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Abstract: Flavonoids represent a typical secondary metabolite class present in cruciferous vegetables.
Their potential as natural antioxidants has raised considerable scientific interest. Impacts on the
human body after food consumption as well as their effect as pharmaceutical supplements are
therefore under investigation. Their numerous physiological functions make them a promising tool
for breeding purposes. General methods for flavonoid analysis are well established, though new
compounds are still being identified. However, differences in environmental circumstances of the
studies and analytical methods impede comparability of quantification results. To promote future
investigations on flavonoids in cruciferous plants we provide a checklist on best-practice in flavonoid
research and specific flavonoid derivatives that are valuable targets for further research, choosing a
representative species of scientific interest, Brassica oleracea.
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1. Introduction

Brassica oleracea comprises several crop varieties of worldwide economic importance, such
as kale, broccoli, Brussels sprouts and cauliflower. In 2012 their production in the USA covered
about 27% of all the acreage used for vegetable production (165,000 acres in total) [1]. Their high
intraspecific variability extends to secondary metabolites produced by Brassica plants, among them
glucosinolates and flavonoids [2,3]. The latter play an important role in ultraviolet (UV) protection
since UV-B responsive flavonoids can reduce the risk of reactive oxygen species (ROS) generation
and thereby prevent oxidative damage [4]. Therefore, the impact of flavonoids on the human body
after food consumption as well as their effect as pharmaceutical supplements was discussed in several
reviews [5–8]. Particularly relevant are their antioxidative activity and radical scavenging capacity [5].
So far, flavonoids are known to protect against the initiation and progression of atherosclerosis and
cardiovascular disease [9]. Single flavonoid accumulation in plants through target-oriented breeding
approaches as well as detailed quantification data are therefore not only of economic, but also of
medical research interest. Here, we point to typical pitfalls and limitations as well as to provide a
best-practice guide to generate reproducible data of high informative value.

2. Data Comparability: Telling the Whole Story

In nature, genotype and ecological parameters influence general phenolic contents
(mostly flavonoids and hydroxycinnamic acids) and their antioxidant activity in plant tissue [10].
The necessity to consider seasonal and environmental parameters was demonstrated by numerous
studies, for instance Schmidt et al. [11] and Reilly et al. [12], who found strong flavonoid variation
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with respect to tissue, year and climatic factors in addition to intercultivar variability. However,
selectable parameters often remain unmentioned as well, although these specifications are easy to
make and likewise necessary for further comparisons. An overview on the complexity of those
selectable parameters and influencing factors is given in Figure 1.
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Ontogenetic changes in metabolic plant profiles are well documented. Within the first two weeks
of plant life, a remarkable decrease is noted regarding phenolic compounds. In Tronchuda cabbage
(B. oleracea var. costata) about 11.1 mg phenols was determined per kg dry weight in sprouts. Ten days
later, this value had decreased by 85% [13]. Therefore, phenolic compounds are suggested to play an
essential role in early plant development relevant for cell wall biosynthesis and in their function as
antioxidants [13]. Later developmental stages in white (B. oleracea var. capitata) and Chinese cabbage
(Brassica rapa var. pekinensis) are characterized by a significant increase in total flavonoid contents
from four weeks after germination to week twelve followed by a gradual decrease [14]. However,
it is not clear to what extent ontogenetic or abiotic factors determine this change. As demonstrated by
Soengas et al. [15], ontogenetic differences in flavonoid production changes could also be a suitable
parameter to distinguish and characterize B. oleracea varieties.

Tissue specificity of flavonoid accumulation was analysed in detail quantifying flavonoids in
secondary florets, mature primary florets, immature primary florets as well as crop waste parts of
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three purple cultivars of broccoli [9]. Although great differences between plant organs were found in
this study, mean “total flavonoid contents” of all three cultivars were almost alike. Considering leaf
material only, Sousa et al. [16] pointed to the importance of distinguishing flavonoid profiles between
external and internal leaves based on qualitative differences in flavonoid compositions as well as
generally higher phenolic contents of external leaves. In accordance, the same group determined a
decrease in antioxidant potential from external leaves to internal leaves of Tronchuda cabbage [17].

Injury caused either by pathogens or herbivores results in catechin and proanthocyanidin
accumulation in some species [18], whereas in Arabidopsis thaliana damaged leaves show suppressed
flavonoid levels [19]. The corresponding authors underline that metabolite movements through the
plant initiated by herbivore feeding is often misinterpreted as local accumulation.

