Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions

Fabiola Zapata, Sergio J. Benítez-Benítez, Paula Sabater, Antonio Caballero * and Pedro Molina *

Dto de Química Orgánica, Universidad de Murcia, Campus de Espinardo, E-30100 Murcia, Spain; fazafer@um.es (F.Z.); sergiojose.benitez@um.es (S.J.B.-B.); paula.sabater@um.es (P.S.)
* Correspondence: antocaba@um.es (A.C.); pmolina@um.es (P.M.)

Received: 17 November 2017; Accepted: 18 December 2017; Published: 20 December 2017

Abstract: Most of the halogen bonding receptors for anions described use halogen bonding binding sites solely in the anion recognition process; only a few examples report the study of anion receptors in which the halogen bonding interaction has been used in combination with any other non-covalent interaction. With the aims to extend the knowledge in the behaviour of this kind of mixed receptors, we report here the synthesis and the anion recognition and sensing properties of a new halogen- and hydrogen-bonding receptor which binds anions by the cooperation of both non-covalent interactions. Fluorescence studies showed that the behaviour observed in the anion recognition sensing is similar to the one previously described for the halogen analogue and is quite different to the hydrogen one. On the other hand, the association constants obtained by 1H-NMR data demonstrate that the mixed halogen- and hydrogen-bonding receptor is more selective for SO$_4^{2-}$ anion than the halogen or hydrogen analogues.

Keywords: halogen-bonding; hydrogen-bonding; anion; fluorescence; imidazolium; recognition; sensing

1. Introduction

The field of anion recognition chemistry has become one of the most important areas in supramolecular chemistry due to the important role that anions play in numerous biological and environmental processes [1–4].

The hydrogen bond (HB) has been probably the most non-covalent interaction used in the design of anion receptors in the last two decades in which amides [5], ureas [6], pyrroles [7] or imidazole [8,9] among others have been used as hydrogen donors as anion binding sites.

The use of the halogen bonding (XB) interaction as an alternative to the hydrogen bonding in the design of new anion receptors has emerged strongly in the last years. Halogen bonding is a non-covalent bonding interaction between halogen atoms that function as electrophilic centers (Lewis acids) and neutral or anionic Lewis bases [10]. Theoretical calculations indicate that the origin of this attraction arises from the positive electrostatic potential located at the terminus of the R–X axis (σ-hole), thus resulting in a strongly linear geometry that maximizes the interface of opposite charges [11]. Although a number of solid state examples and theoretical studies revealed the potential of halogen bonding interactions for anion recognition, only very recently has it been exploited in solution phase. Practically all the halogen bonding receptors for anion described in the literature use halogen bonding binding sites solely to bind anions. Despite that the combination of two or more different non-covalent interactions in the same receptors is becoming an emerging strategy in the design of new anion receptors [12], only a few examples use the halogen bonding interaction in combination with others in the anion recognition process [13–23].
Recently, we have reported the synthesis and the anion sensing properties of two-armed charge-assisted ditopic imidazolium and haloimidazolium bidentate receptors which recognize anions by hydrogen or halogen bonding interaction, respectively [24]. Taking into account the important differences found in the sensing behavior between these two receptors, we decided to perform the synthesis and study of a new charge-assisted bidentate receptor containing both halogen and hydrogen bonding sites by incorporation in its structure of one haloimidazolium, halogen bonding binding site, and one imidazolium, hydrogen bonding binding site, which could act through the cooperative and simultaneous action of halogen bonds and hydrogen bonds during the anion recognition event. The receptor also incorporates two end-caped photoactive anthracene rings as fluorescent signaling units into this host framework (Figure 1).

Figure 1. Structure of the halogen and hydrogen bonding receptors $7^{2+} \cdot 2PF_6^-$ and $8^{2+} \cdot 2PF_6^-$ reported in [24] and the structure of the mixed halogen and hydrogen bonding receptor $5^{2+} \cdot 2PF_6^-$ proposed in this work.

2. Results and Discussion

2.1. Synthesis

The novel bis-imidazolium receptor $5^{2+} \cdot 2PF_6^-$ was prepared with a 31% overall yield by a stepwise procedure that involved the alkylation of 1-((anthracen-9-yl)methyl)-4,5-dimethyl-1H-imidazole 2 with 2,7-bis(bromomethyl)naphthalene 1, providing the intermediate $3^+ \cdot Br^-$ (63% yield), which was reacted with 1-((anthracen-9-yl)methyl)-2-bromo-4,5-dimethyl-1H-imidazole 4, yielding the receptor as bromide salt in moderate yield (25%). Anion exchange with the corresponding hexafluorophosphate salt was achieved on addition of aqueous NH$_4$PF$_6$. The compounds 2 and 4 were synthesized by alkylation of 4,5-dimethyl-1H-imidazole [25] and 2-bromo-4,5-dimethyl-1H-imidazole [26] with 9-(bromomethyl)anthracene, respectively (Scheme 1).

