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Abstract: Burley tobacco is a genotype of chloroplast-deficient mutant with accumulates high
levels of tobacco-specific nitrosamines (TSN As) which would induce malignant tumors in animals.
Nitrate is a principle precursor of tobacco-specific nitrosamines. Nitrate content in burley tobacco
was significantly higher than that in flue-cured tobacco. The present study investigated differences
between the two tobacco types to explore the mechanisms of nitrate accumulation in burley tobacco.
transcripts (3079) related to the nitrogen and carbon metabolism were observed. Expression of genes
involved in carbon fixation, glucose and starch biosynthesis, nitrate translocation and assimilation
were significantly low in burley tobacco than flue-cured tobacco. Being relative to flue-cured tobacco,
burley tobacco was significantly lower at total nitrogen and carbohydrate content, nitrate reductase
and glutamine synthetase activities, chlorophyll content and photosynthetic rate (Pn), but higher
nitrate content. Burley tobacco required six-fold more nitrogen fertilizers than flue-cured tobacco,
but both tobaccos had a similar leaf biomass. Reduced chlorophyll content and photosynthetic rate
(Pn) might result in low carbohydrate formation, and low capacity of nitrogen assimilation and
translocation might lead to nitrate accumulation in burley tobacco.
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1. Introduction

Burley, known as yellow green leaf color tobacco, is a chloroplast-deficient mutant tobacco type
with reduced pigment content [1]. Little has been reported on the effect of chloroplast-deficient mutant
in burley tobacco. Leaf chlorophyll status is used to evaluate plant photosynthesis and nutritional
stress [2]. The amount of nitrogen fertilizers used on burley tobacco was almost 3-5 times more than
that on flue-cured tobacco, but the yield between them was not significantly different [3], indicating a
much lower nitrogen utilization efficiency by burley tobacco. The nitrate content in air-cured burley
tobacco was at least 50 times greater than that in flue-cured tobacco [4] and was regarded as an
important cause of high tobacco-specific nitrosamines (TSNAs) formation in burley tobacco than that
in flue-cured tobacco. Although it is well known that burley tobacco has high levels of nitrate, little is
known about the mechanism of high level accumulation of nitrate in cultivation.

Nitrate (NO3 ™) is one of the major nitrogen sources being taken up by plants, which can
accumulate to a high concentration in plant cell vacuoles if it is not reduced, reutilized or transported
into the cytoplasm [5]. Consumption of nitrate could be harmful to humans. On the one hand, nitrate
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could be reduced to nitrite which has a priority of being re-oxidized to nitrate by oxyhemoglobin in the
bloodstream with the resultant formation of methemoglobin. The capacity of blood to deliver oxygen
to the body tissues would be impaired [6]. This condition is referred to as methemoglobinemia and is
harmful to growing children and adults. On the other hand, nitrate was one of the principle precursors
contributing to the formation and accumulation of TSNAs which would induce malignant tumors
in mice, rats and hamsters [7]. In recent years, reducing nitrate accumulation has been an important
research strategy for reduction of TSNA formation in tobacco.

Many factors such as nitrogen application, tobacco types and varieties, cultivation environment
and conditions were all related to nitrate accumulation [8]. An increased amount of nitrogen fertilizer
application generally gave rise to higher levels of nitrate [9]. Low nitrogen efficiency varieties usually
had higher nitrate accumulation than high nitrogen efficiency varieties under the same nitrogen
levels [10]. Differences in nitrate accumulation among varieties are due to their differential capacities
in absorbing, reducing and assimilating nitrate [11]. High assimilation was regarded as a main
contributor to low nitrate concentration in the lamina [12]. Nitrate reductase (NR) and glutamine
synthetase (GS) are important in nitrogen metabolism, and their activities have significant effects
on nitrate accumulation in plants. NR is responsible for the reduction of nitrate to nitrite in the
cytoplasm, which is the first step of nitrogen assimilation and utilization. GS can catalyze the first
step in the conversion of inorganic nitrogen (ammonium) into organic form (glutamine); NR and GS
play important roles in nitrogen reutilization, nitrogen assimilation and photorespiratory N cycle [13].
Activities of NR and GS are all related to the chloroplast. NR is very low in pigment-deficient leaves of
chloroplast-ribosome-deficient mutants [14]. About 40% of GS in the leaf cells is in the chloroplasts [15],
since chloroplasts supply energy by photosynthesis for nitrogen metabolism in plants [16].

In the present study, pot experiments were carried out to investigate the differences in
carbohydrate and nitrate accumulation between burley tobacco and flue-cured tobacco on the basis
of plant physiology, biochemistry and the plant transcriptome. RNA sequencing technology was
used to analyze the differences in nitrogen and carbon metabolism between the two types to explore
the reasons causing higher nitrate accumulation and lower carbohydrate content in burley tobacco.
Enzymatic activities of NR and GS, pigment content, photosynthetic trait, nitrogen and carbohydrate
content were also studied aiming to investigate the phenotype differences in photosynthetic rate,
capacity of nitrogen assimilation, carbohydrates and nitrate accumulation between burley tobacco and
flue-cured tobacco seedlings.

