Supporting Information

A practical route to clinically relevant PET probes from nucleophilic [¹⁸F]fluoride and commercially available arylstannyl precursors

Fadi Zarrad^{1,2}, Boris D. Zlatopolskiy^{1,2,3,*}, Philipp Krapf^{1,2}, Johannes Zischler^{1,2} and Bernd Neumaier^{1,2,3,*}

- ¹ Institute of Neuroscience and Medicine, Nuclear chemistry (INM-5), Forschungszentrum Jülich, Jülich, Germany. f.zarrad@fz-juelich.de (F.Z.), p.krapf@fz-juelich.de (P.K.), j.zischler@fz-juelich.de (J.Z.), b.neumaier@fz-juelich (B.N.)
- ² Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Cologne, Germany. boris.zlatopolskiy@uk-koeln.de (B.D.Z.)
- ³ Max Planck Institute for Metabolism Research, Cologne, Germany
- * Correspondence: boris.zlatopolskiy@uk-koeln.de ; Tel.: +49 221 478 82842; b.neumaier@fz-juelich.de; Tel.: +49 2461 614141

Contents

NMR
3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-bromophenyl)-3-hydroxyprop-2-en-1-one3
3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one:
3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole7
3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole:
3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-(trimethylstannyl)phenyl)-1H-pyrazole11
Methyl 4-fluorobenzoate
Methyl 4-(trimethylstannyl)benzoate14
3-(Trimethylstannyl)benzaldehyde15
(2-Methoxyphenyl)trimethylstannane16
(3-Methoxyphenyl)trimethylstannane17
(4-Methoxyphenyl)trimethylstannane17
tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5-
methoxy-2-(trimethylstannyl)phenyl}propanoate [Boc ₂ -4-Boc-3-Me-6-
(SnMe ₃)DOPA-OtBu]18
Ethyl (S)-3-{4,5-bis[(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenyl}-2-
[bis(tert-butoxycarbonyl)amino]propanoate [Boc ₂ -6-(SnMe ₃)DOPA(Boc) ₂ -OEt]: 20
Ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-{5-[(tert-butoxycarbonyl)oxy]-2-
(trimethylstannyl)phenyl}propanoate [Boc-6-(SnMe ₃)mTyr(Boc)-OEt]22
Ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-[4-(tert-butoxycarbonyl)oxy]-2-
(trimethylstannyl)phenylpropanoate [Boc2-2-(SnMe3)Tyr(Boc)-OEt]24
Radiochemistry
Optimization of ¹⁸ F-fluorodestannylation26
Optimization of ¹⁸ F-fluorodestannylation of amino acid derivatives precursors using
N-mono and N,N-diBoc protected precursors of [18F]OMFD
Chromatograms

NMR

3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-bromophenyl)-3-hydroxyprop-2-en-1-one

Figure S 1:¹H-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-bromophenyl)-3-hydroxyprop-2-en-1-one

Figure S 2: ¹³C-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-bromophenyl)-3-hydroxyprop-2-en-1-one

Figure S 3: MS of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-bromophenyl)-3-hydroxyprop-2-en-1-one

3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one:

Figure S 4: ¹H-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one

Figure S 5: ¹³C-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one

Figure S 6: ¹⁹F-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one

 $\label{eq:Figure S7MS of 3-(Benzo[d][1,3] dioxol-5-yl)-1-(3-fluorophenyl)-3-hydroxyprop-2-en-1-one$

3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole

Figure S 8: ¹H-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole

Figure S 9: ¹³C-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole

 $Figure\ S\ 10:\ MS\ of\ 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole$

3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole:

Figure S 11: ¹H-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole

Figure S 12: ¹³C-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole

Figure S 13: ¹³F-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole

Figure S 14: MS of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-fluorophenyl)-1H-pyrazole

3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-(trimethylstannyl)phenyl)-1H-pyrazole

Figure S 15: ¹H-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-(trimethylstannyl)phenyl)-1H-pyrazole

Figure S 16: ¹³C-NMR of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-(trimethylstannyl)phenyl)-1H-pyrazole

Figure S 17: MS of 3-(Benzo[d][1,3]dioxol-5-yl)-5-(3-(trimethylstannyl)phenyl)-1H-pyrazole

