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Abstract: Molecules containing catenated heavy group 14 atoms are known to exhibit the interesting
property of σ-bond electron delocalization. While this is well studied for oligo- and polysilanes
the current paper addresses the UV-absorption properties of small tin containing oligosilanes in
order to evaluate the effects of Sn–Si and Sn–Sn bonds as well as the results of substituent exchange
from methyl to phenyl groups. The new stannasilanes were compared to previously investigated
oligosilanes of equal chain lengths and substituent pattern. Replacing the central SiMe2 group in a
pentasilane by a SnMe2 unit caused a bathochromic shift of the low-energy band (λmax = 260 nm) of
14 nm in the UV spectrum. If, instead of a SnMe2, a SnPh2 unit is incorporated, the bathochromic shift
of 33 nm is substantially larger. Keeping the SnMe2 unit and replacing the two central silicon with tin
atoms causes shift of the respective band (λ = 286 nm) some 26 nm to the red. A similar approach for
hexasilanes where the model oligosilane [(Me3Si)3Si]2(SiMe2)2 (λmax = 253 nm) was modified in a
way that the central tetramethyldisilanylene unit was exchanged for a tetraphenyldistannanylene
caused a 50 nm bathochromic shift to a low-energy band with λmax = 303 nm.

Keywords: stannaoligosilanes; σ-bond electron delocalization; UV-spectroscopy; single crystal
diffraction analysis

1. Introduction

It is well known that oligo- and polymeric chains of silicon, germanium, and tin atoms possess the
unusual feature of σ-bond electron delocalization [1]. This property reflects the smaller HOMO-LUMO
gaps of higher elements and in a molecular way resembles the semiconducting nature of the higher
group 14 elements and is best known for polysilanes [2].

Despite the fact that σ-bond electron delocalization seems to be an exotic property it is actually not
so much different from the much more familiar concept of π-bond electron delocalization. Both types of
delocalization rely on two important prerequisites. The first requirement is an electronic one and it says
that HOMO-LUMO gaps need to be reasonably small. This requirement is not met for alkanes which
is the reason that σ-bond electron delocalization is very much restricted to compounds containing
σ-bonds between heavier elements. The second prerequisite is a spatial one and it requires the involved
orbitals to be in plane to allow extended orbital overlap over the involved atoms along the chain.
For the π-bond electron delocalization this means all delocalized bonds are in one plane. A similar
overlap for σ-bond electron delocalization would require an all-trans-conformation of the involved
chain. As catenated heavier elements usually bear comparatively large substituents there are steric
1,2- and 1,3-interactions between these substituent, thereby causing a deviation from all-trans- to a
transoid conformation.
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While the phenomenon of σ-bond electron delocalization has first been recognized by the research
groups of Gilman and Kumada [3–5], the theoretical foundations of the effect have been studied in some
detail by Michl and others [1,6–8]. Eventually, Tsuji and Tamao proved the concept of conformational
dependence of σ-bond electron delocalization in oligosilanes, preparing a number of conformationally
constrained molecules [9–13].

Our group and others have shown that oligosilanes with large end groups exhibit a preference to
acquire a transoid conformation as long as the end groups are not too far apart from each other [14–20].
In a recent study we reported on the influence of the formal replacement of silicon atoms in oligosilanes
by germanium atoms on the σ-electron delocalization properties, which was found to be rather
negligible [21]. However, related studies by Weinert and co-workers on the optical absorption
properties on oligogermanes [22–31] concentrated mainly on phenylated molecules which were found
to exhibit bathochromic shifted low-energy bands compared to our methylated oligosilanes of the
same chain lengths. This is not unexpected, as the introduction of more electronegative substituents is
known to cause absorption bands of oligosilanes to shift to longer wavelengths.

The current account is concerned with the influence of the formal exchange of silicon by tin atoms
and of methyl groups by phenyl substituents on the optical absorption properties, which reflect the
extent of σ-bond electron delocalization.

2. Results and Discussion

2.1. Synthesis

Over the last 20 years, our group has prepared many different oligosilanes. The key synthetic
advancement that allowed for the preparation of structurally reasonably complex molecules was the
discovery of the facile silanide formation accomplished by silyl group abstraction with potassium
alkoxides [32]. The potassium silanides thus obtained proved to be ideal building blocks, which could
be reacted with silyl halides of triflates to a large variety of oligosilanes. Subsequent application of
the silyl group abstraction method to silylated germanes [33] and stannanes [34] provides access to
silylated germanides and stannides. Synthesis of organostannanes with attached oligosilanyl groups
as required for the current study therefore could be achieved in a fairly straightforward way.

