: (R)-21a

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21a (999 mg, 62% yield, 99% ee) as white solid.
[α]25

D =−16.1 (c 1.1, CH2Cl2). HRMS ESI [M + Na]+ calcd for C15H18N2NaO6
+ 345.1057,

found 345.1057. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (99:1 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 18.20 min,
minor (S)-enantiomer tr = 14.46 min.
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3.9.2. Recrystallization of (R)-Non-1-en-3-yl-3,5-dinitrobenzoate: (R)-21b

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-21b (1076 mg, 64% yield, 99% ee) as colorless oil.
[α]25

D =−18.7 (c 1.1, CH2Cl2). HRMS ESI [M + Na]+ calcd for C16H20N2NaO6
+ 359.1214,

found 359.1214. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 15.60 min,
minor (S)-enantiomer tr = 12.67 min.

3.9.3. Recrystallization of (R)-Dec-1-en-3-yl-3,5-dinitrobenzoate: (R)-21c

Following the general procedure, the residue was purified by silica gel chromatography
(hexanes/ethyl acetate 8:1) to offer (R)-6c (1051 mg, 60% yield, 99% ee) as white solid.
[α]]25

D =−21.5 (c 1.05, CH2Cl2). HRMS ESI [M + Na]+ calcd for C17H22N2NaO6
+ 373.1370,

found 373.1370. Enantiomeric excess was determined by HPLC with a Chiralcel OD-H
column (98:2 n-hexanes:isopropanol, 1.0 mL/min, 210 nm), major (R)-enantiomer tr = 16.46 min,
minor (S)-enantiomer tr = 13.50 min.

4. Conclusions

In summary, we developed a general synthetic route toward chiral matsutakeol and its analogs
via the asymmetric catalytic alkynylation. A practical and efficient access was provided to prepare the
(R)-matsutakeol (99% ee, total yield up to 50.2%, in three steps) and its highly enantioselective analogs,
by utilizing the (S,S)-ProPhenol as chiral catalyst. In addition, the method may allow for gram-scale
synthesis of (R)-matsutakeol and its analogs by using (S)-BINOL as chiral catalyst, thus facilitating
their potential applications. Besides, this strategy has been proven to be practical for obtaining flavored
allyl alcohols with high enantioselectivity in food analysis and screening insect attractants. Biological
evaluation of target molecules is in progress and will be reported in due course.

Supplementary Materials: The following are available online: Figure S1–S43.
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