2.2. Anion Binding Studies

The binding and sensing ability of the receptor $5^{2+} \cdot 2PF_6^-$ toward several anions (F$^-$, Cl$^-$, Br$^-$, I$^-$, SO$_4^{2-}$, HSO$_4^-$, PhCOO$^-$, ClO$_4^-$, HP$_2$O$_7^{3-}$, AcO$^-$, NO$_3^-$, and H$_2$PO$_4^-$) as tetrabutylammonium salts were investigated by spectroscopic measurements and 1H-NMR spectroscopy.

The emission spectrum of the receptor $5^{2+} \cdot 2PF_6^-$ ($\Phi = 0.036$) in CH$_3$CN showed the characteristic anthracene monomeric bands at $\lambda = 396$, 418 and 442 nm, when excited at $\lambda = 370$ nm. The addition of the above-mentioned set of anions to a solution of the receptor $5^{2+} \cdot 2PF_6^-$ in CH$_3$CN ($c = 1 \times 10^{-5}$ M) showed that Cl$^-$, Br$^-$, I$^-$, SO$_4^{2-}$, PhCOO$^-$, ClO$_4^-$, and NO$_3^-$ anions had no effect on the emission spectrum, whereas the addition of F$^-$, HP$_2$O$_7^{3-}$, SO$_4^{2-}$, AcO$^-$ and H$_2$PO$_4^-$ anions promoted significant changes in the emission spectrum of receptor $5^{2+} \cdot 2PF_6^-$. These changes were strongly dependent on the anion added and different responses have been observed (Figure 2).
Scheme 1. Synthesis of the halogen and hydrogen bonding receptor $5^{2+}{\cdot}2\text{PF}_6^-$.

Figure 2. Emission spectrum of the receptor $5^{2+}\cdot2\text{PF}_6^-$ ($c = 1 \times 10^{-5} \text{ M}$) in CH$_3$CN (red line) and after the addition of 5 equiv. of H$_2$PO$_4^-$ (blue line), SO$_4^{2-}$ (pink line), AcO$^-$ (orange line), HP$_2$O$_7^{3-}$ (green line) and F$^-$ (yellow line).

The presence of AcO$^-$ (Figure S3, Supplementary Material) and SO$_4^{2-}$ anions (Figure 3a) induced a decrease in the monomer emission band at $\lambda = 419 \text{ nm}$ of the receptor $5^{2+}\cdot2\text{PF}_6^-$ with $I_{\text{receptor}}/I_{\text{complex}} = 2.55$ and 2.13, respectively, and also a decrease of the quantum yield from $\Phi = 0.036$ to $\Phi = 0.025$ for AcO$^-$ and $\Phi = 0.019$ for SO$_4^{2-}$ anions. A different fluorescent response was observed for H$_2$PO$_4^-$ anions (Figure 3b) in which the presence of this anion promoted a remarkable decrease of the monomer emission bands at $\lambda = 396, 418$ and 412 nm and a progressive increase in a new broad and structureless emission band at $\lambda = 465 \text{ nm}$, attributed to the anthracene excimer emission band ($\Phi = 0.058$) and finally, when HP$_2$O$_7^{3-}$ (Figure 3c) and F$^-$ (Figures S1 and S2) anions were added, two different effects were observed: first the addition up to 1.8 equiv. of HP$_2$O$_7^{3-}$ anions or 1 equiv. F$^-$ anion induced an increase in the monomer emission band of the receptor, subsequent addition of more than 1.8 equiv. of HP$_2$O$_7^{3-}$ anions and 1 equiv. in the case of F$^-$, promoted a continuous decrease in the monomer emission band.
Figure 3. Changes in the fluorescence spectra of receptor $5^{2+} \cdot 2PF_6^-$ \((c = 1 \times 10^{-5} \text{ M})\) in CH$_3$CN upon addition of (a)SO$_4^{2-}$, (b) H$_2$PO$_4^-$, (c) HP$_2$O$_7^{3-}$ from 0 to 1.8 equiv., and (d) HP$_2$O$_7^{3-}$ from 1.8 to 100 equiv. Arrows indicate the emission bands that increase or decrease during the titration.