2. Results

Experiments of varying nitrogen application rates on burley tobacco were performed in the earlier
preparation stage. The results showed that leaf biomass between the two tobacco types was equal
at 24 mmol/L nitrogen level for burley tobacco and 4 mmol/L nitrogen level for flue-cured tobacco
during seedling stage (Figure 1a). Differences between the two tobacco types at the same nitrogen
application levels and at the same leaf biomass condition were then analyzed.

2.1. RNA-Seq Statistics, and Molecular Analysis on Nitrogen and Carbon Metabolism

Eighteen cDNA libraries (2 varieties * 3 treatments * 3 biological replicates) were prepared to
analyze the differences in nitrogen and carbon metabolism between burley tobacco and flue-cured
tobacco seedlings. After removing sequencing adaptors and low quality reads, we obtained 74.79 M
reads in tobacco leaves. In all, an average mapping ratio of 85.15% was mapped to the reference genome
(ftp:/ /ftp.solgenomics.net/genomes/Nicotiana_tabacum/assembly /Ntab-K326_AWOQO]J-5S.fa.gz), and
an average mapping ratio of 4.10% reads had multiple locations, and 81.08% of them had unique
location in that genome.
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Figure 1. Transcriptome analysis strategies and GO enrichment of target DEGs. (a) Leaf biomass in
burley tobacco and flue-cured tobacco; (b) Venn diagram of DEGs of flue-cured tobacco (NL_G1_G2) vs
burley tobacco (NL_Y1_Y2) at the same nitrogen application level and flue-cured tobacco (NL_G1_G2)
vs. burley tobacco (NH_Y1_Y2) at the same leaf biomass accumulation condition; (¢) PCA analysis of
treatments; (d) Genes represented in Profile 73; (e) GO enrichment in Profile 73; (f) Genes represented
in Profile 38; (g) GO enrichment in Profile 38. NL_G1: low nitrogen level, HD; NL_G2: low nitrogen
level, Z100; NL_Y1: low nitrogen level, TN90; NL_Y2: low nitrogen level, TN86; NH_Y1: high nitrogen
level, TN90; NH_Y2: high nitrogen level, TN86.

In the process of DEGs screening, fold change (FC) > 2 or FC < 0.5, p-value < 0.05, was used as
threshold to determine the significance of gene expression differences between flue-cured tobacco
and burley tobacco; meanwhile, genes of DEGs, both of flue-cured tobacco and burley tobacco, with
FPKM < 1 were removed. FC is radio of FPKM between burley tobacco (FPKM, average of TN90 and
TN86) and flue-cured tobacco (FPKM, average of HD and Z100). To determine the stable transcriptional
difference between flue-cured tobacco (HD and Z100) and burley tobacco (TN90 and TN86), GO and
KEGG classifications were implemented for genes belonging to certain expression profiles screened
by STEM. Genes in burley tobacco varieties were mostly down-regulated and up-regulated in profile
38 (genes expression pattern: NL_G1, NL_G2, NL_Y1, NL_Y2, NH_Y1, NH_Y2=0,0, -1, -1, -1,
—1) and profile 73 (genes expression pattern: NL_G1, NL_G2, NL_Y1, NL_Y2, NH_Y1, NH_Y2 =0,
0, 1, 1, 1, 1), respectively, compared with the flue-cured tobacco varieties at the same nitrogen
application and the same leaf biomass accumulation condition (Figure 1b—f). In profile 38, we observed
high values for categories involved in gene ontology biological processes (GO-BP), such as metal
ion transport (GO:0030001), plant-type hypersensitive response (GO:0009626), photosynthesis, light
harvesting (GO:0009765), protein-chromophore linkage (GO:0018298), oxidation-reduction process
(GO:0055114). Genes mostly involved in gene ontology cellular component (GO-CC), such as
photosystem I (GO:0009522), cytosol (GO:0005829), photosystem II (GO:0009523). In profile 73,
we observed high values for categories involved in gene ontology biological processes (GO-BP),
such as G-quadruplex DNA unwinding (GO:0044806), cell proliferation (GO:0008283), red or far-red
light signaling pathway (GO:0010017), negative regulation of telomere maintenance via telomerase
(GO:0032211), negative regulation of telomerase activity (GO:0051974), DNA duplex unwinding
(GO:0032508), DNA integration (GO:0015074). The genes mainly involved in gene ontology cellular
component (GO-CC), such as replication fork (GO:0005657), nuclear speck (GO:0016607), spliceosomal
complex (GO:0005681).

