Supplementary Materials: ent-Abietanoids Isolated from Isodon serra

Jun Wan^{1,2}, Hua-Yi Jiang^{1,2}, Jian-Wei Tang^{1,2}, Xing-Ren Li^{1,2}, Xue Du¹, Yan Li¹, Han-Dong Sun¹ and Jian-Xin Pu^{1,*}

- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China; pujianxin@mail.kib.ac.cn
- ² University of Chinese Academy of Sciences, Beijing 100039, P.R. China; wanjun@imm.ac.cn

Corresponding author: Jian-Xin Pu

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China

Tel.: +86-871-65223616.

E-mail address: pujianxin@mail.kib.ac.cn (J.-X. Pu).

Contents of Supporting Information

No.	Contents	Page
1.	Figure S1. ¹ H (600 MHz) and ¹³ C NMR (150 MHz)spectra of serrin K (1) in C_5D_5N	3
2.	Figure S2. HSQC and ¹ H- ¹ H COSY spectra of serrin K (1) in C ₅ D ₅ N (600 MHz)	4
3.	Figure S3. HMBC and ROESY spectra of serrin K (1) in C5D5N (600 MHz)	5
4.	Figure S4. HR-ESI-MS and ORD spectra of serrin K (1)	6
5.	Figure S5. UV (in MeOH) and IR (KBr) spectra of serrin K (1)	7
6.	Figure S6. ¹ H (600 MHz) and ¹³ C NMR (150 MHz) spectra of xerophilusin XVII (2) in C_5D_5N	8
7.	Figure S7. HSQC and ¹ H- ¹ H COSY spectra of xerophilusin XVII (2) in C ₅ D ₅ N (600 MHz)	9
8.	Figure S8. HMBC and ROESY spectra of xerophilusin XVII (2) in C ₅ D ₅ N (600 MHz)	10
9.	Figure S9. HR-ESI-MS spectra of xerophilusin XVII (2)	11
10.	Figure S10. UV (in MeOH) and IR (KBr) spectra of xerophilusin XVII (2)	12
11.	Figure S11. ¹ H (400 MHz) and ¹³ C NMR (125 MHz) spectra of enanderianin Q (3) in C_5D_5N	13
12.	Figure S12. HSQC and ¹ H- ¹ H COSY spectra of enanderianin Q (3) in C ₅ D ₅ N (500 MHz)	14
13.	Figure S13. HMBC and ROESY spectra of enanderianin Q (3) in C ₅ D ₅ N (500 MHz)	15
14.	Figure S14. HR-ESI-MS and ORD spectra of enanderianin Q (3)	16
15.	Figure S15. UV (in MeOH) and IR (KBr) spectra of enanderianin Q (3)	17
16.	Figure S16. ¹ H (500 MHz) and ¹³ C NMR (125 MHz) spectra of enanderianin R (4) in C_5D_5N	18
17.	Figure S17. HSQC and $^{1}H-^{1}H$ COSY spectra of enanderianin R (4) in C ₅ D ₅ N (500 MHz)	19
18.	Figure S18. HMBC and ROESY spectra of enanderianin R (4) in C5D5N (500 MHz)	20
19.	Figure S19. HR-ESI-MS and ORD spectra of enanderianin R (4)	21
20.	Figure S20. UV (in MeOH) and IR (KBr) spectra of enanderianin R (4)	22

Figure S1. 1 H (600 MHz) and 13 C NMR (150 MHz) spectra of serrin K (1) in C₅D₅N.

Figure S2. HSQC and ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectra of serrin K (1) in C₅D₅N (600 MHz).

Figure S3. HMBC and ROESY spectra of serrin K (1) in C_5D_5N (600 MHz).

swj45.d Data Filename Sample Name swj45 Sample Position P1-F3 Sample Type Instrument Name Instrument 1 User Name SIBU.m 4/27/2015 4:15:07 PM Acq Method Acquired Time Successi DA Method **IRM Calibration Status** Default.m Comment Sample Group Info. Acquisition SW 6200 series TOF/6500 series Q-TOF B.05.01 (B5125.2) Version

Qualitative Analysis Report

User Spectra

Optical rotation measurement

Model No.	: P-1020 (A0 Sample	060460638) Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No.1	8 (1/3)	Sp.Rot	-48.7120	-0.0397 0.0000	22.9 50.00 Cell	Fri Apr 24 18:15:01 2015 0.00163g/mL MeOH SW.I45	Na 589nm	2 sec 10 sec
No.2	8 (2/3)	Sp.Rot	-48.2210	-0.0393 0.0000	23.0 50.00 Cell	Fri Apr 24 18:15:15 2015 0.00163g/mL MeOH SWJ45	Na 589nm	2 sec - 48 . 4663
No.3	8 (3/3)	Sp.Rot	-48.4660	-0.0395 0.0000	23.0 50.00 Cell	Fri Apr 24 18:15:28 2015 0.00163g/mL MeOH SWJ45	Na 589nm	2 sec 10 sec

Figure S4. HR-ESI-MS and ORD spectra of serrin K (1).