A comparative analysis of the response observed in the fluorescence study indicates that the mixed hydrogen- and halogen- bonding receptor $5^{2+} \cdot 2PF_6^-$ shows changes similar to the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$. Both receptors $5^{2+} \cdot 2PF_6^-$ (HB and XB) and $7^{2+} \cdot 2PF_6^-$(XB) act through a photoinduced electron transfer (PET) mechanism in the presence of SO$_4^{2-}$ anions, and therefore a decrease in the intensity of the emission bands was observed [27]. In addition, a broad emission band at $\lambda = 465 \text{ nm}$ due to a π-stacking interaction between the two anthracene units [28] appears in the spectrum of the receptor $5^{2+} \cdot 2PF_6^-$ during the addition of H$_2$PO$_4^-$ anions as it was also observed in the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$. Interestingly, the remarkable changes observed in the emission spectrum of the receptor $5^{2+} \cdot 2PF_6^-$ after addition of HP$_2$O$_7^{3-}$ and F$^-$ anions are consistent with a chemodosimeter behavior, which was also observed in the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$. Interestingly, the emission spectrum of the receptor $5^{2+} \cdot 2PF_6^-$ undergoes important changes in the presence of AcO$^-$ anions to difference with the described for the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$. On the other hand, the fluorescent response of the mixed XB and HB receptor $5^{2+} \cdot 2PF_6^-$ is quite different than for the hydrogen bonding receptor $8^{2+} \cdot 2PF_6^-$, in which the receptor acted on by a photoinduced electron transfer mechanism with all the tested anions.

The stoichiometry of the complexes was determined by Job-plot experiments using the changes in the fluorogenic response of the receptor $5^{2+} \cdot 2PF_6^-$ in the presence of varying concentrations of the tested anions. The results clearly indicated the formation of 1:2 complexes in the case of H$_2$PO$_4^-$ (Figure S7) and AcO$^-$ anions (Figure S9), and 1:1 for SO$_4^{2-}$ anions (Figure S8). The association constant values were calculated by fitting the fluorescence data in CH$_3$CN with the host-guest binding model obtained using the Dynafit program [29] and are summarized in Table 1 together with the values previously reported for the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$ and the hydrogen bonding...
receptor $5^{2+} \cdot 2\text{PF}_6^-$). The association constants obtained indicate that the hydrogen bonding receptor $5^{2+} \cdot 2\text{PF}_6^-$ binds the recognized anions stronger than the analogous halogen $7^{2+} \cdot 2\text{PF}_6^-$ or the mixed halogen and hydrogen bonding receptor $5^{2+} \cdot 2\text{PF}_6^-$ in the pure organic solvent CH$_3$CN, while the monohalogenated receptor $5^{2+} \cdot 2\text{PF}_6^-$ and the dihalogenated receptor $7^{2+} \cdot 2\text{PF}_6^-$ bind the anions with similar strength.

Table 1. Association constants for receptor $5^{2+} \cdot \text{PF}_6^-$, $7^{2+} \cdot 2\text{PF}_6^-$ and $8^{2+} \cdot 2\text{PF}_6^-$ with H_3PO_4^-, SO_4^{2-} and AcO^- anions in CH$_3$CN measured by fluorescence technique. Errors (in percent) are given in parentheses.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>H_3PO_4^-</th>
<th>SO_4^{2-}</th>
<th>AcO^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5^{2+} \cdot \text{PF}_6^-$</td>
<td>$\beta = 5.9 \times 10^{10}$ M$^{-2}$ (15)</td>
<td>$K = 5.7 \times 10^4$ M$^{-1}$ (14)</td>
<td>$\beta = 2.16 \times 10^6$ M$^{-2}$ (10)</td>
</tr>
<tr>
<td>$7^{2+} \cdot 2\text{PF}_6^-$</td>
<td>$\beta = 5.0 \times 10^{11}$ M$^{-2}$ (16)</td>
<td>$K = 8.0 \times 10^4$ M$^{-1}$ (14)</td>
<td>-</td>
</tr>
<tr>
<td>$8^{2+} \cdot 2\text{PF}_6^-$</td>
<td>$\beta = 9.8 \times 10^{11}$ M$^{-2}$ (13)</td>
<td>$K = 1.4 \times 10^6$ M$^{-1}$ (6)</td>
<td>-</td>
</tr>
</tbody>
</table>

The calculated detection limits of the receptor $5^{2+} \cdot 2\text{PF}_6^-$ for H_3PO_4^-, SO_4^{2-}, and AcO^- anions were 3.90×10^{-6} M, 3.57×10^{-5} M, and 4.59×10^{-5} M respectively (Figures S4–S6).