Light conditions also affect plants secondary metabolite profile. As demonstrated in broccoli and
kale, flavonoid concentration increases with higher photosynthetic active radiation (PAR) levels [20].
Further relevant for light related changes in single flavonoid concentrations is the PAR interaction with
temperature [21]. In response to UV-B radiation, qualitative as well as quantitative changes in flavonol
compositions were noted [22]. Qualitative differences in flavonol ratios were found in response to low
temperature conditions between 0.3 and 9.6 ◦C as well, whereas no impact of low temperatures on
“total flavonoid contents” was supported [11].

The effect of fertilizers on total phenolic content is contradictory discussed in the literature.
Comparisons of fertilization with organic matter to conventional fertilizers (nitrogen, boron,
and sulphur) imply that organic fertilization induces the acetate/shikimate pathway and therefore lead
to higher flavonoid levels, whereas conventional fertilizers result in higher phenolic acid contents [16].
This effect is further supported by a field experiment on broccoli cultivars, which resulted in higher total
flavonoid levels in response to organic fertilizer treatment [23]. Based on other data, organic treatment
including a four-year rotation system of soil usage, organic fertilisation and winter cover crop did not
lead to a significant increase in flavonoid levels [24]. Differences between the mentioned references
might be caused by the choice of cultivar, as nutrition responsiveness varies among accessions [25] and
distinct flavonoids chosen for quantification. Those comprised primarily catechins and luteolin [24,26],
kaempferol glycoside [16] and flavonol quercetin aglycones [23], pointing to the necessity of a standard
protocol to enable data comparability.

Regarding post-harvest conditions, the question on how cold storage at 1 ◦C affects sample
material remains unanswered due to contradictory findings supporting flavonoid content preservation
over several weeks [27] or pointing to a large decrease of more than 60% within the very first
week [28]. Both studies concentrated on flavonol quantifications and therefore do not provide
information on flavonoid metabolism in general during postharvest cooling. In contrast to the first
study mentioned [27], the latter misses a clear differentiation in this regard [28]. This missing balancing
act between single substance quantifications and general statements on flavonoid metabolism are
unfortunately common in the literature (see Table 1).
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Table 1. Selection of previous studies and the background information given in the corresponding publications.

Reference Brassica oleracea
Variety Preharvest Conditions Sample Material Post-Harvest

Conditions Method Total Flavonoid
Content Flavonoids Quantified

Variety and Cultivar Age; Nutrition,
Light, Temperature Plant Organ Position & Age Temperature &

Storage Details Considered as

Bahorun et al. [29]
italica cv “Packman”
italica cv “Kashmere”
capitata cv “KKCross”

?
Flower
Flower
Leaves

? Given in detail HPLC Quercetin
equivalents

Myricetin, quercetin, kaempferol, apigenin
and luteolin aglycones after acid hydrolysis

Heimler et al. [30]

capitata cv ?; italica cv ?;
acephala cv ?; sabauda cv
?; botrytis cv “Verde di
Macerata”, “Snow ball”,
gemnifera cv “Zencher”

? Edible part ? Given in detail HPLC Catechin
equivalents

Kaempferol-3-[2-sinapoylglucopyranosyl(1,2)
glucopyranoside]-7-[glucopyranosyl(1,4)
glucopyranoside],
kaempferol-3-[-2-feruloylglucopyranosyl(1,2)
glucopyranoside]-7-[glucopyranosyl(1,4)
glucopyranoside], kaempferol tetraglycoside,
kaempferol sinapoyl tetraglycoside,
kaempferol cumaroyl tetraglycoside,
kaempferol diglycoside; Quercetin-glucoside

Jacob et al. [31] capitata cv?; capitata var.
rubra cv? ? Edible parts ? ? Spectrophotometry,

AlCl3
Epicatechin
equivalents

Method is specific for rutin, luteolin and
catechins (Pękal and Pyrzynska [26])

Jaiswal et al. [32] capitata f. alba cv?;
italica cv?; gemmifera cv? ? Edible parts Positions

given, ages? ? HPLC Quercetin
equivalents ?