Methyl 4-fluorobenzoate

Figure S 18: ¹H-NMR of Methyl 4-fluorobenzoate

Figure S 19: ¹³C-NMR of Methyl 4-fluorobenzoate

Figure S 20: ¹⁹F-NMR of Methyl 4-fluorobenzoate

Methyl 4-(trimethylstannyl)benzoate

Figure S 21: ¹H-NMR of Methyl 4-(trimethylstannyl)benzoate

Figure S 22: ¹³C-NMR of Methyl 4-(trimethylstannyl)benzoate

3-(Trimethylstannyl)benzaldehyde

Figure S 23: ¹H-NMR of 3-(Trimethylstannyl)benzaldehyde

Figure S 24: ¹³C-NMR of 3-(Trimethylstannyl)benzaldehyde

(2-Methoxyphenyl)trimethylstannane

Figure S 25: ¹H-NMR of (2-Methoxyphenyl)trimethylstannane

(3-Methoxyphenyl)trimethylstannane

(4-Methoxyphenyl)trimethylstannane

Figure S 27: ¹H-NMR of (4-Methoxyphenyl)trimethylstannane

tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5methoxy-2-(trimethylstannyl)phenyl}propanoate [Boc₂-4-Boc-3-Me-6-(SnMe₃)DOPA-OtBu]

Figure S 28: ¹H-NMR of tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl}propanoate [Boc₂-4-Boc-3-Me-6-(SnMe₃)DOPA-OtBu]

 $\label{eq:s29:13C-NMR of tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl} propanoate [Boc_2-4-Boc-3-Me-6-(SnMe_3)DOPA-OtBu]$

 $\label{eq:s30:MS} Figure \ S \ 30: \ MS \ of \ tert-Butyl \ (S)-2-(bis(tert-butoxycarbonyl)amino)-3-\{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl\}propanoate \ [Boc_2-4-Boc-3-Me-6-(SnMe_3)DOPA-OtBu]$

Ethyl (*S*)-3-{4,5-*bis*[(*tert-butoxycarbonyl*)*oxy*]-2-(*trimethylstannyl*)*phenyl*}-2-[*bis*(*tert-butoxycarbonyl*)*amino*]*propanoate* [*Boc*₂-6-(*SnMe*₃)*DOPA*(*Boc*)₂-*OEt*]:

Figure S 31: ¹H-NMR of tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl}propanoate [Boc₂-4-Boc-3-Me-6-(SnMe₃)DOPA-OtBu]

 $\label{eq:s32} Figure \ S \ 32: \ ^{13}C-NMR \ of \ tert-Butyl \ (S)-2-(bis(tert-butoxycarbonyl)amino)-3-\{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl\}propanoate \ [Boc_2-4-Boc-3-Me-6-(SnMe_3)DOPA-OtBu]$

Figure S 33: MS of tert-Butyl (S)-2-(bis(tert-butoxycarbonyl)amino)-3-{4-[(tert-butoxycarbonyl)oxy]-5-methoxy-2-(trimethylstannyl)phenyl}propanoate [Boc₂-4-Boc-3-Me-6-(SnMe₃)DOPA-OtBu]

Ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-{5-[(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenyl}propanoate [Boc-6-(SnMe₃)mTyr(Boc)-OEt]

 $\label{eq:s34: 1} Figure ~S~34: ~^{1}H-NMR ~of~ethyl~(S)-2-[bis(tert-butoxycarbonyl)amino]-3-\{5-[(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenyl\}propanoate~[Boc-6-(SnMe_3)mTyr(Boc)-OEt]$

Figure S 35: ¹³C-NMR of ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-{5-[(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenyl}propanoate [Boc-6-(SnMe3)mTyr(Boc)-OEt]

Figure S 36: MS of ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-{5-[(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenyl}propanoate [Boc-6-(SnMe₃)mTyr(Boc)-OEt]

Ethyl(S)-2-[bis(tert-butoxycarbonyl)amino]-3-[4-(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenylpropanoate [Boc2-2-(SnMe3)Tyr(Boc)-OEt]

 $\label{eq:Figure S} Figure S = 37: \ ^{l}H-NMR \ of \ ethyl \ (S)-2-[bis(tert-butoxycarbonyl)amino]-3-[4-(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenylpropanoate \ [Boc_2-2-(SnMe_3)Tyr(Boc)-OEt]$

 $\label{eq:sigma} Figure S 38: $^{13}C-NMR$ of ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-[4-(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenylpropanoate [Boc_2-2-(SnMe_3)Tyr(Boc)-OEt] $$

Figure S 39: MS of ethyl (S)-2-[bis(tert-butoxycarbonyl)amino]-3-[4-(tert-butoxycarbonyl)oxy]-2-(trimethylstannyl)phenylpropanoate [Boc_2 -2-($SnMe_3$)Tyr(Boc)-OEt]

Radiochemistry

Optimization of ¹⁸F-fluorodestannylation

T

Sn conditions					
[umol]	1	⁸ F-Recover	ry [%]		
[μποι]	Et ₄ NHCO ₃	Et ₄ NOTf	Et4NBF4	Et ₄ NI	
60	98	98			
30	94	94	93	99	
15	96	95	97	97	
5	94	96	97	92	
2.5	95	96	97	96	
0.5	81	76	80	89	

Table S 1: Recovery of ¹⁸F⁻ from anion exchange resin with MeOH solutions of different tetramethylammonium salts