The recognition properties of the receptor towards the above-mentioned set of anions were also evaluated by UV-vis spectroscopy. Absorption spectrum of the receptor $5^{2+} \cdot 2\text{PF}_6^-$ in CH$_3$CN ($c = 1 \times 10^{-5}$ M) displays two intense absorption bands at $\lambda = 230$ nm ($\varepsilon = 1.31 \times 10^5$ M$^{-1}$ cm$^{-1}$) and $\lambda = 255$ nm ($\varepsilon = 2.39 \times 10^5$ M$^{-1}$ cm$^{-1}$) along with the characteristic absorption bands attributed to the anthracene moieties at $\lambda = 334$ ($\varepsilon = 6 \times 10^3$ M$^{-1}$ cm$^{-1}$), $\lambda = 351$ ($\varepsilon = 11.14 \times 10^4$ M$^{-1}$ cm$^{-1}$), $\lambda = 370$ ($\varepsilon = 1.5 \times 10^4$ M$^{-1}$ cm$^{-1}$) and $\lambda = 390$ nm ($\varepsilon = 1.35 \times 10^4$ M$^{-1}$ cm$^{-1}$). The addition of increase amounts of SO_4^{2-}, AcO^-, HP_2O_2^3- and F^- anions to a solution of the receptor in CH$_3$CN ($c = 1 \times 10^{-5}$ M) caused small perturbations in the absorption spectrum of the receptor; by contrast, the addition of H_3PO_4^- anions induced a decrease in the absorption bands at $\lambda = 250$ and $\lambda = 255$ nm while a decrease and red-shifted $\Delta \lambda = 2$ nm in the anthracene absorption bands was observed. The well-defined isosbestic point observed at $\lambda = 260$, $\lambda = 343$, $\lambda = 373$, $\lambda = 382$ and $\lambda = 390$ nm indicates that a neat interconversion between the uncomplexed and complexed species occurs (Figure 4). Unfortunately, these changes do not allow an accurate determination of the association constant.

In order to obtain additional information about the binding mode of the receptor $5^{2+} \cdot 2\text{PF}_6^-$ with the previously tested anions, 1H-NMR titration experiments were performed. The 1H-NMR
spectrum of the receptor in CD$_3$CN/CD$_3$OD (8/2) exhibit the following characteristic signals: (a) the protons of the methyl groups of the Br-imidazolium unit appears at δ = 1.86 and 2.15 ppm and the ones corresponding to the H-imidazolium moiety at δ = 2.15 and 2.59 ppm; (b) the protons of the methylenes naphthalene–CH$_2$–imidazolium and imidazolium–CH$_2$–anthracene appear as four different singlets around δ = 5.12 and 5.50 ppm and δ = 6.18 and 6.45 ppm, respectively; and (c) the protons of the naphthalene and the anthracene groups are embeded in the aromatic region in the range δ = 6.94–8.79 ppm.

The addition of increase amounts of H$_2$PO$_4^-$ (Figure 5) anions to a solution of the receptor $\text{5}^{2+}\cdot\text{2PF}_6^-$ in CD$_3$CN/CD$_3$OD (8/2) induced the splitting and a significant downfield shifts of the inner naphthalene protons $H_{a,a'}$ ($\Delta\delta$ ~0.23 ppm). The methylene protons H_b, H_b', H_c and H_c' were also downfield shifted; $\Delta\delta$ = 0.09, 0.11, 0.05 and 0.07 ppm, respectively. Unfortunately the observation of the downfield shift of the H-imidazolium proton was not detected due to the signal of this proton within the aromatic region; nevertheless, the simultaneous participation in the anion binding process of the H and the Br sited at C-2 of the H-imidazolium and Br-imidazolium rings, respectively, was supported by the upfield shift observed in the methyl protons of the Br-imidazolium ring H_d ($\Delta\delta$ = −0.16 ppm) and in the methyl protons H_e' of the H-imidazolium ring ($\Delta\delta$ = −0.10 ppm) (Figure S13).

Figure 5. 1H-NMR spectral changes observed in the receptor $\text{5}^{2+}\cdot\text{2PF}_6^-$ in CD$_3$CN/CD$_3$OD (8/2, v/v) during the addition from 0 (top) to 50 equiv. (bottom) of H$_2$PO$_4^-$ anions.

Similar changes were observed with the presence of SO$_4^{2-}$ anions but to a lesser extent than those produced with H$_2$PO$_4^-$ anions (Figure S10).