Lola-Luz et al. [33] italica cv “Ironman”
and “Red Admiral”

Three-week range,
Timepoints vary;
Given in detail

Heads/florets ? −20 ◦C,
two-week range

Spectrophotometry,
AlCl3

Catechin
equivalents

Method is specific for rutin, luteolin and
catechins (Pękal and Pyrzynska [26])

Naguib et al. [23] italica cv “Calabrese”,
“Southern star”

?; Given in detail; field
cond.; location given Florets ? Given in detail Spectrophotometry,

AlCl3
Quercetin
equivalents

Method is specific for rutin, luteolin and
catechins (Pękal and Pyrzynska [26])

Reilly et al. [12]
italica cv “TZ6002”,
“TZ5055”, “TZ5052”,
“TZ4043”, “Red
Admiral”, “Ironman”

Given in detail

Leaf, immature Primary
floret, mature primary
floret, secondary
floret, flower

? Given in detail Spectrophotometry,
AlCl3

Catechin
equivalents

Method is specific for rutin, luteolin and
catechins (Pękal and Pyrzynska [26])

Valverde et al. [24] italica cv
“Belstar”, “Fiesta” Given in detail Primary florets ? −20 ◦C,

24-h range
Spectrophotometry,
AlCl3

Catechin
equivalents

Method is specific for rutin, luteolin and
catechins (Pękal and Pyrzynska [26])

HPLC: High-performance liquid chromatography; ?: not specified; cond: conditions; cv: cultivar; AlCl3: aluminum chloride.
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3. Dealing with Complexity

Flavonoids are phenolic compounds containing an aromatic C6 ring bearing at least one hydroxyl
group (Figure 2) [34]. Since flavonoids are generally found as glycosides in plant tissues [35] and thus
are able to bind different sugar molecules to various positions, one can distinguish about 10,000 forms
of flavonoids, and this number continues to increase [4]. For a single aglycone such as quercetin alone,
one can find more than 170 different natural glycosides [36].
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Figure 2. Simplified overview on flavonoid biosynthesis in Brassica oleracea. PAL: phenylalanine
ammonialyase; C4H: cinnamate-4-hydroxylase; 4CL: 4-coumarate-coenzyme A ligase; CHS: chalcone
synthase; CHI: chalcone isomerase; IOMT: isoflavone-O-methyltransferase; IFS: isoflavone synthase; FS:
flavone synthase; F3H: flavonol-3-hydroxylase; F3’H: flavonol-3’-hydroxylase; FLS: flavonol synthase;
DFR: dihydroflavonol reductase; ANS: anthocyanidin synthase; OMT: O-methyltransferase.

Due to its high number of glycosidic forms, single flavonoid analyses need to be analysed
aglycone- or glycoside-specific. Conflicting results can be caused by the choice of flavonoid
glycosides considered in the corresponding studies. Therefore, a more general guideline is required,
which gives both quantification parameters as well as potentially valuable derivatives represented in
the species of interest. In B. oleracea, some flavonoid subclasses are represented in small quantities or not
detectable at all, whereas other subclasses have a great potential to provide cultivar- or variety-specific
flavonoid profiles.

In contrast to flavanoles and flavanones, numerous representatives of other flavonoid subclasses
merit closer consideration based on previous data (Table 2). An additional approach to examine variety
specific qualitative and quantitative variability of flavonols was performed by our working group
(next section).

4. Specific Flavonoids of Major Interest

Depending on their structure, flavonoids are usually separated into six main subclasses [37,38]
and subcategorized within it according to their substituents (see Figure 2 for comparison) [39]. Out of
these, flavanoles, characteristic of teas, red grapes and red wines, are excluded in this review since their
occurrence is not supported for B. oleracea [37]. A second group, flavanones such as naringenin,
are more relevant as precursors of other flavonoids in B. oleracea rather than for their direct
accumulation as typical for citrus foods [37].
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Table 2. Specific flavonoids commonly analysed in Brassica oleracea (function and intraspecific variation factor included).