Transcripts (3079) were mainly represented in carbon and nitrogen metabolism. DEGs (207)
correlated with response to nitrate (GO:0010167), nitrate transport (GO:0015706), nitrate assimilation
(GO:0042128), starch and sucrose metabolism (Ko00500) were preferentially observed. Twenty three
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(down-regulated) and ten (up-regulated) target DEGs between the two types of tobacco were
significantly represented in profile 38 and profile 73, respectively (Tables S1 and S2).

Figure 2a,b show that carbon and nitrogen metabolism, starch and sucrose metabolism (Ko00500)
were significantly lower in burley tobacco than in flue-cured tobacco, which was consistent with
the low carbohydrate concentration in burley tobacco. The expression levels of genes involved
in responding to light (CP12-2, ATJ8 and EGY1), antenna proteins (lhcA-P4), starch and sucrose
metabolism (GDHA, SUS2) were consistently suppressed at different nitrogen application levels
in burley tobacco (Figure 2d). On average, gene expression levels involved in the responses to
nitrate (GO:0010167), nitrate transport (GO:0015706) and nitrate assimilation (GO:0042128) were lower
in burley tobacco than in flue-cured tobacco (Figure 2c). To explore the cause for higher nitrate
accumulation in burley tobacco, we analyzed the differences in gene expression patterns of nitrogen
metabolism between burley tobacco and flue-cured tobacco. The results showed that genes of CTL1,
NLP7, NPF3.1 and NPF7.3 were consistently and significantly suppressed under both low and high
nitrogen application treatments in burley tobacco (Figure 2e), which might be the cause for nitrate
accumulation in burley tobacco.
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Figure 2. Expressed pattern analysis of genes involved in nitrogen and carbon metabolism in flue-cured
tobacco and burley tobacco. (a) Primary transcripts correlated with carbon and nitrogen metabolism;
(b) Starch and sucrose metabolism; (c) Nitrate response, transport and assimilation; (d) Expression
pattern of genes related to carbon metabolism; (e) Expression pattern of genes related to nitrogen
metabolism. NL_G1: low nitrogen level, HD; NL_G2: low nitrogen level, Z100; NL_Y1: low nitrogen
level, TN90; NL_Y2: low nitrogen level, TN86; NH_Y1: high nitrogen level, TN90; NH_Y2: high
nitrogen level, TN86. Box-whisker plot represents dispersity of minimum, first quartile, median,
third quartile in genes expression level of treatments. Y-axis represents normalized expression level
(log 10 (FPKM + 1)). Brown represents genes expression pattern of flue-cured tobacco grown at low
nitrogen level. Yellow represents genes expression pattern of burley tobacco grown at low nitrogen
level. Green represents genes expression pattern of burley tobacco grown at high nitrogen level.
Date are means of three biological replications. Symbol * indicated that gene expressed pattern was
significant enrichment in profile (0, 0, —1, —1, —1, —1) performed by STEM. The same gene labels
represent the different transcripts of the same gene.
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Eight down-regulated and one up-regulated unigenes were selected for qRT-PCR analysis to
verify the reliability and accuracy of the transcriptome date. L25, a highly expressed and widely used
reference genes, was used as an internal control. For most of these genes, their expression patterns
were highly consistent both in qRT-PCR and transcriptome analyses (Figure 3a,b).
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Figure 3. RNA-seq results confirmed by quantitative qRT-PCR. (a) gRT-PCR validation for nine selected
genes in flue-cures tobacco and burley tobacco at same nitrogen level; (b) qRT-PCR validation for nine
selected genes in flue-cures tobacco and burley tobacco at same leaf biomass condition. Error bars
represent standard error (1 = 6).

2.2. Differences in Pigment Content and Photosynthesis between the Two Types

Figure 4 shows that pigment, chlorophyll a, chlorophyll b and carotene contents in burley tobacco
increased with the increase of nitrogen application. Pigment, chlorophyll a content, chlorophyll b
and carotenoid contents were significantly lower in burley tobacco (mean of TN90 and TN86) than
those in flue-cured tobacco (mean of HD and Z100) at the same nitrogen application level. Fv/Fm was
significantly higher in burley tobacco than that in flue-cured tobacco at the same nitrogen level and at
the same leaf biomass accumulation, respectively. Pn was always lower in burley tobacco than that
in flue-cured tobacco (Figure 5a,b). Lower pigment content and weaker photosynthesis may have an
influence on carbon fixation and lead to low carbohydrate accumulation in burley tobacco.