The addition of increasing amounts of HP$_2$O$_7^{3-}$ (Figure S11) and F$^-$ anions (Figure S12) to a solution of the hydrogen and halogen bonding receptor $\text{5}^{2+}\cdot\text{2PF}_6^-$ produce different changes in the 1H-NMR than those previously described for H$_2$PO$_4^-$ and SO$_4^{2-}$ anions. In these cases, the addition of HP$_2$O$_7^{3-}$ and F$^-$ anions up to 1 equiv. promote the downfield shift of the internal naphthalene protons $H_{a,a'}$ ($\Delta\delta$ ~0.09 ppm) as well as the methylene protons H_b, H_b', H_c and H_c' ($\Delta\delta$ ~0.03 ppm), suggesting that a recognition processes is taking place. However, the addition of more than 1 equiv. of HP$_2$O$_7^{3-}$ induced the appearance of new signals and the progressive disappearance of the signals assigned to the complexes formed between the receptor $\text{5}^{2+}\cdot\text{2PF}_6^-$ with HP$_2$O$_7^{3-}$ or F$^-$ anions. After addition of 2 equiv. of anion, the 1H-NMR spectrum showed only one set of signals. The titration was also followed by mass spectrometry. The results indicate that a debromination process is taking place in the bromo-imidazolium ring by the formation of an imidazoleone ring to generate the new compound $\text{6}^{2+}\cdot\text{PF}_6^-$ (Scheme 2). Interestingly the H-imidazolium ring remains unperturbed in the presence of HP$_2$O$_7^{3-}$ and F$^-$ anions. These results are consistent with those reported previously for the halogen and hydrogen bonding receptor $\text{7}^{2+}\cdot\text{2PF}_6^-$ and $\text{8}^{2+}\cdot\text{2PF}_6^-$, respectively [10] and dramatically reveal the lability of the C2–X bond of the haloimidazolium ring that undergoes cleavage in the presence of
basic anions, which constitutes a clear and important limitation for the use of such kind of receptors against basic anions.

Scheme 2. Synthesis of imidazolone $\text{6}^{2+}\cdot\text{PF}_6^-$ from the receptor $\text{5}^{2+}\cdot\text{2PF}_6^-$ by the HP_2O_7^- anion.

The association constants calculated from the 1H-NMR titration data using the Dynafit program [15] are shown in Table 2.

Table 2. Association constants for receptors $\text{5}^{2+}\cdot\text{PF}_6^-$, $\text{7}^{2+}\cdot\text{2PF}_6^-$ and $\text{8}^{2+}\cdot\text{2PF}_6^-$ with H_2PO_4^- and SO_4^{2-} anions in CD$_3$CN/CD$_3$OD 8:2 v/v measured using the 1H-NMR technique. Errors (in percent) are given in parentheses.

<table>
<thead>
<tr>
<th>Receptor</th>
<th>H_2PO_4^-</th>
<th>SO_4^{2-}</th>
<th>$K(\text{SO}_4^{2-})/\beta(\text{H}_2\text{PO}_4^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{5}^{2+}\cdot\text{PF}_6^-$</td>
<td>$\beta = 1.37 \times 10^2 \text{ M}^{-1}$ (4)</td>
<td>$K = 2.6 \times 10^3 \text{ M}^{-1}$ (4)</td>
<td>18</td>
</tr>
<tr>
<td>$\text{7}^{2+}\cdot\text{2PF}_6^-$</td>
<td>$\beta = 9.9 \times 10^3 \text{ M}^{-2}$ (3)</td>
<td>$K = 5.5 \times 10^3 \text{ M}^{-1}$ (4)</td>
<td>0.55</td>
</tr>
<tr>
<td>$\text{8}^{2+}\cdot\text{2PF}_6^-$</td>
<td>$\beta = 5.6 \times 10^3 \text{ M}^{-2}$ (4)</td>
<td>$K = 2.2 \times 10^3 \text{ M}^{-1}$ (4)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