Flavonoid (Subclass) Physiological Function Relevance in Medical Research Content in B. oleracea [Method;
Variety] Intraspecific Variation Factor References

Apigenin and luteolin (Flavone)
Nodulation and general
defence mechanisms 1

Resistance to mycorrhization 2

Phytoestrogen with antibacterial and
anti-inflammatory functions;
apoptosis-inducer 3

Occurrence contradictory
discussed 4–6 ; ~3-30 mg/kg fw
[HPLC; alba, botrytis, capitata] 7

Apigenin ~2 Luteolin ~2.5 7

1 Winkel-Shirley [40]
2 Ponce et al. [41]
3 Martens and Mithöfer [42]
4−6 Bahorum et al. [29];
Sakakibara et al. [43];
Miean and Mohamed [44]
7 Cao et al. [45]

Cyanidin (Anthocyanidin)
Pigmentation of flowers and
fruits for recruitment of
pollinators and seed dispersers 1

Antioxidant, anti-inflammatory,
antimicrobial & anticarcinogenic
activities, positive effect on visual
performance & neuroprotection 2

23 cyanidin derivative forms [HPLC;
capitata f rubra] 3 ; ~40–750 mg/kg fw
[HPLC; botrytis; capitata f rubra] 4

18; qualitative dominance shift in
derivative forms 4

1 Winkel-Shirley [40]
2 Erdman et al. [9]
3 Wu and Prior [46]
4 Scalzo et al. [47]

Daidzein, genistein, glycitein,
biochanin A and
formononetin (Isoflavone)

Root bacteria interaction
including symbionts and
pathogenic microorganism 1

Suggested to exert coronary benefits,
directly reduce atherosclerosis and lower
LDL-cholesterol 2

Max ~10 µg/100g fw
[LC/MS/MS; botrytis; capitata; capitata
f alba; capitata f rubra; italica; gemmifera;
sabellica; saubada] 3

13 (for all listed isoflavones together) 3

1 Philips and Kapulnik [48]
2 Erdman et al. [9]
3 Kuhnle et al. [49]

Kaempferol (Flavonol)
Prevent oxidative stress in chloroplasts
1 ; ROS reduction 1 ; photoprotection 1 ;
free radical scavenging capacity 2

Prevents coronary heart disease and
chronic inflammation, suppresses cell
proliferation in gut cancer lines,
atherosclerosis prevention and growth
inhibition of bacteria lines (gram-positive
and gram-negative bacteria) 2

~60 mg/100 g fw [HPLC; sabellica] 4

Qualitative dominance shift in
glycosides2 ; ontogenetic dependent
variation with subgroup specific
patterns3

1 Pollastri and Tattini [35]
2 Cartea et al. [8]
3 Soengas et al. [15]
4 Olsen et al. [50]

Quercetin (Flavonol)
See kaempferol; chelate transition metal
ions, auxin gradient regulation1 See kaempferol ~45 mg/100 g fw [HPLC; sabellica] 4

Qualitative dominance shift in
derivative forms 2 ; ontogenetic
dependent variation with subgroup
specific patterns 3

1 Pollastri and Tattini [35]
2 Cartea et al. [8]
3 Soengas et al. [15]
4 Olsen et al. [50]

Fw: fresh weight; LDL-cholesterol: low-density lipoprotein cholesterol; ROS: reactive oxygen species; LC/MS/MS: liquid chromatography tandem mass spectrometry; Superscripts in each
row refer to the corresponding reference.



Molecules 2017, 22, 252 7 of 16

5. Compound Ratios as Plant Character

Our own investigations including 28 cultivars of kale (B. oleracea var. sabellica) considered
main glycosides of the flavonols kaempferol (11 glycosides considered) and quercetin (5 glycosides
considered) (see also Supplemental Material). Categorization according to geographical origin or
morphological characteristics such as red leaf colour did not provide any significant differences
between cultivars. Instead, we found a high variability in single contents and quercetin-to-kaempferol
(Q/K) ratios. More precisely, Q/K ratios varied from 0.11 in cultivar “Winnetou” to 2.31 in
“Jellen × Schattenburg” (Figure 3). Previous data based on eight kale cultivars reported half of
that variation from 0.17 in “Frostara” to 1.02 in “Redbor” [11]. This great variability in Q/K ratios is a
promising tool to optimize kale cultivar antioxidant activity inasmuch as quercetin provides higher
activity than kaempferol [51,52].
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Figure 3. Quercetin and kaempferol glycoside contents and ratios (above bars) quantified in kale
cultivars (Brassica oleracea convar. acephala var. sabellica) via HPLC-MS analyses. HGK: “Halbhoher
grüner Krauser”. Materials and methods are given in the Appendix A.