Reactions of tris(trimethylsilyl)silyl potassium [35,36] with dimethyldichlorostannane or
diphenyldichlorostannane provided bis[tris(trimethylsilyl)silyl]dimethylstannane (1) [37] and bis[tris
(trimethylsilyl)silyl]diphenylstannane (2) in 86% and 61% yield, respectively (Scheme 1).
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Table 1. NMR spectroscopic characterization of 1, 2, 5, 6, and 8.

Compound 29Si (SiMe3) 29Si Si(EMe3) 119Sn

1 −7.7 −123.7 −176
2 −9.9 −133.9 −174
5 −7.8 −128.7 −68
6 −8.4 −131.8 −114
8 −7.1 - −277 (SnMe), −464 (SnSi)

Single crystals of compound 2 were subjected to XRD analysis (Figure 1) showing 2 to crystallize
in the monoclinic space group P21/n. Structural parameters include Sn-Si bond distances of 2.6071(7)
and 2.6099(8) Å and an Si–Sn–Si bond angle of 132.507(17)◦. While a number of tin compounds
with two attached tris(trimethylsilyl)silyl groups are known, most of the structurally characterized
examples feature divalent tin, where the Sn–Si bonds are significantly elongated to values above
2.65 Å and the Si–Sn–Si bond angles are smaller than 115◦ [40–43]. Nevertheless dichlorostannane
[(Me3Si)3Si]2SnCl2 [37] was found to exhibit quite similar Si-Sn distances of 2.604(3) Å and the
Si-Sn-Si angle of 142.5(1)◦ was even somewhat narrower than in 2. For the structurally related cyclic
compound (Me2Si)2[(Si(SiMe3)2]2SnPh2 [44] the Si–Sn distances amount to 2.594(4) and 2.620(4) Å.
For the related compounds (Me3Si)3SiSniPr3 with only one tris(trimethylsilyl)silyl group and three
isopropyl groups on tin and hexakis(trimethylsilyl)distannane even shorter Si-Sn distance of 2.573(4)
and 2.5707(17) Å, respectively, were reported [45]. Of particular interest for the σ-bond delocalization
are the conformational properties, which are reflected by the dihedral angles. As listed in Table 2,
the two relevant dihedral angles of 2 are exhibiting a deviant conformational preference, which is
likely caused by steric interactions of the phenyl groups with trimethylsilyl groups.
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Figure 1. Molecular structure of 2 (thermal ellipsoid plot drawn at the 30% probability level).
All hydrogen atoms are not shown for clarity (bond lengths in Å, angles in ◦). Sn(1)–C(7) 2.1603(19),
Sn(1)–C(1) 2.1609(19), Sn(1)–Si(1) 2.6071(7), Sn(1)–Si(5) 2.6099(8), Si(1)–Si(2) 2.3747(9), Si(2)–C(13)
1.872(2), Si(1)–Sn(1)–Si(5) 132.507(17).

Starting out from 1,2-diphenylated distannanes 3 [46,47] and 4, the respective triflates
were obtained by treatment with two equiv triflic acid and treated further on with two equiv
tris(trimethylsilyl)silyl potassium. Tris(trimethylsilyl)silylated distannanes 5 and 6 were formed in 48%
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and 33% yields (Scheme 2). In addition to distannane 6 a few crystals of a tris(trimethylsilyl)silylated
tristannane (6a) were obtained. Although it was not possible to subject 6a to NMR spectroscopic
characterization, the few crystals obtained permitted crystallographic analysis (vide infra).

Table 2. Dihedral angles of the Si1–2–(Sn)1–3–Si1–2 framework of compounds 2, 5, 6, 6a, and 8.