A comparative study of the association constants obtained for the receptor $\text{5}^{2+}\cdot\text{PF}_6^-$ with those reported for the halogen bonding receptor $\text{7}^{2+}\cdot\text{2PF}_6^-$ and the hydrogen bonding receptor $\text{8}^{2+}\cdot\text{2PF}_6^-$ in the competitive mixture CD$_3$CN/CD$_3$OD 8:2 v/v indicates that the receptors bind the SO_4^{2-} anions following the trend $\text{7}^{2+}\cdot\text{2PF}_6^-$ (XB receptor) > $\text{5}^{2+}\cdot\text{PF}_6^-$ (XB and HB) > $\text{8}^{2+}\cdot\text{2PF}_6^-$ (HB). Thus, the presence of halogen bonding interactions increases the strength of the receptors for SO_4^{2-} anion. Interestingly, the association constant between the receptor $\text{5}^{2+}\cdot\text{PF}_6^-$ and SO_4^{2-} anions is 18 times higher than with the H_2PO_4^- anion, while higher association constants for the receptors $\text{7}^{2+}\cdot\text{2PF}_6^-$ and $\text{8}^{2+}\cdot\text{2PF}_6^-$ were found for H_2PO_4^- anion, and therefore the halogen and hydrogen bonding receptor $\text{5}^{2+}\cdot\text{PF}_6^-$ is the receptor which shows the highest selectivity for SO_4^{2-} anions.

3. **Experimental Section**

3.1. **General Comments**

All reactions were carried out using solvents that were dried by routine procedures. All melting points were determined by means of a Kofler hot-plate melting-point apparatus (Wagner & Munz, München, Germany) and are uncorrected. Solution 1H- and 13C-spectra were recorded with Bruker 200, 300, 400, or 600 MHz spectrometers (Bruker Corporation, Billerica, MA, USA). The following abbreviations have been used to state the multiplicity of the signals: s (singlet), m (multiplet), and q (quaternary carbon atom). Chemical shifts (δ) in the 1H- and 13C-NMR spectra are referenced to tetramethylsilane (TMS). UV−vis and fluorescence spectra were carried out in the solvents and concentrations stated in the text and in the corresponding figure captions, using a dissolution cell with 10 mm path length, and they were recorded with the spectra background corrected before and after
sequential additions of different aliquots of anions. Quantum yield values were measured with respect
to anthracene as the standard ($\Phi = 0.27 \pm 0.01$) using the equation:

$$\Phi_x/\Phi_s = (S_x/S_s)((1 - 10^{-A_x})/(1 - 10^{-A_s}))(n_s^2/n_x^2)$$

(1)

where x and s indicate the unknown and standard solution, respectively, Φ is the quantum yield,
S is the area under the emission curve, A is the absorbance at the excitation wavelength and n
is the refractive index. Mass spectra were recorded with a MLC-MS TOF 6220 (Agilent Technologies
Germany, Waldbronn, Germany).

3.2. General Procedure for Synthesis of Compounds 2 and 4

To a solution of 4,5-dimethyl-1H-imidazol (0.27 g, 2.81 mmol) or 2-bromo-4,5-dimethyl-
1H-imidazol (0.3 g, 1.71 mmol) in CH$_2$CN (120 mL) was added dropwise an aqueous solution
of 1 M NaOH (3.27 mmol). The reaction mixture was stirred for 10 min and after this time,
9-(bromomethyl)anthracene (0.5 g, 1.75 mmol) was added in one portion; the resulting mixture
was stirred at 0 °C for 30 min in the case of compound 2 and 2h at room temperature for compound 4.
The resulting precipitate was separated by filtration and purified by silica gel column chromatography
(CH$_2$Cl$_2$/CH$_3$OH 95:5) to yield compound 2. In the case of compound 4, the resulting precipitate
was filtered and dissolved in CH$_2$Cl$_2$ (50 mL) and then washed with water (2 × 50 mL). The organic
solvent was collected and dried with anhydrous Na$_2$SO$_4$. After filtration, the solvent was removed
under reduced pressure to yield the desired compound.

1-((anthracen-9-yl)methyl)-4,5-dimethyl-1H-imidazole (2). Yellow solid, yield 19%, 1H-NMR (CDCl$_3$
400 MHz) δ = 8.55 (s, 1H); 8.06–8.01 (m, 4H); 7.53–7.46 (m, 4H); 6.56 (s, 1H); 5.76 (s, 2H); 2.41 (s, 3H);
2.18 (s, 3H); 1.22 (s, 3H); 1.27 (s, 3H); 1.97 (s, 3H); 1.66 (s, 3H); 1.22 (s, 3H); 1.21 (s, 3H); 1.13 (s, 3H);
1.22 (s, 3H); 1.21 (s, 3H); 1.20 (s, 3H); 1.12 (s, 3H); 1.09 (s, 3H); 10.9; MS (ESI, m/z): 364.08 [M + H]$^+$.\n
1-((anthracen-9-yl)methyl)-2-bromo-4,5-dimethyl-1H-imidazole (4). Yield 48%, 1H-NMR (CDCl$_3$
400 MHz) δ = 8.48 (s, 1H); 8.10–8.05 (m, 4H); 7.57–7.48 (m, 4H); 6.06 (s, 2H); 1.97 (s, 3H); 1.22 (s, 3H); 13C-NMR
(CDC$_3$, 100 MHz) δ = 134.4; 133.8; 133.0; 130.3; 128.1; 127.5; 126.1; 124.1; 123.1; 122.4; 41.7; 12.7; 9.0; MS (ESI, m/z): 364.08 [M + H]$^+$.\n
3.3. Synthesis of Compound 3$^+\cdot$Br$^−$