Figure S5. UV (in MeOH) and IR (KBr) spectra of serrin K (1).

Figure S6. 1 H (600 MHz) and 13 C NMR (150 MHz) spectra of xerophilusin XVII (2) in C₅D₅N.

Figure S7. HSQC and ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectra of xerophilusin XVII (2) in C₅D₅N (600 MHz).

Figure S8. HMBC and ROESY spectra of xerophilusin XVII (2) in C_5D_5N (600 MHz).

Qualitative Analysis Report

Figure S9. HR-ESI-MS spectra of xerophilusin XVII (2).

Figure S10. UV (in MeOH) and IR (KBr) spectra of xerophilusin XVII (2).

Figure S11. 1 H (400 MHz) and 13 C NMR (125 MHz) spectra of enanderianin Q (3) in C₅D₅N.

Figure S12. HSQC and ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectra of enanderianins Q (3) in C₅D₅N (500 MHz).

Figure S13. HMBC and ROESY spectra of enanderianin Q (3) in C_5D_5N (500 MHz).

Qualitative Analysis Report

User Spectra

Optical rotation measurement

Model	: P-1020 (A	060460638)						
No.	Sample	Mode	Data	Monitor Blank	Temp. Cell Temp Point	Date Comment Sample Name	Light Filter Operator	Cycle Time Integ Time
No .1	3 (1/3)	Sp.Rot	29.3420	0.0223 0.0000	24.8 50.00 Cell	Tue May 05 17:35:17 2015 0.00152g/mL MeOH SWJ41	Na 589nm	2 sec 10 sec
No.2	3 (2/3)	Sp.Rot	29.7370	0.0226 0.0000	24.8 50.00 Cell	Tue May 05 17:35:30 2015 0.00152g/mL MeOH SWJ41	Na 589nm	2 sec 10 sec + 29.)368
No.3	3 (3/3)	Sp.Rot	30.1320	0.0229 0.0000	24.7 50.00 Cell	Tue May 05 17:35:43 2015 0.00152g/mL MeOH SWJ41	Na 589nm	2 sec 10 sec

Figure S14. HR-ESI-MS and ORD spectra of enanderianin Q (3).

Figure S15. UV (in MeOH) and IR (KBr) spectra of enanderianin Q (3).

Figure S16. 1 H (500 MHz) and 13 C NMR (125 MHz) spectra of enanderianin R (4) in C₅D₅N.

Figure S17. HSQC and ${}^{1}H^{-1}H$ COSY spectra of enanderianin R (4) in C₅D₅N (500 MHz).

Figure S18. HMBC and ROESY spectra of enanderianin R (4) in C_5D_5N (600 MHz).