Dihedral Angles ω [◦] Determined by X-ray Crystallography

Compound ω1 ω2 ω3 ω4 Conformation 1

2 153 143 DD
5 159 180 159 TAT
6 160 180 160 TAT

6a 162 162 161 148 TTTD
8 170 170 TT

1 A = anti, T = transoid, D = deviant.
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The molecular structure of distannane 5 in the solid state (Figure 2) is isostructural to that
of the respective 1,2-bis[tris(trimethylsilyl)silyl]tetramethyldisilane [48,49] with slightly extended
cell parameters. Both compounds crystallize in the triclinic space group P-1 and feature perfect
trans-alignment along the Si–E–E–Si bond arrangement (E = Si, Sn) (Table 2). For the all-silicon
molecule we have shown that the conformational preference in the solid state is maintained in solution
so that σ-electron conjugation along a chain of six heavy atoms is facile [14]. Sn–Si distances of 5 are
with 2.579(3) Å shorter than in 2 reflecting the fact that only one bulky tris(trimethylsilyl)silyl group is
attached to a tin atom. The Sn–Sn bond distance of 2.7950(13) is close to that of 2.7930(12) observed
for (Me3Si)3SnSn(SiMe3)3 [45]. The Si–Sn–Sn bond angle of 119.939(12)◦ is somewhat increased in
comparison to that of the all-silicon analog.
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Figure 2. Molecular structure of 5 (thermal ellipsoid plot drawn at the 30% probability level).
Non-labeled atoms are generated by symmetry operations. All hydrogen atoms are not shown for clarity
(bond lengths in Å, angles in ◦). Sn(1)–C(11) 2.182(9), Sn(1)–Si(1) 2.579(3), Sn(1)–Sn(1A) 2.7950(13),
Si(1)–Si(2) 2.344(3), Si(2)–C(1) 1.878(9), Si(1)–Sn(1)–Sn(1A) 116.47(6).
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Distannane 6 was found to crystallize with one additional benzene molecule in the monoclinic
space group P21/n (Figure 3). Also the structure of 6 contains an inversion center and thus exhibits
trans-alignment along the Si–Sn–Sn–Si unit (Table 2). Compared to 5 the Sn–Si distances of 6 are slightly
elongated to a value of 2.5988(6) Å caused by the increased steric demand of the Ph2Sn unit compared
to Me2Sn. This is also responsible for the elongated Sn–Sn bond distance of 2.8217(7) observed for 6.
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Non-labeled atoms are generated by symmetry operations. All hydrogen atoms are not shown for
clarity (bond lengths in Å, angles in ◦). Si(1)–Si(2) 2.3476(8), Si(1)–Sn(1) 2.5988(6), Si(2)–C(14) 1.8682(19),
Sn(1)–C(1) 2.1603(16), Sn(1)–Sn(1A) 2.8217(7), Si(1)–Sn(1)–Sn(1A) 119.939(12).

The molecular structure of 6a (Figure 4) in the solid state is asymmetric and a comparably small
dihedral angle (148◦) on one side of the molecule is observed (Table 2). As expected Sn–Sn bond
lengths of 6a are somewhat shorter than in 6 (2.8022(15) and 2.8161(14) Å) reflecting the diminished
interaction between phenyl and trimethylsilyl groups.
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All hydrogen atoms are not shown for clarity (bond lengths in Å, angles in ◦). Sn(1)–C(16) 2.151(14),
Sn(1)–Si(1) 2.583(4), Sn(1)–Sn(2) 2.8022(15), Sn(2)–Sn(3) 2.8161(14), Sn(3)–Si(5) 2.608(4), Si(1)–Si(2)
2.358(6), Si(2)–C(1) 1.885(18), Si(1)–Sn(1)–Sn(2) 123.01(11), Sn(1)–Sn(2)–Sn(3) 111.38(4).
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To study the influence of the exchange of silicon for tin atoms we decided to prepare a structure
isostructural to compound 1 but with tris(trimethylsilyl)stannyl end groups. As depicted in Scheme 3
this goal can be achieved by reacting dimethyldichlorostannane with tris(trimethylsilyl)stannyl
potassium (obtained easily from tetrakis(trimethylsilyl)stannane (7) [34]) yielding compound 8 in
66% yield.
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The structure of compound 8 (Figure 5) again exhibits isostructural properties to the respective
all silicon compound Me2Si[Si(SiMe3)3]2 [50]. Both compounds crystallize in the monoclinic space
group C2/c with 8 featuring somewhat larger cell axes. The Sn–Sn bond distance of 2.7871(6) Å is
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All hydrogen atoms are not shown for clarity (bond lengths in Å, angles in ◦). Sn(1)–Si(3) 2.5658(7),
Sn(1)–Si(1) 2.5728(8), Sn(1)–Si(2) 2.5758(8), Sn(1)–Sn(2) 2.7871(6), Sn(2)–C(10) 2.179(3), Sn(2)–Sn(1A)
2.7871(6), Si(1)–C(1) 1.876(3), Si(1)–Sn(1)–Sn(2) 105.02(2), Sn(1A)–Sn(2)–Sn(1) 122.946(18).