(@ (b)

w
o

o

w

1
N
o

mg-g’)
o
>

°

N

o

10

Carotene content (mg-g™')
*
*

Pigment content (

L nd
o

0.0

Y Y Y Y L %
% " K % %
;:3 NCENCN \;7\}9 \).;\};
~ (© = (d)
2.0 0.8
2 £
= £
%1'5 % -
8 g
e 2
Z10 .t £0. wx 1
15 3
5 S
2 2
Oos o2
Y Y Y Y Y'Y Y Y K
* k% % * % % % %
o e s Hele Nt

Figure 4. Differences in pigment content (a), carotene content (b), chlorophyll a (c), chlorophyll b (d) in
flue-cured tobacco and burley tobacco at the same nitrogen level and same leaf biomass accumulation
condition. NL_G1: low nitrogen level, HD; NL_G2: low nitrogen level, Z100; NL_Y1: low nitrogen level,
TN90; NL_Y2: low nitrogen level, TN86; NH_Y1: high nitrogen level, TN90; NH_Y2: high nitrogen
level, TN86. Error bars indicate standard error of the means (n = 3). Symbols ** ! indicate that the
significant differences between flue-cured tobacco and burley tobacco at the same nitrogen application
are at 0.01, respectively. Symbols ** 2 indicate that the significant differences between flue-cured tobacco
and burley tobacco at the same leaf biomass accumulation condition are at 0.01, respectively.
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Figure 5. Differences in Fv/Fm (a), Pn (b), reducing sugar content (c), total soluble sugar content (d) in
flue-cured tobacco and burley tobacco at the same nitrogen level and same leaf biomass accumulation
condition. Fv/Fm: Maximum quantum yield of PS II photochemistry; Pn: Photosynthetic rate. NL_G1:
low nitrogen level, HD; NL_G2: low nitrogen level, Z100; NL_Y1: low nitrogen level, TN90; NL_Y2: low
nitrogen level, TN86; NH_Y1: high nitrogen level, TN90; NH_Y2: high nitrogen level, TN86. Error bars
of chlorophyll a fluorescence and photosynthesis rate indicate standard error of the means (N = 20,
“N” means the number of individuals), and error bars of reducing sugar content and total soluble
sugar content indicate standard error of the means (1 = 3, three biological replicates). Symbols ** 1
and * ! indicate that the significant differences between flue-cured tobacco and burley tobacco at the
same nitrogen application are at 0.01 and 0.05, respectively. Symbols ** 2 indicate that the significant
differences between flue-cured tobacco and burley tobacco at the same leaf biomass accumulation
condition are at 0.01, respectively.

2.3. Differences in Enzymes Activities Correlated with Nitrogen Metabolism

NR and GS both play important roles in the process of nitrogen metabolism. In order to
understand whether the key enzymes involved in nitrogen metabolism were the key difference
between burley tobacco and flue-cured tobacco on nitrogen and nitrate accumulation, we measured
the activities of NR, GS and their reaction products in burley tobacco and flue-cured tobacco leaves
(Figure 6a,b). The ratios of nitrate reductase activity to nitrogen application level (NRA/NA) and
glutamine synthetase activity to nitrogen application level (GSA/NA) were lower in burley tobacco
than in flue-cured tobacco at the same nitrogen level. Furthermore, the ratios of NRA/NA and
GSA/NA in burley tobacco were significantly low at the same leaf biomass accumulation, compared
with that in flue-cured tobacco. NH4" content in burley tobacco was dramatically lower than that in
flue-cured tobacco at the same nitrogen application level, but the content of NH,;* in burley tobacco
was slightly higher than that in flue-cured tobacco at the same leaf biomass accumulation (Figure 6¢).
In contrast, soluble protein content in burley tobacco at low and high nitrogen application levels were
always lower than those in flue-cured tobacco (Figure 6d). In particular, the weak ability of nitrogen
reutilization on nitrogen reduction and nitrogen assimilation between the two types was in line with
analysis of transcriptomic results.
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Figure 6. Differences in NRA /NA (a), GSA/NA (b), NH4* content (c) and soluble protein content
(d) between the two types at the same nitrogen level and same leaf biomass accumulation condition.
NA: Nitrogen application level; NRA /NA: Ratio of nitrate reductase activity to nitrogen application
level; GSA/NA: Ratio of glutamine synthetase activity to nitrogen application level. NL_G1:
low nitrogen level, HD; NL_G2: low nitrogen level, Z100; NL_Y1: low nitrogen level, TN90; NL_Y2:
low nitrogen level, TN86; NH_Y1: high nitrogen level, TN90; NH_Y2: high nitrogen level, TN86. Error
bars indicate standard error of the means (1 = 3). Symbols ** ! and * ! indicate that the significant
differences between flue-cured tobacco and burley tobacco at the same nitrogen application are at 0.01
and 0.05, respectively. Symbols ** 2 indicate that the significant differences between flue-cured tobacco
and burley tobacco at the same leaf biomass accumulation condition are at 0.01, respectively.