Qualitative Analysis Report

Sample Type Instrument I Acq Method IRM Calibrat Comment	ne Same Sion S	e Status	SWJ44.d Sample Instrumer SIBU.m Success	nt 1	Sam Posi Use Acq DA I	nple Name ition r Name uired Time Method	SWJ44 P1-A6 5/5/2015 3:11 Default.m	:21 P	м	
Sample Grou Acquisition S Version	ip SW	6200 s Q-TOF	eries TOF/65 8.05.01 (B51	1 00 series 125.2)	Info.			÷		
User Spect	tra				·					
Fragment	tor Vo .35	ltage	Collision E	nergy	Ionization ESI	Mode				
1.5- 1.25- 1- 0.75-										
0.25	370	.4 370.6	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 rge (m/z)	.6 371.8	37	2	
0.25-0	370	.4 370.6	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 ge (m/z)	.6 371.8	37	2	
0.25- 0- Peak List <i>m/z</i>	370 Z	.4 370.6 Abund 128023 12	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 rge (m/z)	.6 371.8	37	2	
0.25 0 225 0 202 0 202 0 203.0941	370 Z 1	4 370.6 Abund 128023.12 48900.36	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 ge (m/z)	.6 371.8	37	2	
0.25 0 2025 0 2025 0 2025 0 2025 0 2025 0 2025 202 202	370 Z 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 rge (m/z)	.6 371.8	37	2	
0.25 0.25 0 Peak List <u>m/z</u> 157.0495 203.0941 277.1283 278.1317	370 2 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63	370.8	371 Counts v	371.2 s. Mass-to-Char	371.4 371 gge (m/z)	.6 371.8	37	2	
0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370 2 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62	370.8	371 Counts v	371.2 s. Mass-to-Char Ion	371.4 371 ge (m/z)	.6 371.8	37	2	
0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370 2 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95	370.8	371 Counts v	371.2 s. Mass-to-Char Ion	371.4 371 ge (m/z)	.6 371.8	37	2	
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	370 2 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 192300.58 26255.63 33786.62 124492.95 43561.67	370.8	371 Counts v:	371.2 s. Mass-to-Char	371.4 371 ge (m/z)	.6 37 ¹ .8	37	2	
0.3- 0.25 0.25 0.25 0.26 0.25 0.25 0.25 0.20 0.25 0.20 0.25 0.20 0.25 0.25	370 2 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 0001.92	370.8	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z)	.6 37 ¹ .8	37	2	
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	370 Z 1 1 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 30861.9 372030 31	370.8	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z) Na)+	.6 37 ¹ .8	37	2	
0.25 0.25 0.25 157.0495 203.0941 277.1283 278.1317 294.1605 299.1106 315.0839 371.2188 387.193 408.2379 Formula Calo	370 z 1 1 1 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 30861.9 370861.9 3709.21 or Element	370.8	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z) Na)+	.6 37 ¹ .8	37	2	
0.25 0.25 0.25 157.0495 203.0941 277.1283 278.1317 294.1605 299.1106 315.0839 371.2188 387.193 408.2379 Formula Calc Element	370 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 30861.9 37039.21 or Element Max	370.8	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z) Na)+	.6 37 ¹ .8	37	2	
0.25 0.25	370 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 30861.9 37039.21 or Element Max 3 60	370.8	371 Counts v.	371.2 s. Mass-to-Char	371.4 371 ge (m/z)	.6 37 ¹ .8	37	2	
0.25 0.25 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 370.6 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 124492.95 43561.67 20401.92 30861.9 37039.21 Fement I Max 3 3 60 0 120	370.8 Formula	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z)	.6 37 ¹ .8	37	2	
0.25 0.25 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370	4 370.6 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 124492.95 43561.67 20401.92 30861.9 37039.21 Fement Max 3 3 60 0 120 0 30	370.8 Formula	371 Counts v.	371.2 s. Mass-to-Char	371.4 371 ge (m/z)	.6 371.8	37	2	
0.25 0.25 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	370.	4 370.6 Abund 128023.12 48900.36 192300.58 26255.63 33786.62 124492.95 43561.67 20401.92 30861.9 37039.21 or Element Max 3 60 0 120 0 30 0 10 0 Results	376.8	371 Counts v.	371.2 s. Mass-to-Char Ion (M+	371.4 371 ge (m/z)	.6 371.8	37	2	

Optical rotation measurement

Model	: P-1020 (A	060460638)	Data	Manitar	Tomp	Data	Light	Cycle Time
NO.	Sample	Mode	Data	Blank	Cell	Comment	Filter	Integ Time
					Temp Point	Sample Name	Operator	
No.1	18 (1/3)	Sp.Rot	-108.0000	-0.0054	20.3	Fri Jan 13 13:21:51 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SW.I44_1	589nm	2 sec
No 2	18 (2/3)	Sp.Rot	-100.0000	-0.0050	20.3	Fri Jan 13 13:21:56 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.3	18 (3/3)	Sp.Rot	-106.0000	-0.0053	20.3	Fri Jan 13 13:22:02 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	^{2 sec} -103.7778°
No.4	19 (1/3)	Sp.Rot	-106.0000	-0.0053	20.3	Fri Jan 13 13:22:25 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.5	19 (2/3)	Sp.Rot	-114.0000	-0.0057	20.3	Fri Jan 13 13:22:30 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.6	19 (3/3)	Sp.Rot	-100.0000	-0.0050	20.3	Fri Jan 13 13:22:35 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.7	20 (1/3)	Sp.Rot	-106.0000	-0.0053	20.3	Fri Jan 13 13:23:17 2017	Na	2 sec
				0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.8	20 (2/3)	Sp.Rot	-94.0000	-0.0047	20.3	Fri Jan 13 13:23:23 2017	Na	2 sec
	, ,			0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec
No.9	20 (3/3)	Sp.Rot	-100.0000	-0.0050	20.3	Fri Jan 13 13:23:28 2017	Na	2 sec
		2005 (N		0.0000	10.00 Cell	0.00050g/mL MeOH SWJ44_1	589nm	2 sec

Figure S19. HR-ESI-MS and ORD spectra of enanderianin R (4).

Figure S20. UV (in MeOH) and IR (KBr) spectra of enanderianin R (4).