Electronic supplementary information (ESI) of the manuscript entitled

 "Construction of luminogen exhibiting multicolored emission switching through combination of twisted conjugation core and donor-acceptor units" by Haiyan Tian, Xi Tang and Yong Qiang DongCorresponding author:
Beijing Key Laboratory of Energy Conversion and Storage Materials, Department of Chemistry, Beijing Normal University, Beijing, China;

E-mail: dongyq@bnu.edu.cn

Table S1 Crystal data and structure refinement for the single crystal of 1GC

Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{24} \mathrm{~N}_{4}$
Formula weight	560.63
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P2(1)2(1)2(1) $a=7.907$ (2) A \quad alpha $=90$ deg.
Unit cell dimensions	$\begin{array}{ll} \mathrm{b}=14.819(4) \mathrm{A} & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=26.414(7) \mathrm{A} & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	3095.1(13) A^3
Z, Calculated density	$4,1.203 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.072 \mathrm{~mm}^{\wedge}-1$
F(000)	1168
Crystal size	$0.410 \times 0.200 \times 0.110 \mathrm{~mm}$
Theta range for data collection	2.066 to 25.250 deg .
Limiting indices	$-9<=\mathrm{h}<=9,-17<=\mathrm{k}<=17,-31<=1<=29$
Reflections collected / unique	$17606 / 5609$ [$\mathrm{R}(\mathrm{int})=0.0522]$
Completeness to theta $=25.242$	99.90\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.75 and 0.64
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	5609 / 0 / 397
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.031
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0525, \mathrm{wR} 2=0.1259$
R indices (all data)	$\mathrm{R} 1=0.0717, \mathrm{wR} 2=0.1387$
Absolute structure parameter	0.1(10)
Extinction coefficient	n/a
Largest diff. peak and hole	0.891 and -0.204 e. $\mathrm{A}^{\wedge}-3$

Table S2 Crystal data and structure refinement for the single crystal of 1YC

Empirical formula	$\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}$
Formula weight	632.73
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
	$a=10.3034(16) \mathrm{A} \quad$ alpha $=90$ deg.
Unit cell dimensions	$\mathrm{b}=23.763(4) \mathrm{A} \quad$ beta $=104.447(3) \mathrm{deg}$.
	$\mathrm{c}=13.737(2) \mathrm{A} \quad$ gamma $=90 \mathrm{deg}$.
Volume	$3257.0(8) \mathrm{A}^{\wedge} 3$
Z, Calculated density	$4,1.290 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.078 \mathrm{~mm}^{\wedge}$-1
F(000)	1328
Crystal size	$0.400 \times 0.370 \times 0.300 \mathrm{~mm}$
Theta range for data collection	1.714 to 25.249 deg .
Limiting indices	$-12<=h<=6,-27<=k<=28,-16<=1<=16$
Reflections collected / unique	$18602 / 11381[\mathrm{R}(\mathrm{int})=0.0358]$
Completeness to theta $=25.242$	99.90\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.75 and 0.65
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	11381/1/883
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.045
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0533, \mathrm{wR} 2=0.1270$
R indices (all data)	$\mathrm{R} 1=0.0650, \mathrm{wR} 2=0.1358$
Absolute structure parameter	-1.1(10)
Extinction coefficient	n / a
Largest diff. peak and hole	0.415 and -0.280 e.A^-3

Table S3 Crystal data and structure refinement for the single crystal of 10C

Empirical formula	C40 H24 N4
Formula weight	560.63
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, Pben $a=22.459(5) \mathrm{A} \quad$ alpha $=90 \mathrm{deg}$.
Unit cell dimensions	$\begin{array}{ll} \mathrm{b}=16.839(4) \mathrm{A} & \text { beta }=90 \mathrm{deg} . \\ \mathrm{c}=7.8968(18) \mathrm{A} & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	2986.5(12) A^3
Z, Calculated density	$4,1.247 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.074 \mathrm{~mm}^{\wedge}$-1
F(000)	1168
Crystal size	$0.350 \times 0.340 \times 0.100 \mathrm{~mm}$
Theta range for data collection	1.813 to 27.522 deg.
Limiting indices	$-29<=\mathrm{h}<=20,-21<=\mathrm{k}<=21,-10<=\mathrm{l}<=10$
Reflections collected / unique	$18984 / 3436$ [R(int) $=0.0441$]
Completeness to theta $=25.242$	100.00\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.75 and 0.66
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3436 / 0 / 200
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.037
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0407, \mathrm{wR} 2=0.0875$
R indices (all data)	$\mathrm{R} 1=0.0570, \mathrm{wR} 2=0.0958$
Extinction coefficient	n / a
Largest diff. peak and hole	0.261 and -0.217 e. $\mathrm{A}^{\wedge}-3$