The main flavonol glycosides of kale, as for other Brassica oleracea varieties, are non-acylated
and acylated kaempferol glycosides [53–55]. Our intercultivar comparison supports high variability
in these kaempferol glycosides, underlining the importance of investigating a large number
of different cultivars before defining subgroup specific patterns (Figure 4). In all cultivars the
monoacylated kaempferol-3-O-sinapoyl-sophoroside-7-O-glycoside was the main kaempferol
glycoside, followed by either the monoacylated kaempferol-3-O-feruloyl-sophoroside-7-O-glycoside
or non-acylated kaempferol-3-O-sophoroside-7-O-glycoside. However, some cultivars contained
high concentrations of the monoacylated kaempferol-3-O-caffeoyl-sophoroside-7-O-glycoside
(e.g., “Frostara” or “Winnetou”) and kaempferol-3-O-hydroxyferuloyl-sophoroside-7-O-glycoside
(e.g., ”Lage”, “Neufehn”, “Lerchenzunge” or “Halbhoher grüner Krauser”). The acylated
hydroxycinnamic acids of both compounds are characterized by a catechol structure that
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was shown to be important in kale’s response to UV-B [55]. Especially, the monoacylated
kaempferol-3-O-caffeoyl-sophoroside-7-O-glycoside seems to be important for kale under
high PAR and UVB radiation conditions [55,56]. However, based on on-line TEAC (Trolox
Equivalent Antioxidant Capcity) data, kaempferol-3-O-caffeoyl-sophoroside-7-O-glycoside
kaempferol-3-O-feruloyl-sophoroside-7-O-glycoside and kaempferol-3-O-hydroxyferuloyl-sophoroside-
7-O-glycoside contribute equally to the antioxidant activity of kale [10].
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Intercultivar differences in single and total anthocyanin contents were reported by
numerous studies such as [57]. Our own study demonstrated that three derivative forms
(cyanidin-3-(sinapoyl)-(sinapoyl)diglycoside-5-glycoside; cyanidin-3-(sinapoyl)-(feruloyl)diglycoside-
5-diglycoside and cyanidin-3-(sinapoyl)(feruloyl)diglycoside-5-glycoside) were present exclusively in
cultivars with red leaves or stems.

All these results support the assumption of great flavonoid variability within B. oleracea varieties,
which complicates their differentiation based on flavonoids. Nevertheless, they also highlight the
great potential of target-oriented breeding for flavonoid composition and content optimization. Thus,
against our expectations we did not find any significant difference between specific cultivar subsets
based on geography or morphological characteristics in case of flavonols, but anthocyanidins specific
for red coloured accessions.

6. Future Perspectives

Due to the economic and scientific importance of B. oleracea and its nutritional value, comparisons
are often made between edible plant parts under harvest conditions [30,45,49]. While such comparisons
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are understandable from a nutritional point of view, they are not useful for direct comparisons between
B. oleracea varieties, because they blur varietal differences with those based on different harvest times
or different plant tissues. Moreover, lots of parameters necessary for data reproduction or comparisons
were often neglected or unmentioned, which impedes progress in flavonoid research. Another factor
varying between previous studies is the choice of quantification method. Sophisticated techniques such
as high-performance liquid chromatography (HPLC) are recommended here for further analyses on
variety differentiation. A detailed overview on its handling, advantages and limits as well as suitable
alternatives is given by Julkunen-Tiitto et al. [58]. This review also provides further information on
sample handling and discusses current technical problems in flavonoid quantification.

Unfortunately, one issue cannot be solved by any quantification technique: the impossibility
of quantifying total flavonoid contents. This is caused by the lack of available standards, the great
number of different flavonoid compounds as well as the complexity of its derivative forms [58].
Measurements on a defined set of flavonoids are insufficient to make general statements on total
flavonoid contents. Consequently, comparability can only be guaranteed given a clear and well
defined set of substances. The choice of flavonoids and derivative forms naturally depends on
the question of interest. Quantification and identification of anthocyanins have a great potential
for cultivar differentiation [59] as well as variety identification and separation [47]. For example,
our own investigations on kale included three glycosides, which were almost exclusively found
in red coloured cultivars (see above). Furthermore, identification and quantification of flavonols
quercetin and kaempferol are recommended for cultivar differentiation [11], variety identification
and separation [8,15,60], as well as investigations on seasonal variation [3] and influence of cooking
conditions [60]. Quantification of isorhamnetin is recommended for differentiation of varieties [15],
as well as for investigations in cooking conditions [60]. In accordance with others, our results
support cultivar specific variation in Q/K ratios and single flavonol glycoside contents [11]. Flavone
quantification and identification are recommended in case of apigenin and luteolin, although it is yet
unclear if they show any ontogenetic, seasonal or cultivar specific variation due to the sparse and
contradicting remarks in the literature [29,43–45]. From our point of view, flavone quantification is
of potential interest for variety as well as cultivar differentiation. Recommendations for standard
selections in flavones are given by Lin et al. [54]. Finally, analyses on isoflavones such as daidzein
and genistein are potentially useful for identification and separation of varieties [49,61]. As an
example of more detailed investigations on isoflavones see Lapcik et al. [62], who used five isoflavone
specific enzyme-linked immunosorbent assays (ELISAs) after HPLC sample fractionation to identify
isoflavones in Arabidopsis.