2.4. Differences in Carbon and Nitrogen Compounds between Flue-Cured and Burley Tobacco

Nitrogen and carbohydrate contents were different between burley tobacco and flue-cured tobacco
(Figures 5¢,d and 7a—d). The total soluble sugar and reducing sugar content in burley tobacco were
lower than those in flue-cured tobacco under the same nitrogen level or same leaf biomass accumulation
level. The reducing sugar content was lower at high nitrogen application rates than that at low nitrogen
application levels for burley tobacco. The total nitrogen content and nitrogen accumulation in burley
tobacco were significantly higher than those in flue-cured tobacco at the same nitrogen application or
the same leaf biomass accumulation condition. Nitrogen accumulation per plant was lower in burley
tobacco than that in flue-cured tobacco at the same nitrogen application, indicating that burley tobacco
may have lower ability of nitrogen absorption than flue-cured tobacco. In addition, NO3-N content
and the ratio of NO3-N/total nitrogen content (TN) in burley tobacco under high and low nitrogen
application treatment were significantly higher than those in flue-cured tobacco. Differences in nitrogen
metabolism between the two types might be due to the different ability of nitrogen reutilization in the
leaf, leading to nitrate accumulation in burley tobacco.
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Figure 7. Differences in nitrogen compound between the two types at the same nitrogen level and
same leaf biomass accumulation condition. (a) Nitrogen accumulation per plant; (b) Total nitrogen
content (TN); (c) NO3-N content; (d) Ratio of NO3-N to total nitrogen content (TN) between the two
types of different treatments. NL_G1: low nitrogen level, HD; NL_G2: low nitrogen level, Z100;
NL_Y1: low nitrogen level, TN90; NL_Y2: low nitrogen level, TN86; NH_Y1: high nitrogen level, TN90;
NH_Y2: high nitrogen level, TN86. Error bars indicate standard error of the means (1 = 3). Symbols * 1
indicate that the significant differences between flue-cured tobacco and burley tobacco at the same
nitrogen application are at 0.05, respectively. Symbols ** 2 indicate that the significant differences
between flue-cured tobacco and burley tobacco at the same leaf biomass accumulation condition are at
0.01, respectively.

2.5. Correlation Analysis

The correlation coefficients between carbon nitrite and nitrogen and carbon metabolism and
metabolites are listed in Tables 1 and 2. The results showed that NO3-N and ratio of NO3-N
to total nitrogen content (TN) had significantly negative correlation with enzyme activities of
nitrogen assimilation and photosynthetic rate, indicating that capability of nitrogen assimilation
and photosynthesis efficiency might have huge effects to nitrate accumulation in tobacco. In contrast,
total soluble sugar content had positive correlation with the enzyme activities of nitrogen assimilation
and photosynthetic rate, indicating that carbohydrate formation in tobacco were mainly co-determined
by carbon and nitrogen metabolism. A positive correlation was also observed between leaf biomass
and enzyme activities of nitrogen assimilation and photosynthetic rate, while there was significant
correlation with pigment content.

Table 1. Correlation coefficients between leaf matter accumulation and nitrogen and carbon metabolism

in tobacco.
Parameter NRA GSA NO3-N TN NO3-N/TN  Pigment Pn
Total soluble sugar content 0.362 0.292 —0.452 —0.554 —0.486 0.433 0.777
Reducing sugar content —-0.119 —-0.086 —0.805 —0.879* —0.825* 0.019 0.368
Leaf biomass 0.631 0.796 0.226 0.014 0.201 0.822 * 0.738

NRA: Nitrate reductase activity; GSA: Glutamine synthetase activity; TN: Total nitrogen content; Pn: Photosynthetic
rate. Symbol * indicates significant differences at 0.05, respectively.
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Table 2. Correlation coefficients between nitrate content and enzymes of nitrogen assimilation, pigment
content in tobacco.

Parameter NRA/NA GSA/NA Pigment/NA Pn/NA
NOs-N —0.986 ** —0.828 * —0.923 ** —0.970 **
NO;-N/TN —0.989 ** —0.849 * —0.936 ** —0.973 **

NA: Nitrogen application level; NRA/NA: Nitrate reductase activity/Nitrogen application level; GSA/NA:
Glutamine synthetase activity /Nitrogen application level; Pn: Photosynthetic rate. Symbols ** and * indicate
significant differences at 0.01 and 0.05, respectively.

3. Discussion

The objectives of this research were to investigate the physiological, biochemical and
transcriptome differences in nitrogen and carbon metabolism between flue-cured tobacco and burley
tobacco, and to explore the reasons for low carbohydrate formation and high nitrate accumulation in
burley tobacco. The results from this study demonstrated that genes related to light stimulus responses,
carbon fixation in photosynthesis and starch and sucrose biosynthesis, response to nitrate, nitrate
transport and nitrate assimilation were significantly suppressed in burley tobacco at both low and
high nitrogen applications (Figure 2a—e).