To a solution of compound 2 (0.25 g, 0.87 mmol) in CH$_3$CN (180 mL), 2,7-bis(bromomethyl)naphthalene
(0.65 g, 2 mmol) was added in one portion. The mixture was stirred for 90 min at 60 °C; the volatile
compounds were removed under vacuum and the resulting residue was purified by silica gel column
chromatography (CH$_2$Cl$_2$/CH$_3$OH 91:9) to yield compound 3 as bromide salt. Yield 63%, 1H-NMR (CDCl$_3$
400 MHz) δ = 9.54 (s, 1H); 8.57 (s, 1H); 8.35 (d, 2H, $J = 9$ Hz); 8.06 (d, 2H, $J = 9$ Hz); 7.73–7.66 (m, 5H);
7.40–7.46 (m, 4H); 6.45 (s, 2H); 5.48 (s, 2H); 4.71 (s, 1H); 4.61 (s, 1H); 2.03 (s, 3H); 1.66 (s, 3H); 13C-NMR
(CDC$_3$, 75 MHz) δ = 136.0; 135.4; 135.2; 133.6; 133.2; 129.6; 129.3; 128.9; 128.1; 127.9; 127.6;
127.4; 126.4; 125.5; 125.0; 122.9; 121.4; 121.3; 50.9; 45.1; 33.6; 9.7; 8.7; MS (ESI, m/z): 519.20 [M$^+$].\n
3.4. Synthesis of Receptor S$^{2+}\cdot$2Br$^−$

To a solution of compound 3$^+\cdot$Br$^−$ (0.3 g, 0.5 mmol) in acetonitrile (200 mL), compound 4 (0.36 g,
0.98 mmol) was added. The reaction mixture was stirred at 60 °C for 48 h. The solvent was then
removed under reduced pressure and the crude was purified by silica gel column chromatography
(CH$_2$Cl$_2$/CH$_3$OH 91:9) to yield the desired compound as bromide salt. Yield 25%, 1H-NMR (d_6-DMSO,
300 MHz) δ = 8.90 (s, 1H); 8.83 (s, 1H); 8.38 (d, 2H, $J = 9$ Hz); 8.30 (s, 1H); 8.26–8.17 (m, 6H); 7.95 (d,
1H, $J = 9$ Hz); 7.88 (d, 1H, $J = 8$ Hz); 7.70–7.55 (m, 10H); 7.23 (dd, 1H, $J = 9$ Hz, $J = 0.5$ Hz); 7.00 (dd,
1H, $J = 9$ Hz, $J = 0.5$ Hz); 6.62 (s, 2H); 6.37 (s, 2H); 5.66 (s, 2H); 5.34 (s, 2H); 2.59 (s, 3H); 2.17 (s, 3H);
2.13 (s, 3H); 1.82 (s, 3H); 13C-NMR (d_6-DMSO, 75 MHz) δ = 135.6; 134.4; 133.8; 133.3; 132.6; 132.3; 132.1;
3.5. Synthesis of Receptor $5^{2+} \cdot 2PF_6^-$