Figure S1. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 Y C}$ in CDCl_{3} solvent.

Figure S2. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 Y C}$ after heating at $90^{\circ} \mathrm{C}$ in vacuum in CDCl_{3} solvent.

Figure S3. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ in DMSO solvent.

Figure S4. The HRMS spectrum of compound 1.

Figure S5. TGA thermograms of the $\mathbf{1}$ recorded under nitrogen at a heating rate of 10 K/min.

Figure S6. (A)The UV-vis absorption spectra of $\mathbf{1}$ in DCM versus different concentration ($\mathrm{mg} / \mathrm{mL}$). (B) Linear fitting about absorption intensity versus concentration (mol/L), $\mathrm{R}^{2}=0.992$.

Figure S7. Photographs taken under 365 nm UV light illumination. (A) PL spectra of $\mathbf{1}$ in acetonitrile/water mixtures with different water fractions (f_{w}, vol \%). (B) Plots of maximum emission intensity versus water fractions. Concentration: $1 \mu \mathrm{M}$; excitation wavelength: 370 nm ; exposure time: 2 second.

Table S4 Torsion angle of phenyl rings in three single crystals of compound 1.

Samples	$\lambda_{\mathrm{em}}(\mathrm{nm})$	$\theta_{1}\left({ }^{\circ}\right)$	$\theta_{2}\left({ }^{\circ}\right)$	$\theta_{3}\left({ }^{\circ}\right)$
1GC	506	41.99	50.36	73.85
1YC	537	34.35	46.21	67.79
1OC	585	43.03	43.03	73.27

Dihedral angle of $\mathbf{1}$ in different crystals. θ_{1}, dihedral angle between benzene ring plane P_{1} and double bond plane; θ_{2}, dihedral angle between benzene ring plane P_{2} and double bond plane; θ_{3}, dihedral angle of plane P_{1} and P_{2}.

Figure S8. View of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ (green dashed line) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (red dashed line) intermolecular interactions in single crystal of 1OC. The dark-red dots refer to the center of benzene rings.
Table S5 Summarization of the $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ Interactions in the Crystal of 10C.

Interactions	$\mathrm{d} / \AA^{[\mathrm{al]}}(\mathrm{N})^{[\mathrm{b}]}$	$\mathrm{A} /{ }^{\circ}{ }^{[\mathrm{cc}]}$
$1 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	$2.673(4)$	155.016
$2 \mathrm{C}-\mathrm{H} \cdots \pi$	$2.726(4)$	159.282
$3 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.042(4)$	125.192
$4 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.058(4)$	138.157
$5 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.106(4)$	122.975
$6 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.119(4)$	156.444
$7 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.197(4)$	160.526
$8 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.374(4)$	124.254
$9 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.390(4)$	122.774
$10 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.439(4)$	120.326

[a] Distance of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. [b] Number of the intermolecular interactions. [c] Angel of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Figure S9. View of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ (green dashed line) and $\mathrm{C}-\mathrm{H} \cdots \pi$ (red dashed line) intermolecular interactions in single crystal of 1GC. The dark-red dots refer to the center of benzene rings.

Table S6 Summarization of the $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ Intermolecular Interactions in the Crystal of 1GC.