Burley is one tobacco type characteristic of yellow—green leaf, whose pigment content is obviously
lower than that of flue-cured tobacco (Figure 4a—d). Photosynthesis and its products in burley
tobacco were all decreased (Figure 5b—-d). Some key genes related to chlorophyll biosynthetic
process and photosynthesis were significantly down-regulated in burley tobacco, including Protein
CP12, which is believed to be an oxygenic photosynthetic organisms [17], EGY1 gene, which
has pleiotropic effects both on chloroplast development and on ethylene-dependent gravitropism
of light-grown hypocotyls [18], ATJ8 gene, which has effects on photosynthesis by diminishing
photosynthetic efficiency and destroying PS II complex stability [19]. Gene of lhcA-P4 encode key
subunit of light-harvesting complex which could convert light energy into chemical energy [20].
The down-regulation of these genes might decrease the chlorophyll formation and photosynthesis
efficiency in burley tobacco. Sucrose synthase (SUS) plays a dominant role in generating precursors for
starch biosynthesis [21], and it catalyzes and controls the flow of carbon into starch biosynthesis [22].
Sucrose-phosphate synthase (SPS) plays the role of rate-limiting steps in sucrose synthesis in higher
plant [23]. ADPG pyrophosphorylase (AGPase) exclusively catalyzes the synthesis of ADPG and
acts as the major limiting step of the gluconeogenic process, which could serve as universal glucosyl
donor in the reaction process of starch synthase [24]. Genes SUS2, SPS2, AGPS1 were constantly
down-regulated both in burley tobacco at the low and high nitrogen application, which was consistent
with low carbohydrate formation in burley tobacco.

With six times more nitrogen applied, the NOs ™~ content in burley tobacco seedlings increased
by 4.79-fold (Figure 7c). Nitrogen application in commercial burley production was almost 3—4 times
higher than that in flue-cured tobacco, while NO3 ™ content in burley cured leaves was tens or hundreds
of times greater than that in flue-cured tobacco [25]. In general, nitrogen accumulation in burley tobacco
was lower than that in flue-cured tobacco at the same nitrogen application level (Figure 7a), suggesting
that nitrate accumulation in burley tobacco leaf were not due to the efficient root nitrogen uptake
but due to the lower ability of nitrogen utilization in leaf. CTL1 was essential for response to nitrate,
regulating root architecture, normal plant growth and development [26]. Genes involved in response
to nitrate (NLP7, CTL1) in leaf were significantly suppressed, suggesting that more nitrate needed to
transport into the leaf to fulfill nitrogen metabolism in burley tobacco. Hence, much more nitrogen
fertilizer would be required to meet the requirement of normal plant development of burley tobacco.

Both genes of high-affinity nitrate transporters (NRT2.1 and NRT2.5) and genes of low-affinity
nitrate transporters (NPF3.1 and NPF7.3) were significantly down-regulated in burley tobacco leaf,
which would in turn decrease nitrate transport ability, making nitrate translocation more difficult,
and would lead to nitrate accumulation once it was stored in leaves [27]. NPF3.1 and NPF7.3 are
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low-affinity proton-dependent bidirectional nitrate transporter that are involved in nitrate loading into
xylem but not in nitrate uptake [28]. NRT2.1 and NRT2.5 belong to high-affinity nitrate transporter, and
are involved in nitrate transport too [29]. Both enzymatic activities (NRA, GSA) and expression levels
of genes (NIA1, NIA2, GS1, GDHA) involved in nitrogen assimilation were lower in burley tobacco
than those in flue-cured tobacco. Activities of NR and GS had great influence on nitrate concentration
in higher plants, and the NR was considered as a limiting factor for nitrogen assimilation [30].
Activity of GS and soluble protein content were significantly lower in burley tobacco than those
in flue-cured tobacco at the same nitrogen application level, indicating that the lower capacity of
nitrogen assimilation in burley tobacco might lead to its higher nitrate accumulation in view of plant
physiology, biochemistry and transcriptome.

NLP7, one major transcription factor, is a positive regulator of nitrate-induced expression of
N-related genes through post-translation regulation, such as the genes NRT2.1, NITR2:1, NIA1,
NIR1 [31]. NLP7 was reported to be involved in response to nitrate, nitrate assimilation, stomatal
movement and DNA binding [32], and this gene expression level was consistently and significantly
hampered in burley tobacco at low and high nitrogen levels (Figure 2e). Activities of NR and GS
and total protein content in Arabidopsis NLP7 mutants were significantly reduced but nitrate content
was significantly increased, the similar results were observed in burley tobacco [32]. In addition,
chlorophyll content, photosynthesis and carbohydrates increased in NLP7-overexpressing and mutant
plants [32]. The suppressed transcription factor NLP7 might be one key reasons for low carbohydrate
formation and high nitrate accumulation in burley tobacco. The interesting candidates need to be
further investigated in the future.

In Conclusion, differences in carbohydrate and nitrate accumulation between burley tobacco and
flue-cured tobacco were significant. Carbohydrate concentration in burley tobacco was significantly
lower than that in flue-cured tobacco, which was closely associated with low pigment content
and photosynthetic efficiency in burley tobacco. Nitrate accumulation was significantly greater
in burley tobacco than in flue-cured tobacco. Aspects such as weak response to nitrate, weak
nitrogen assimilation and nitrate translocation may combine to generate the phenotype of high
nitrate accumulation in burley tobacco. The above analysis on the differences in nitrogen and carbon
metabolism between burley tobacco and flue-cured tobacco in view of plant physiology, biochemistry
and transcriptome clarify the direction for decreasing nitrate accumulation and improving nitrogen
efficiency of burley tobacco in the future.