A solution of the bis-imidazolium receptor as the bromide salt $5^{2+} \cdot 2Br^-$ (0.1 g, 0.1 mmol) in CH$_2$Cl$_2$ (20 mL) was washed with a saturated solution of NH$_4$PF$_6$ (4 x 20 mL) for 30 min. The organic layer was separated, dried over anhydrous Na$_2$SO$_4$, filtered and evaporated under reduced pressure, yielding the desired receptor. Yield 62%. 1H-NMR (d_6-DMSO, 400 MHz) $\delta = 8.90$ (s, 1H); 8.83 (s, 1H), 8.33 (d, 2H, $J = 8$ Hz), 8.30 (s, 1H), 8.26 (d, 2H, $J = 8$ Hz), 8.22 (d, 2H, $J = 8$ Hz), 8.14 (d, 2H, $J = 8$ Hz), 7.94 (d, 1H, $J = 8$ Hz), 7.87 (d, 1H, $J = 8$ Hz), 7.70-7.58 (m, 8H), 7.53 (s, 1H), 7.49 (s, 1H), 7.19 (dd, 1H, $J = 8$ Hz, $J = 0.5$ Hz), 6.95 (dd, 1H, $J = 8$ Hz, $J = 0.5$ Hz), 6.57 (s, 2H), 6.33 (s, 2H), 5.65 (s, 2H), 5.32 (s, 2H); 2.58 (s, 3H), 2.17 (s, 3H); 2.13 (s, 3H), 1.40 (s, 3H); 13C-NMR (d_6-DMSO, 100 MHz) $\delta = 134.0$; 132.9; 132.3; 132.0; 131.9; 131.2; 130.9; 130.8; 130.6; 130.4; 130.1; 129.7; 129.5; 128.9; 128.7; 128.6; 126.9; 125.9; 125.6; 125.5; 125.0; 124.8; 124.4; 123.4; 123.1; 122.8; 121.8; 121.3; 50.2; 48.4; 46.8; 43.5; 9.8; 8.9; 8.4; 7.9; MS (ESI, m/z): 951.2 [M$^{2+}$ + PF$_6^-$]$^+$.

4. Conclusions

We have reported the synthesis of a novel anion sensor $5^{2+} \cdot 2PF_6^-$ which binds anions by the cooperative action of halogen- and hydrogen-bonding interactions. Several anion-binding experiments have been carried out in order to make a comparative study of the sensing capabilities of the novel XB and HB receptor $5^{2+} \cdot 2PF_6^-$ regarding the XB and HB analogues $7^{2+} \cdot 2PF_6^-$ and $8^{2+} \cdot 2PF_6^-$, respectively. Evaluation of the sensing properties by fluorescence in CH$_3$CN reveals important similarities in the sensing behaviour between the halogenated receptor $7^{2+} \cdot 2PF_6^-$ and the mixed XB and HB receptor $5^{2+} \cdot 2PF_6^-$. The XB and HB receptor $5^{2+} \cdot 2PF_6^-$ acts as a selective fluorescent molecular sensor for H$_2$PO$_4^-$ anion, because it is the unique anion which promotes the appearance of the anthracene excimer emission band. In addition, the presence of the HP$_2$O$_3^-$ anion produces the selective transformation in the corresponding mono-imidazolone $6^{2+} \cdot 2PF_6^-$ after debromination of the Br-imidazolium ring while the H-imidazolium ring remained unperturbed. The analysis of the obtained association constant values obtained from the 1H-NMR titration experiments in CD$_3$CN/MeOD (8/2) reveals that the selectivity showed for the mixed XB and HB receptor $5^{2+} \cdot 2PF_6^-$ for SO$_4^{2-}$ anions is higher than the ones observed for the halogen or hydrogen bonding analogues. The magnitude of the association constant with SO$_4^{2-}$ anions of the mixed XB and HB receptor $5^{2+} \cdot 2PF_6^-$ is intermediate between the halogen bonding receptor $7^{2+} \cdot 2PF_6^-$ and the hydrogen bonding receptor $8^{2+} \cdot 2PF_6^-$ in this competitive methanol medium. These results highlight the importance of the combinations of different non-covalent interactions in selective anion recognition and sensing.

Supplementary Materials: The supplementary materials are available online. 1H- and 13C-NMR spectra of the compound, Figures S1–S5: Changes in the emission spectrum of $5^{2+} \cdot 2PF_6^-$ upon addition of F$^-$ and AcO$^-$ anions, Figures S4–S6: Calculation of the detection limits, Figures S7–S9: Job’s Plot experiments, Figures S10–S13: 1H-NMR spectral changes of the receptor $5^{2+} \cdot 2PF_6^-$ during the addition of SO$_4^{2-}$, HP$_2$O$_3^-$ and F$^-$ anions.

Acknowledgments: This work was funded by the Ministerio de Economía y Competitividad Government of Spain and European FEDER CTQ2013-46096-P as well as by the Fundación Séneca Región de Murcia (CARM) Projects 18948/JLI/13 and 19337/PI/14. P.S. acknowledges the University of Murcia for a FPU predoctoral grant. F.Z. and A.C. acknowledge the Government of Spain for a Juan de la Cierva and Ramón y Cajal contract, respectively.

Author Contributions: F.Z., A.C. and P.M. conceived and designed the experiments; F.Z., P.S. and S.B.-B. performed the experiments; F.Z., P.S., S.B., A.C. and P.M. analyzed the data; F.Z., A.C. and P.M. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

Sample Availability: Samples of the compounds are not available from the authors.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).