Interactions	$\mathrm{d} / \AA^{[\mathrm{al}}(\mathrm{N})^{[\mathrm{b}]}$	$\mathrm{A} /{ }^{\circ}[\mathrm{c}]$
$1 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	$2.667(2)$	123.372
$2 \mathrm{C}-\mathrm{H} \cdots \pi$	$2.745(2)$	139.18
$3 \mathrm{C}-\mathrm{H} \cdots \pi$	$2.774(2)$	152.432
$4 \mathrm{C}-\mathrm{H} \cdots \pi$	$2.787(2)$	143.257
$5 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.079(2)$	128.045
$6 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.130(2)$	137.635
$7 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.173(2)$	169.382
$8 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.179(2)$	169.559
9C-H $\cdots \pi$	$3.232(2)$	148.758
$10 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.359(2)$	163.27
$11 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.394(2)$	167.583
$12 \mathrm{C}-\mathrm{H} \cdots \pi$	$3.548(2)$	140.914

[a] Distance of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. [b] Number of the intermolecular interactions. [c] Angel of $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Figure S10. View of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (purple dashed line), $\mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ (green dashed line) and C$H \cdots \pi$ (red dashed line) intermolecular interactions in single crystal of 1YC. The darkred dots refer to the center of benzene rings.

Table S7 Summarization of the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ Intermolecular Interactions in the crystal of $\mathbf{1 Y C}$.

Interactions	$\mathrm{d} / \AA^{\text {[a] }}(\mathrm{N})^{[b]}$	$\mathrm{A} /{ }^{\text {[}}$ []
1--H..O	2.573 (2)	139.779
$2 \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$	2.660	141.589
$3 \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$	2.612	145.501
$4 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	2.719(2)	164.219
$5 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	2.790(2)	149.293
$6 \mathrm{C} \equiv \mathrm{N} \cdots \cdots \mathrm{H}$	2.546(2)	155.263
$7 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	2.739(2)	158.635
$8 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	2.694(2)	157.567
$9 \mathrm{C} \equiv \mathrm{N} \cdots \cdots$	2.667(2)	153.592
$10 \mathrm{C} \equiv \mathrm{N} \cdots \cdots \mathrm{H}$	2.666(2)	152.324
$11 \mathrm{C} \equiv \mathrm{N} \cdots \cdots \mathrm{H}$	2.800	161.529
$12 \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$	2.691(2)	127.869
$13 \mathrm{C}=\mathrm{N} \cdots \mathrm{H}$	2.699(2)	127.791
14C-H $\cdots \pi$	3.020(3)	132.551
15C-H $\cdots \pi$	2.826(2)	142.937
16C-H $\cdots \pi$	3.404(2)	154.303
17C-H $\cdots \pi$	2.858(2)	163.874
18C-H $\cdots \pi$	3.148(2)	145.282
19C-H $\cdots \pi$	3.130(2)	149.187
20C-H $\cdots \pi$	3.143 (3)	128.328
$21 \mathrm{C}-\mathrm{H} \cdots \pi$	3.524(2)	124.632
$22 \mathrm{C}-\mathrm{H} \cdots \pi$	2.765(2)	165.666
23C-H $\cdots \pi$	3.187(2)	144.7355

[a] Distance of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. [b] Number of the intermolecular interactions. [c] Angel of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C} \equiv \mathrm{N} \cdots \mathrm{H}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Figure S11. (A) Normalized PL spectra of fumed solid of $\mathbf{1}$ in the three repeating cycles; excitation wavelength: 370 nm . (B) Switching the fluorescence of $\mathbf{1}$ by repeated fuming with EA (I) and THF (II) on the quartz plate. (C) Digital photograph three repeating cycles under illuminant of 365 nm .

Figure S12. (A) Normalized PL spectra of heated and fumed solid of $\mathbf{1}$ in the three repeating cycles. Excitation wavelength: 370 nm . (B) Switching the fluorescence of $\mathbf{1}$ by repeated annealing at $140^{\circ} \mathrm{C}$, (I) and fuming with THF, (II) on the quartz plate. (C) Digital photograph of the three repeating cycles under illuminant of 365 nm .

Figure S13. (A) Normalized PL spectra, (B) DSC curves and (C) PXRD patterns of $\mathbf{1}$ in the first repeating cycle: (a) 1OC, (b) 1 YC annealed at $140^{\circ} \mathrm{C}$, (c) 1 YC .