2.2. UV-Vis Spectroscopy

From our studies on the σ-bond electron delocalization of oligosilanes and
germaoligosilanes [14–21] we have learned that that tris(trimethylsilyl)silyl terminated
methyloligosilanes exibit a strong preference for transoid conformations in the solid state
and in solution. Increasing the lengths of the main chain results in bathochromic shifts of the
low-energy (σ→σ*) transition indicating extension of the delocalized system. Exchange of selected
silicon atoms from the main chain for germanium was found to change the spectroscopic properties
only slightly. For a similar exchange of silicon with tin atoms a significantly stronger effect is expected.
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This expectation is already fulfilled for compound 1. The low-energy band of its UV spectrum
is located at 260 nm (Figure 6) which is 14 nm red shifted compared to the analogous all-silicon
compound [(Me3Si)3Si]2SiMe2.

Replacement of two additional silicon atoms leads to compound 8 with a central tristannanylene
unit. The low-energy band of the UV spectrum of 8 (Figure 6) is located at 286 nm indicating another
red shift of 24 nm. Overall, the replacement of three silicon atoms with tin atoms in linear pentasilane
unit caused a bathochromic shift of 38 nm.

[(Me3Si)3Si]2(SiMe2)2, which is the all-silicon analog of compound 5, exhibits a low-energy band
at 253 nm. In contrast to this, the UV spectrum of 5 (Figure 6) with the two central SnMe2 units
featured the respective band at 280 nm. The formal replacement of two silicon atoms with tin atoms
here amounts to a bathochromic shift of 27 nm.

Previous attempts to attach tris(trimethylsilyl)silyl groups to perphenylated silanylene units were
not successful, but the stannaoligosilanes of this study allow the study of the influence of attached
phenyl groups on the σ-electron delocalization of the oligomers. This can be achieved by comparison
of compounds 1 with 2 and compounds 5 with 6. In addition to the σ→σ* transition bands, the UV
spectra of 2 and 6 (Figure 6) also show bands which we assign to π→π* transitions with vibrational
fine structure.

Compound 2, where compared to 1 the two methyl groups on the central tin atom are replaced
by phenyl groups, shows a further bathochromic shift of 19 nm for a low-energy band at 279 nm
(Figure 6). Still, molecule 2 contains a linear arrangement of five connected heavy atoms where the
σ-electron delocalization is supposed to occur. The overall formal replacement of a SiMe2 unit in
[(Me3Si)3Si]2SiMe2 with a SnPh2 entity causes a bathochromic shift of the low-energy band of 36 nm.
A similar relationship exists between is [(Me3Si)3Si]2(SiMe2)2 (λmax = 253 nm) and compound 6 which
extends its low-energy band to 303 nm. The formal exchange of a tetramethyldisilanylene unit with a
tetraphenyldistannanylene in this case causes a 50 nm bathochromic shift.
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3. Materials and Methods

Experimental Section

All reactions involving air-sensitive compounds were carried out under an atmosphere of dry
nitrogen or argon using either Schlenk techniques or a glove box. Solvents were dried using a
column solvent purification system [51]. Potassium tert-butanolate was purchased exclusively from
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MERCK. Dichlorodiphenylstannane, dichlorodimethylstannane, hexaphenyldistannane (4) and all
other chemicals were obtained from different suppliers and were used without further purification.
Tris(trimethylsilyl)silyl potassium [35,36], and tetrakis(trimethylsilyl)stannane (7) [52] have been
prepared following published procedures.