	Et ₄ NOTf	Et ₄ NBC	KOTf/K222	Bu ₄ POMs
Rest on the cartridge [%]	19±1	18±2	9±2	14±4
¹⁸ F recovery [%]	72±8	71±1	81±5	76±2
RCC [%]	69±4	63±9	9±1	60±11

Table S 2: ¹⁸F recovery and RCCs of [¹⁸F]FPh using different salts in nBuOH

	QMA-	Strata X-	Strata X-	Chromafix PS-
	CO ₃	CO ₃	HCO ₃	HCO ₃
Rest on the cartridge [%]	19±1	14±1	18±2	35±2
¹⁸ F recovery [%]	73±8	81±1	68±9	57±3
RCC [%]	69±4	24±15	37±10	42±5

Table S 3: Dependence of $[{}^{18}F]$ fluoride recovery and ${}^{18}F$ -incorporation yields on the type of an anion exchange cartridge

ROH	RCC [%]	¹⁸ F Recovery [%]	Rest on cartridge [%]
MeOH	11±4	85±1	1±0
EtOH	45±8	83±1	5±1
TFE	0	84±2	4±2
<i>n</i> PrOH	62±6	77±4	11±2
<i>i</i> PrOH	70±3	72±5	16±3
<i>n</i> BuOH	72±8	73±8	19±1
<i>s</i> BuOH	66±7	47±6	37±7
tBuOH	80±4	10±1	78±1
<i>n</i> AmOH	75±10	68±4	18±5
nHexOH	55±2	64±4	21±4

Table S 4: Effect of alcohol on ¹⁸F-recovery and ¹⁸F-fluorodestannylation

Water content [µL/1 mL] RCC [%]
0	73±8
5	35±2
10	16±1
15	9±1

Table S 5: Effect of water on $[^{18}F]$ fluorodestannylation

<i>n</i> BuOH (%)	RCC [%]
0	84±4
10	85±2
20	78±4
30	72±8
40	58±9
50	42±2

Table S 6: Dependency of RCC on alcohol content

Solvent	RCC [%]
DMA	72±8
NMP	73±3
TMU	28±2
DMF	9±3
DMSO	7±2
Pyridine	0
NMF	0
tBuOH	0

Table S 7: Optimization of aprotic solvent

Reaction temperature [°C]	RCC [%]
80	34±2
90	45±11
100	72±8
110	65±5
120	60±5
Reaction time [min]	RCC [%]
Reaction time [min]	RCC [%]
Reaction time [min] 5 10	RCC [%] 76±4 72±8
Reaction time [min]51015	RCC [%] 76±4 72±8 72±9
Reaction time [min] 5 10 15 20	RCC [%] 76±4 72±8 72±9 75±2

Table S 8: Dependence of RCCs on temperature and on time

Precursor amount [µmol]	RCC [%]	
60	73±8	
40	78±1	
30	70±4	
20	63±2	
10	44±2	

Table S 9: Dependence of ¹⁸F-incorporation rate on the precursor amount

Cu(OTf) ₂ (py) ₄ [µmol]	RCC [%]
40	61±9
30	70±4
20	66±5
10	54±2

Table S 10: Dependence of ${}^{18}F$ -incorporation rate on the $Cu(py)_4(OTf)_2$ amount

Compound	RCC [%]	HPLC conditions
18F	72±4(SnMe ₃) 88±1(SnBu ₃)	t <i>R</i> =4.87 min, column: SpeedRod, eluent: 0–2 min: 5% MeCN, 2–2.5 min: 5–20% MeCN, 2.5–6 min; column: SpeedRod, 20% MeCN, 6–7 min: 20–70% MeCN, 7–9 min: 70% MeCN
0	17±1	t _R =6.35 min, column: SpeedRod, eluent: 25% MeCN, flow rate: 3 mL/min
0 18F	16±1	t _R =4.32 min, column: SpeedRod, eluent: 25% MeCN, flow rate: 1.5 mL/min
0 18F	84±2	t _R =6.03 min, column: SpeedRod, eluent: 25% MeCN, flow rate: 1.5 mL/min
0	59±3(SnMe ₃) 44±2(SnBu ₃)	t _R =5.12 min, column: SpeedRod, eluent: 25% MeCN, flow rate: 1.5 mL/min
18 _F	34±3	t _R =4.92 min, column: SpeedRod, eluent: 25% MeCN, flow rate: 1.5 mL/min
N-N O	62±8	t _R =7.3 min, column: Gemini 250×4.6 mm, eluent: 50% MeCN(0.1% TFA), flow rate: 2 mL/min

 Table S 11: Substrate scope of the improved protocol for $[^{18}F]$ fluorodestannylation.