To facilitate the selection of derivatives, we present a list of potential meaningful flavonoid
glycosides for chemotaxonomic analyses on B. oleracea regarding anthocyanins as well as flavonols
kaempferol and quercetin (see Table 3A,B). Future investigations may find other compounds equally
suited for subgroup identification or reduce the list. However, there is promising evidence that these
compounds are sufficiently variable to provide a means to distinguish between B. oleracea varieties.
Furthermore, this set of flavonoids is suitable to guide in the choice of cultivars for target-oriented
breeding and will improve future data comparability.

Table 3. List of potentially useful flavonoid derivatives for chemotaxonomic analyses on
Brassica oleracea. A—Anthocyanins; B—Flavonols. Absence and presence partly suggested to be
variety specific.

A—Anthocyanins

Anthocyanins (C—Cyanidin) B. oleracea Variety Verification

C-3-(caffeoyl)-(p-coumaroyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(caffeoyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(caffeoyl)-diglycoside-5-glycoside var. capitata f. rubra 3
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Table 3. Cont.

A—Anthocyanins

Anthocyanins (C—Cyanidin) B. oleracea Variety Verification

C-3-(feruloyl)-(feruloyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(feruloyl)-diglycoside-5-glycoside var. botrytis itálica 1

var. capitata f. rubra 3

C-3-(glycopyranosyl)-(feruloyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(glycopyranosyl)-(sinapoyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(p-coumaroyl)-(sinapoyl)-diglycoside-5-(malonyl)-glycoside var. botrytis italic 1

C-3-(p-coumaroyl)-(sinapoyl)-diglycoside-5-glycoside var. botrytis itálica 1

var. capitata f. rubra 3

C-3-(p-coumaroyl)-diglycoside-5-glycoside var. botrytis italic 1

C-3-(p-hydroxybenzoyl)-(oxaloyl)-diglycoside-5-glycoside var. capitata f. rubra 3

C-3-(sinapoyl)-(feruloyl)-diglycoside-5-(malonyl)-glycoside var. botrytis italic 1

C-3-(sinapoyl)-(feruloyl)-diglycoside-5-glycoside
var. botrytis itálica 1

var. capitata f. rubra 3

var. sabellica 4

C-3-(sinapoyl)-(sinapoyl)-diglycoside-5-(malonyl)-glycoside var. botrytis italic 1

C-3-(sinapoyl)-(sinapoyl)-diglycoside-5-glycoside
var. botrytis itálica 1

var. capitata f. rubra 3

var. sabellica 4

C-3-(sinapoyl)-diglycoside-5-(sinapoyl)-glycoside var. capitata f. rubra 3

C-3-(sinapoyl)-diglycoside-5-glycoside var. botrytis itálica 1

var. capitata f. rubra 3

C-3-(sinapoyl)-diglycoside-5-xyloside var. capitata f. rubra 3

C-3-(sinapoyl)-glycoside-5-glycoside var. capitata f. rubra 3

C-3-(sinapoyl)-triglycoside-5-glycoside var. botrytis italic 1

C-3,5-diglycoside var. botrytis itálica 1

var. capitata f. rubra 3

C-3-diglycoside var. capitata f. rubra 3

C-3-diglycoside-5-glycoside var. botrytis itálica 1

var. capitata f. rubra 3

C-3-diglycoside-5-xyloside var. capitata f. rubra 3

C-3-(6-feruloyl)-sophoroside-5-(6-sinapyl)-glycoside var. botrytis2 and var. capitata 2

C-3-(6-feruloyl)-sophoroside-5-glycoside var. botrytis2 and var. capitata 2

C-3-(6-p-coumaryl)-sophoroside-5-(6-sinapyl)-glycoside var. botrytis2 and var. capitata 2