1H- (300 MHz), 13C- (75.4 MHz), 119Sn- (111.8 MHz), and 29Si- (59.3 MHz) NMR spectra were
recorded on a Varian Unity INOVA 300 spectrometer (Varian, Palo Alto, CA, USA). If not noted
otherwise for all samples the used solvent was C6D6 or in case of reaction samples they were measured
with a D2O capillary in order to provide an external lock frequency signal. To compensate for the low
isotopic abundance of 29Si the INEPT pulse sequence was used for the amplification of the signal [53,54].
Elementary analysis was carried using a Heraeus VARIO ELEMENTAR EL apparatus (Heraeus, Hanau,
Germany). UV spectra were measured on a Perkin Elmer Lambda 35 spectrometer (Perkin-Elmer
Corp., Waltham, MA, USA) using spectroscopy grade pentane as solvent. Spectra plotting was done
using Spectragryph 1.07 [55].

X-ray structure determination: For X-ray structure analyses the crystals were mounted onto
the tip of glass fibers, and data collection was performed with a BRUKER-AXS SMART APEX CCD
diffractometer (Bruker-AXS, Madison, WI, USA) using graphite-monochromated Mo Kα radiation
(0.71073 Å). The data were reduced to F2

0 and corrected for absorption effects with SAINT [56] and
SADABS [57,58], respectively. Structures were solved by direct methods and refined by full-matrix
least-squares method (SHELXL97 and SHELX2013) [59,60]. All non-hydrogen atoms were refined
with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions to
correspond to standard bond lengths and angles.

Crystallographic data for the structures of compounds 2, 5, 6, 6a, and 8 reported in this paper
have been deposited with the Cambridge Crystallographic Data Center as supplementary publication
no. CCDC 1585436 (2), 1585433 (5), 1585432 (6), 1585434 (6a), and 1585435 (8). Copies of data can
be obtained free of charge at: http://www.ccdc.cam.ac.uk/products/csd/request/. Figures of solid
state molecular structures were generated using Ortep-3 as implemented in WINGX [61] and rendered
using POV-Ray 3.6 [62].

Dimethyldiphenylstannane. A solution of PhMgBr in Et2O (prepared from Mg (466 mg, 19.2 mmol)
and bromobenzene (2986 mg, 19.2 mmol) was slowly added to dichlorodimethylstannane (2057 mg,
9.4 mmol) in THF (20 mL) at 0 ◦C. The mixture was stirred for 12 h before saturated NH4Cl solution
(30 mL) was added. The organic phase was separated, reduced in volume, and then passed through a
pad of silica gel. After evaporation of solvent dimethyldiphenylstannane (1829 mg, 64%) was obtained
as a colorless oil. NMR spectroscopic data in accordance with published values [63]: 119Sn-NMR
(δ in ppm): −60.

Chlorodimethylphenylstannane. To a solution of dimethyldiphenylstannane (1829 mg, 5.3 mmol) in
Et2O (25 mL) HCl (1.2 equiv., 1 M solution in diethyl ether) was added at 0 ◦C. The mixture was
allowed to come to r.t. and then stirred for 12 h before saturated NH4Cl solution (10 mL) was added.
The layers were separated, the organic layer dried over anhydrous Na2SO4 and the solvent removed.
Chlorodimethylphenylstannane (851 mg, 61%) was obtained as a colorless oil and was used without
further purification. NMR spectroscopic data in accordance with published values [63]: 119Sn-NMR
(δ in ppm): 91.

1,1-Bis[tris(trimethylsilyl)silyl]dimethylstannane (1). A solution of tris(trimethylsilyl)silyl potassium
(prepared from tetrakis(trimethylsilyl)silane (750 mg, 2.3 mmol) and tBuOK (284 mg, 2.4 mmol) in
DME (8 mL) was added to dichlorodimethylstannane (262 mg, 1.2 mmol) in THF (5 mL) very slowly at
r.t. and then stirred for 12 h. To the reaction mixture pentane (10 mL), THF (10 mL), and 2M H2SO4

(10 mL) were added, the phases separated, the organic phase dried with anhydrous Na2SO4 and the
solvent removed. Compound 1 was obtained as colorless crystals (668 mg, 86%) by crystallization from
a pentane/acetone 1:1 solution at r.t. m.p.: 85–95 ◦C. 1H-NMR (δ in ppm): 0.34 (s, 54H, SiMe3), 0.26
(s, 6H, SnMe2). 29Si-NMR (δ in ppm): −7.7 (SiMe3), −123.7 (Siq). 119Sn-NMR (δ in ppm): −176. Anal.

http://www.ccdc.cam.ac.uk/products/csd/request/
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calcd. for C20H60Si8Sn (644.09): C 37.30, H 9.39. Found: C 37.20, H 9.32. UV absorption: λ1 = 209 nm
(ε1 = 1.7 × 104 M−1 cm−1), λ2 = 260 nm (ε2 = 2.4 × 104 M−1 cm−1).