Optimization of ¹⁸*F*-fluorodestannylation of amino acid derivatives precursors using *N*-mono and *N*,*N*-diBoc protected precursors of [¹⁸*F*]OMFD

Cu(OTf) ₂ (py) ₄ :precursor [eq.]	RCC [%]
1:1	22
1.5:1	24
2:1	27
3:1	25

Table S 12: Cu(OTf)2(py)4 to precursor ratio

Solvent	RCC [%]		
	OMFD di-Boc	OMFD tri-Boc	
DMA	6	78	
n-BuOH:DMA (1:9)	20	74	
<i>n</i> -BuOH:DMA (3:7)	22	66	

Table S 13: Solvent optimization

	RCC	HPLC conditions	
Compound	[%]		
		$t_R = 4.1$ min, column: ProntoSil, eluent: 4% EtOH	
	37	in 25mM Na phosphate buffer (pH 2.5), flow rate:	
		1 mL/min	
		$t_R = 5.88$ min, column: ProntoSil, eluent: 4%	
	55	EtOH in 25mM Na phosphate buffer (pH 2.5),	
		flow rate: 1 mL/min	
		$t_R = 5.66$ min, column: ProntoSil, eluent: 4%	
	60	EtOH in 25mM Na phosphate buffer (pH 2.5),	
		flow rate: 1 mL/min	
		$t_R = 7.05$ min, column: ProntoSil, eluent: 4%	
	78	EtOH in 25mM Na phosphate buffer (pH 2.5),	
		flow rate: 1 mL/min	

Figure S 40: Flow scheme for the automated radiosynthesis of $[^{18}F]OMFD$, $2-[^{18}F]FTyr$, $6-[^{18}F]FMT$ and $6-[^{18}F]FDOPA$. A: MeOH (2 mL); B: TEAOTf (5 mg, 18 µmol) in MeOH (700 µL); C: Cu(py)4(OTf)2 (40.7 mg, 60 µmol)

and radiolabeling precursor (30 μ mol) in DMA (1 mL); D: synthetic air supply; E: H₂O (1 mL); F: CH₂Cl₂ (2 mL); G: H₂O (9 mL); H: 48% HBr (1 mL) (38% HCl in the case of [¹⁸F]OMFD); I: 45% NaOH (300 μ L) and sodium phosphate buffer (3 mL, pH 4.5).

Table S 15: Automated radiosynthesis of [18F]OMFD, 2-[18F]FTyr, 6-[18F]FMT and 6-[18F]FDOPA

Figure S 41: Calibration curve fort he determintation of the molar activity of 6-[18F]FDOPA

Figure S 42: Calibration curve fort he determintation of the molar activity of 6-[18F]FMT

Figure S 43: Calibration curve fort he determintation of the molar activity of 2-[¹⁸F]FTyr

Figure S 44: Calibration curve fort he determintation of the molar activity of [18F]OMFD

	6-[¹⁸ F]DOPA	6-[¹⁸ F]FMT	2-[¹⁸ F]FTyr	6-[¹⁸ F]OMFD
Sn [µg/batch]	0.324±0.016	0.066±0.003	0.292 ± 0.008	$0.050{\pm}0.001$
Cu [µg/batch]	2.56±0.12	0.072 ± 3	4.22±0.22	$0.208{\pm}0.012$

Table \overline{S} 16: Determination of tin and copper content

Chromatograms

Figure S 45: Radiochromatogramm of [¹⁸F]fluorobenzene

Figure S 46: Radiochromatogramm of 4-[18F]fluoroanisole

Figure S 47: Radiochromatogramm of 3-[¹⁸F]fluoroanisole

Figure S 48: Radiochromatogramm of 2-[¹⁸F]fluoroanisole

Figure S 49: Radiochromatogramm of 3-[¹⁸F]fluorobenzaldehyde

Figure S 50: Radiochromatogramm of methyl 4-[18F]fluorobenzoate

Figure S 51: Radiochromatogramm of 3-(benzo[d][1,3]dioxol-5-yl)-5-(3-[¹⁸F]fluorophenyl)-1H-pyrazole

Chromatogramms of the automated synthesis

Figure S 52: Purification of 2-[¹⁸F]FTyr

Figure S 53: 2-[¹⁸F]FTyr: quality control.

Figure S 54: Purification of 2-[¹⁸F]FMT

Figure S 55: 2-[¹⁸F]FMT: quality control

Figure S 56: Purification of 6-[¹⁸F]FDOPA using Synergi[™] 4 µm Hydro-RP 80 Å, 250×10 mm

Figure S 57: Purification of 6-[¹⁸F]FDOPA using Synergi™ 4 µm Hydro-RP 80 Å, 150×21.2 mm

Figure S 58: 6-[¹⁸F]FDOPA: quality control

Figure S 59: Purification of [18F]OMFD

Figure S 60: [¹⁸F]OMFD: quality control