4. Material and Methods

4.1. Plant Material and Growth Conditions

Experiments were conducted on substrate culture in greenhouse that maintained a temperature
of 23 &+ 2 °C. Two types of burley tobacco and flue-cured tobacco were found to be significantly
different in nitrate content in our former experiments [33]. Seeds were sterilized with 2% (v/v) sodium
hypochlorite for 5 min twice. Seeds were sown in a floating system. Until having four to five permanent
leaves (sown 40 days later), seedlings were washed with distilled water. Seedlings were transplanted
in 25 cm x 30 cm (diameter x depth) plastic pots (plant/pot). In preliminary tests, seedlings being
transplanted in plastic pots were treated with different nitrogen rates (0, 4, 12, 20, 24, 28, 32 and
36 mmol/L, treated 10 days) in a form of NH4NO3; and KNOj to determine an amount of nitrogen
application between two types at the same leaf biomass. Same size seedlings were planted under
different treatments. Every treatment contained 30 uniform plants.

4.2. Treatments

Low nitrogen level: Flue-cured tobacco, (1) NL_G1, 4 mmol/L, HD; (2) NL_G2, 4 mmol/L, Z100;
Burley tobacco, (3) NL_Y1, 4 mmol/L, TN90; (4) NL_Y2, 4 mmol/L, TN86.
High nitrogen level: Burley tobacco, (5) NH_Y1, 24 mmol/L, TN90; (6) NH_Y2, 24 mmol/L, TN86.
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Composition of nutrient solution was as follows: N as NH4NO3;, KNO3, Ca(NO3),-4H,0,
1 mmol/L; P as NaH;POy, 0.75 mmol/L; Ca as CaCl,-2H,0, 0.5 mmol/L; Mg as MgSO4-7H;0,
9 umol/L; Mn as MnCl,-4H,0, 0.03 umol/L; Mo as (NH4),MoQy, 46 umol/L; B as H3BOj3, 8 pumol/L;
Zn as ZnSOy4-7H50, 3 umol/L; Cu as CuSO4-5H,0, 20 umol/L; Fe as FeSO4-7H,0O + Na,-EDTA.
All nutrient solutions were continuously aerated with an air pumps. After germination, nutrient
solution was replaced every six days. When seedlings were transplanted (sown 30 days later), nutrient
solutions were refreshed every two days.

4.3. Sampling

Sampling and analysis were carried out 10 days after seedlings being transplanted (around
10:00 a.m.). Thirty uniform plants per treatment were divided into three groups. Fully expanded
leaves (length > 5 cm, up to down, the fourth leaf from top) from the same position in three pots of
each treatment were sampled in an ice box. Leave lamina between the middle sixth to eighth side vein
were sliced into small sections for determination of NRA, GSA, NH4* concentrations, pigment content
and soluble protein content. The remaining 20 plants (per treatment) were used for the photosynthesis
measurement by Li-6400 photosynthesis equipment (LI-COR Biotechnology, Lincoln, NE, USA) and
Mini-PAM fluorometer (Walz, Effeltrich, Germany). Seedlings were then washed with flowing distilled
water before being dried with absorbent paper and divided into root, stalk and leaves. Leaves of
five plants from each treatment were mixed and frozen in liquid nitrogen immediately, and then
kept at —80 °C. Tissues of 15 plants in one treatment were deactivated at 105 °C for 20 min and
dried at 60 °C for 48 h. Dry matter of different tissues was weighed and grinded to pass through a
screen with 60 meshes, and the final powder mixture was used to determine the nitrate, total nitrogen
concentration, total soluble sugar content and soluble reducing sugar content in plant.

4.4. Measurement of NRA, GSA and Nitrate

Fresh lamina tissues without vein were cut into 2 mm x 5 mm pieces. NRA was measured based
on the method described by Li [34]. GSA was determined according to the method described by O'Neal
and Joy [35]. Nitrate content was determined according to the method described by Cataldo [36].

4.5. Measurement of Pigment Content, Photosynthetic Rate (Pn), Chlorophyll a Fluorescence

Pigment content was determined with 95% ethanol [37]. Photosynthetic rate (Pn) was observed
using a portable photosynthesis system (LI-COR Biotechnology, 6400XT, Lincoln, NE, USA) at
9:00-11:00 a.m. as described by Liu [38]. Photosynthetic photon flux density (PPFD) and CO,
concentration in the reference chamber with a CO, mixture were set as 1200 umol m—2 s~! and
400 umol mol !, respectively. Chlorophyll a fluorescence was measured in the same leaf determined
nitrogen metabolism with a Mini-PAM fluorometer (Walz, Effeltrich, Germany) after a dark-adaptation
of 20 min. Maximum quantum yield (Fv/Fm) was calculated according to the method described by
Schreiber [39].