1,1-Bis[tris(trimethylsilyl)silyl]diphenylstannane (2). Same procedure as for 1 using: dichlorodipheny
lstannane (446 mg, 1.3 mmol), tetrakis(trimethylsilyl)silane (757 mg, 2.4 mmol) and tBuOK (312 mg,
2.5 mmol). Colorless crystalline 2 (613 mg, 61%) was obtained. m.p.: 143–145 ◦C. 1H-NMR (δ in ppm):
7.79 (m, 4H), 7.09 (m, 6H), 0.18 (s, 54H, SiMe3). 13C-NMR (δ in ppm): 142.7, 138.4, 127.9, 127.7, 3.5.
29Si-NMR (δ in ppm): −9.9 (SiMe3), −133.9 (Siq). 119Sn-NMR (δ in ppm): −174 (1JSn–C = 264 Hz,
1JSi–Sn = 182 Hz, 2JSi–Sn = 39 Hz). Anal. calcd. for C28H64Si8Sn (768.23): C 46.90, H 8.40. Found: C 44.65,
H 8.33. UV absorption: λ1 = 209 nm (ε1 = 1.7× 104 M−1 cm−1), λ2 = 260 nm (ε2 = 2.4 × 104 M−1 cm−1).

1,2-Diphenyltetramethyldistannane (3). To chlorodimethylphenylstannane (851 mg, 3.3 mmol) in THF
(8 mL) metallic sodium (75 mg, 3.3 mmol) was added and stirred at r.t. for 48 h. A saturated NH4Cl
solution (10 mL) was added and extracted with Et2O. The organic layer was dried with over anhydrous
Na2SO4 and then the solvent removed. Compound 3 (578 mg, 48%) was obtained as a colorless oil
with spectroscopic values in accordance to published data [46,47]. 119Sn-NMR (δ in ppm): −118.

1,2-Bis[tris(trimethylsilyl)silyl]tetramethyldistannane (5). To a solution of 3 (578 mg, 1.3 mmol) in CH2Cl2
(10 mL) triflic acid (384 mg, 2.6 mmol) was added dropwise at −40 ◦C. The reaction mixture was
allowed to come to r.t. and was stirred for additional 12 h. (The clear solution was checked by
119Sn-NMR (δ in ppm): 107 ppm) [64]. The solvent was removed and the residue dissolved in
toluene (10 mL) followed by the dropwise addition of tris(trimethylsilyl)silyl potassium [prepared
from tetrakis(trimethylsilyl)silane (821 mg, 2.6 mmol) and tBuOK (316 mg, 2.8 mmol) in DME (8 mL).
The solvent was removed and the residue solved in toluene (10 mL)]. The reaction solution turns yellow
and then dark orange. Stirring was continued for 12 h. The work up procedure was done according
to the procedure for 1. After recrystallization from CH2Cl2 colorless crystalline 5 (483 mg, 48%) was
obtained. m.p.: 222–225 ◦C. 1H-NMR (δ in ppm, CDCl3): 0.38 (s, 2JH–Sn = 40.5 Hz, 3JH–Sn = 19.6 Hz,
12H, SnMe2), 0.22 (s, J = 12.3Hz, J = 10.2 Hz, J = 6.5 Hz, 54H, SiMe3). 13C-NMR (δ in ppm, CDCl3):
3.1 (SiMe3), −8.7 (1JC–Sn = 36.8 Hz, SnMe2). 29Si-NMR (δ in ppm, CDCl3): −7.8 (SiMe3), −128.7 (Siq).
119Sn-NMR (δ in ppm): −68. Anal. calcd. for C22H66Si8Sn (792.87): C 33.33, H 8.39. Found: C 33.21, H
8.29. UV absorption: λ1 = 209 nm (ε1 = 1.7 × 104 M−1 cm−1), λ2 = 260 nm (ε2 = 2.4 × 104 M−1 cm−1).