C-3-(6-p-coumaryl)-sophoroside-5-glycoside var. botrytis2 and var. capitata 2

C-3-(6-sinapyl)-sophoroside-5-(6-sinapyl)-glycoside var. botrytis2 and var. capitata 2

C-3-(6-sinapyl)-sophoroside-5-glycoside var. botrytis2 and var. capitata 2

C-3-glycoside-5-glycoside var. capitata 2

C-3-sophoroside-5-glycoside var. botrytis 2 and var. capitata 2

B—Flavonols

Flavonol (Q—Quercetin; K—Kaempferol) B. oleracea Variety Verification
(as Reviewed by Cartea et al. [8])

Q-3-O-sophorotrioside-7-O-sophoroside var. acephala, var. botrytis italica

Q-3-O-sophorotrioside-7-glycoside var. acephala, var. botrytis italica

Q-3-O-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala,
var. botrytis, var. botrytis italica, var. costata

Q-3,7-di-O-glycoside var. capitata f. alba, var. acephala, var. botrytis italica

Q-3-O-sophoroside var. capitata f. alba, var. acephala, var. botrytis italica
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Table 3. Cont.

B—Flavonols

Flavonol (Q—Quercetin; K—Kaempferol) B. oleracea Variety Verification
(as Reviewed by Cartea et al. [8])

Q-3-O-glycoside var. botrytis italica, var. costata

Q-3-O-(caffeoyl)-sophorotrioside-7-O-glycoside var. botrytis italica

Q-3-O-(sinapoyl)-sophorotrioside-7-O-glycoside var. botrytis italica

Q-3-O-(feruloyl)-sophorotrioside-7-O-glycoside var. botrytis italica

Q-3-O-(p-coumaroyl)-sophorotrioside-7-O-glycoside var. botrytis italica

Q-3-O-(caffeoyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala, var. botrytis italica

Q-3-O-(methoxycaffeoyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala

Q-3-O-(sinapoyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala, var. botrytis

Q-3-O-(p-coumaroyl)-sophoroside-7-O-glycoside var. botrytis italica

Q-3-O-(feruloyl)-sophoroside var. capitata f. alba, var. acephala, var. botrytis italica

K-3-O-tetraglycoside-7-O-sophoroside var. costata

K-3-O-sophorotrioside-7-O-sophoroside var. capitata f. alba, var. acephala,
var. botrytis, var. botrytis italica, var. costata

K-3-O-sohorotrioside-7-O-glycoside var. botrytis, var. botrytis italica, var. costata

K-3-O-sophoroside-7-O-diglycoside var. botrytis, var. botrytis italica, var. costata

K-3-O-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala,
var. botrytis, var. botrytis italica, var. costata

K-3,7-di-O-glycoside var. capitata f. alba, var. acephala, var. botrytis italica

K-3-O-sophoroside var. capitata f. alba, var. acephala, var. botrytis italica

K-7-O-glycoside var. capitata f. alba, var. acephala, var. botrytis

K-3-O-glycoside var. botrytis italica, var. costata

K-3-O-(caffeoyl)-sophorotrioside-7-O-sophoroside var. botrytis italica

K-3-O-(methoxycaffeoyl)-sophorotrioside-7-O-sophoroside var. botrytis italica

K-O-(sinapoyl)-sophorotrioside-7-O-sophoroside var. botrytis italica

K-O-(feruloyl)-sophorotrioside-7-O-sophoroside var. botrytis italica

K-3-O-(p-coumaroyl)-sophorotrioside-7-O-sophoroside var. botrytis italica

K-3-O-(caffeoyl)-sophorotrioside-7-O-glycoside var. botrytis italica

K-3-O-(methoxycaffeoyl)-sophorotrioside-7-O-glycoside var. botrytis italica

K-O-(sinapoyl)-sophorotrioside-7-O-glycoside var. botrytis italica

K-O-(feruloyl)-sophorotrioside-7-O-glycoside var. botrytis italica

K-3-O-(caffeoyl)sophoroside-7-O-glycoside var. capitata f. alba, var. acephala,
var. botrytis, var. botrytis italica, var. costata

K-3-O-(methoxycaffeoyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala, var. costata

K-3-O-(sinapoyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala, var. botrytis, var. costata

K-3-O-(feruloyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala, var. botrytis, var. costata

K-3-O-(p-coumaroyl)-sophoroside-7-O-glycoside var. capitata f. alba, var. acephala

