Article

Diarylheptanoid Glycosides of *Morella salicifolia* Bark

Edna Makule 1,2, Thomas J. Schmidt 3, Jörg Heilmann 1,* and Birgit Kraus 1,*

Supplementary Material

**Figure S1.** $^1$H NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 1: salicimeckol (7-hydroxymyricanol 5-O-β-D-glucopyranoside).

**Figure S2.** $^1$H-NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 2: salicireneol A (juglanin B 3-O-β-D-glucopyranoside).
**Figure S3.** $^1$H-NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 3: salicireneol B (16-hydroxyjuglanin B 17-O-β-D-glucopyranoside).

**Figure S4.** $^1$H-NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 4: saliciclaireone A (myricanone 5-O-β-D-glucopranosyl-(1-6)-β-D-glucopyranoside).

**Figure S5.** $^1$H-NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 5: saliciclaireone B (neomyricanone 5-O-β-D-glucopranosyl-(1-6)-β-D-glucopyranoside).
Figure S6. $^1$H-NMR spectrum (600 MHz, methanol-d$_4$, 298 K) of compound 6: salicilairone C (myricanone 17-O-$\alpha$-L-arabinofuranosyl-(1-6)-$\beta$-D-glucopyranoside).

Figure S7. Blue: Experimental CD spectrum of myricanol. Red: Averaged CD spectrum for the $S, S\alpha$ (87%) and $S, R\alpha$ form (13%). TDDFT: RB3LYP/6-31G(d,p), nstates = 30. Calculated spectrum was red-shifted by $-0.15$ eV and scaled by a factor of 0.67.