1,2-Bis[tris(trimethylsilyl)silyl]tetraphenyldistannane (6). The same procedure as for 1 was applied using
hexaphenyldistannane (2000 mg, 2.8 mmol), triflic acid (858 mg, 5.7 mmol) [the addition of triflic acid
was done at r.t. and addition of triflate was checked by 119Sn-NMR (δ in ppm): −100.2 ppm] [64],
tetrakis(trimethylsilyl)silane (1832 mg, 5.7 mmol) and tBuOK (705 mg, 6.3 mmol). The addition of
tris(trimethylsilyl) potassium and the following stirring was done at 40 ◦C. The pale yellow solid was
recrystallized from pentane/THF at −20 ◦C to yield colorless crystalline 6 (619 mg, 33%). In addition
to 6, a few crystals of 1,3-bis[tris(trimethylsilyl)silyl]hexaphenyltristannane (6a) were also obtained.
6: m.p.: 226–228 ◦C. 1H-NMR (δ in ppm): 7.75 (m, 4H), 7.41 (m, 2H), 7.02 (m, 4H), 0.26 (s, 54H, SiMe3).
13C-NMR (δ in ppm, THF-d8): 143.6, 140.9, 130.4, 130.3, 4.7 (SiMe3). 29Si-NMR (δ in ppm): −8.4
(SiMe3), −131.8 (Siq). 119Sn-NMR (δ in ppm): −114. Anal. calcd. for C42H74Si8Sn2 (1041.15): C 48.45,
H 7.16. Found: C 48.39, H 7.09. UV absorption: λ1 = 209 nm (ε1 = 1.7 × 104 M−1 cm−1), λ2 = 260 nm
(ε2 = 2.4 × 104 M−1 cm−1).

1,1,1,3,3,3-Hexakis(trimethylsilyl)dimethyltristannane (8). A solution of tetrakis(trimethylsilyl)-stannane
(397 mg, 0.97 mmol) in DME (5 mL) was treated with tBuOK (112 mg, 0.99 mmol) in DME at r.t.
After 12 h the solvent was removed and the residue dissolved with toluene (5 mL). This solution was
added dropwise to dichlorodimethylstannane (106 mg, 0.48 mmol) in THF (5 mL) and stirred for 12 h.
A saturated NH4Cl solution (5 mL) was added, the phases separated, the organic phase dried with
anhydrous Na2SO4 and the solvent removed. After recrystallization from CH2Cl2 colorless crystalline
8 (272 mg, 66%) was obtained. m.p.: 134–136 ◦C. 1H-NMR (δ in ppm, CDCl3): 0.32 (s, 18H, SiMe3),
0.29 (s, 6H, SnMe2). 13C-NMR (δ in ppm, CDCl3): 4.8 (Sn(SiMe3)3), −7.1 (SnMe2). 29Si-NMR (δ in ppm,
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D2O capillary): −7.1 (1J117/119Sn–Si = 324 Hz, 310 Hz, SiMe3). 119Sn-NMR (δ in ppm, THF-d8): −277
(SnMe2), −464 (Sn(SiMe3)3). Anal. calcd. for C20H60Si6Sn3 (825.34): C 29.11, H 7.33. Found: C 29.02, H
7.21. UV absorption: λ1 = 209 nm (ε1 = 1.7 × 104 M−1 cm−1), λ2 = 260 nm (ε2 = 2.4 × 104 M−1 cm−1).

4. Conclusions

With the intention to study the influence of incorporated heavier group 14 element atoms,
a number of stannaoligosilanes were synthesized. The UV absorption properties of these were
compared to those of previously investigated oligosilanes of equal chain lengths and substituent
pattern. Replacing one dimethylsilylene group in a pentasilane by a dimethylstannylene unit was found
to cause a bathochromic shift of the low-energy band (corresponding to HOMO-LUMO transition)
(λmax = 260 nm) of 14 nm. By introduction of a diphenylstannylene group the bathochromic shift is
raised to 33 nm. Keeping the dimethylstannylene unit and exchanging the two adjacent silicon atoms
by tin shifts the respective band (λ = 286 nm) some 26 nm to the red.

These results clearly show that by deliberate exchange of silicon for tin and switching to phenyl
substituents, the absorption properties and the degree of σ-bond electron delocalization can be tuned
over a large spectral range.

Supplementary Materials: The following are available online, Table S1: Crystallographic information for
compounds 2, 5, 6, 6a, and 8.
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