K-3-O-(methoxycaffeoyl)-sophoroside var. capitata f. alba, var. acephala, var. botrytis italica

K-3-O-(sinapoyl)-sophoroside var. capitata f. alba, var. acephala, var. costata

K-3-O-(feruloyl)-sophorotrioside var. costata

K-3-O-(feruloyl)-sophoroside var. capitata f. alba, var. acephala

K-3-O-(p-coumaroyl)-sophoroside var. capitata f. alba, var. acephala
1 Moreno et al. [59]; 2 Scalzo et al. [47]; 3 Wu and Prior [46]; 4 Mageney et al. (unpublished;
see Supplementary Material).
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Appendix A

A1. Plant Material

Plants were grown under field conditions in the botanic garden, Carl-von Ossietzky-University
Oldenburg, Northern Germany (53◦9′ N, 8◦13′ E) at Plaggen soil using a NPK + Mg fertilizer (12-8-16+3;
80 g/m2) plus stone powder (300 g/m2) directly before planted. Whole adult leaves of the second
youngest rosette were harvested in December 2014 at noon, stored at −80 ◦C and freeze-dried.
At the date of harvest, all selected plants were 38 weeks old.

A2. Flavonol and Anthocyanin Quantification

Flavonoids were analyzed modifying the method of Schmidt et al. [11]. Lyophilized kale leafs
(0.01 g) were extracted with 600 µL of 60% aqueous methanol on a magnetic stirrer plate for 40 min
at 20 ◦C and centrifuged at 4500 rpm for 10 min at same temperature and the supernatant was collected
in a reaction tube. Same process was repeated twice with 300 µL of 60% aqueous methanol for 20 min
and 10 min respectively collecting the supernatant in the previous tube. The extract was subsequently
evaporated till it was dry and suspended in 200 µL of 10% aqueous methanol. Again the solvent
was centrifuged at 3000 rpm for 5 min at 20 ◦C and filtered through Corning CostarSpin-X plastic
centrifuge tube filters (Sigma Aldrich Chemical Co., St. Louis, MO, USA) for the HPLC analysis.
Each extraction was carried out in duplicate.

The flavonoids composition and concentrations were determined using a series 1100 HPLC
(Agilent Technologies, Waldbronn, Germany) equipped with a degasser, binary pump, autosampler,
column oven and photodiode array detector to determine the hydroxycinnamic acid derivatives and
glycosides of flavonols. An Ascentis Express F5 column (150 mm × 4.6 mm, 5 µm, Supelco (Bellfonte,
PA, USA)) was used to separate the compounds at 25 ◦C. Eluent A was 0.5% acetic acid and eluent B
was 100% acetonitrile. Gradient used for eluent B was 5%–12% (0–3 min), 12%–25% (3–46 min), 25-90%
(46–49.5 min), 90% isocratic (49.5–52 min), 90%–5% (52–52.7 min) and 5% isocratic (52.7–59 min).
The determination was conducted at a flow rate of 0.85 mL·min−1 and wavelength of 330 nm and
370 nm for acylated flavonol glycosides and non-acylated flavonol glycosides, respectively. Glycosides
of flavonols were identified as deprotonated molecular ions and characteristic mass fragment ions
according to Schmidt et al. [11] by high-pressure liquid chromatograpy with a diode array detector
coupled to an ion-trap mass spectrometer using electrospray ionization (HPLC-DAD-ESI-MSn) using an
Agilent series 1100 ion trap mass spectrometer (Agilent, Waldbronn, Germany) in negative ionization
mode. Nitrogen was used as the dry gas (10 L·min−1, 325 ◦C) in addition to nebulizer gas (40 psi)
with a capillary voltage of −3500 V. Helium was used as the collision gas in the ion trap. The mass
optimization for the ion optics of the mass spectrometer for quercetin was performed at m/z 301 or
arbitrary at m/z 1000. The MSn experiments were performed in auto up mode by HPLC-DAD-ESI-MS3

in a scan from m/z 200–2000. The standards, quercertin-3-glycoside, cyaniding-3-glycoside and

http://www.mdpi.com/1420-3049/22/2/252/s1
http://www.mdpi.com/1420-3049/22/2/252/s1
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kaempferol-3-glycoside (Roth, Karlsruhe, Germany) were used for external calibration curves. Results
are given as mg·g−1 dry weight.
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