4.6. Measurement of Total Nitrogen, Total Soluble Sugar, Reducing Sugar Content

Total nitrogen, total soluble sugar and reducing sugar content were determined according to the
method of modified Chinese Tobacco industry standard (YC/T 161, 159-2002). Samples (0.1 g powder
mixture containing 0.1 g CuSO4 and 1 g K»504) were mixed with 5 mL concentrated sulphuric acid and
retained 1-2 h at room temperature. The sample was kept for 150 °C (30 min), 250 °C (30 min), 370 °C
(2 h) in furnace equipment (CIF, DS53-380, Los Angeles, CA, USA). After the mixture being cooled,
10 mL of deionized water was added to the sample and it was shaken thoroughly. The mixture being
cooled 1-2 h was isochoric and filtered. The total nitrogen content in supernatant was determined
with flow-injection-analysis (Bran + Luebbe, Hamburg, AA3, Germany). Samples (0.25 g powder
mixture containing 25 mL 5% (v/v) acetic acid in 50 mL Erlenmeyer) were shaken for 30 min and
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filtered. The total soluble sugar and reducing sugar content in supernatant was determined with
flow-injection-analysis (AA3).

4.7. RNA Extraction, Preparation of cDNA Library, and Sequencing

Total RNA was extracted using the mirVana miRNA Isolation Kit (Ambion, Waltham, MA,
USA) following the manufacturer’s protocol. RNA integrity was evaluated using the Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). The samples with RNA Integrity Number
(RIN) >7 were subjected to the subsequent analysis. The libraries were constructed using TruSeq
Stranded mRNA LTSample Prep Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. These libraries were then sequenced on the Illumina sequencing platform (HiSeqTM
2500 or [llumina HiSeq X Ten) and 125 bp /150 bp paired-end reads were generated. Quality control
was assessed on the remaining reads using NGS QC Toolkit [40]. After removing low quality date,
the clean reads with Q20 percentage of 94.07% were mapped to reference P. trichocarpa genome (ftp:
/ /ftp.solgenomics.net/genomes/Nicotiana_tabacum/assembly/Ntab-K326_AWO]J-SS.fa.gz) using
bowtie2 or Tophat (http://tophat.cbcb.umd.edu/) [41,42].

4.8. RNA-Seq Analysis, GO and KEGG Pathway Enrichment Analysis of Differentially Expressed
Genes (DEGs)

Transcript profiles of RNA-seq date were analyzed by calculating the read fragments per kilo
base per million mapped reads (FPKM). FPKM value of each gene was calculated using cufflinks, and
the read counts of each gene were obtained by htseq-count [43,44]. DEGs were identified using the
DESeq (2012) functions estimate Size Factors and nbinomTest [45]. p-value < 0.05 and fold change > 2
or fold change < 0.5 was set as the threshold for significantly differential expression. Gene function
was annotated based on databases of NR (NCBI non-redundant protein sequences), KOG (Clusters
of Orthologous Groups of proteins) [46], Swiss-Prot (A manually annotated and reviewed protein
sequence database) [47], KO (KEGG Ortholog database) [48], GO (Gene Ontology) [49]. Target genes of
DEGs between flue-cured tobacco and burley tobacco in nitrogen and carbon metabolism were screened
out by Short Time-series Expression Miner (STEM) version 1.3.8 (NIH, Bethesda, MD, USA) [50]. DEGs
belonging to the same cluster were assumed to have similar expression pattern with each other [51].
GO enrichment and KEGG pathway enrichment analysis of DEGs were, respectively, achieved using
R based on the hypergeometric distribution. Heatmaps analysis of DEGs was generated with R
(3.4.1 version) (Lucent Technologies, Murray Hill, NJ, USA) pheatmap package [52]. Box plots were
displayed according to the methods of Jin [53].

4.9. Validation by gRT-PCR Analysis

Quantification was performed with a two-step reaction process: reverse transcription (RT) and
PCR. RT reactions were performed in a GeneAmp® PCR System 9700 (Applied Biosystems, Foster, CA,
USA) and GeneAmp® PCR System 9700 (Applied Biosystems, Foster, CA, USA). Real-time PCR was
performed using LightCycler® 480 II Real-time PCR Instrument (Roche, Basel, Switzerland). Reactions
were incubated in a 384-well optical plate (Roche, Basel, Switzerland) at 95 °C for 5 min, followed
by 40 cycles of 95 °C for 10 s, 60 °C for 30 s. Each sample was run in triplicate for analysis. At the
end of the PCR cycles, melting curve analysis was performed to validate the specific generation of the
expected PCR product. The primer sequences were designed in the laboratory and synthesized by
Generay Biotech (Shanghai, China) based on the mRNA sequences obtained from the NCBI database
(Table S3). The expression levels of mRNAs were normalized to the expression in flue-cured tobacco
(mean of HD and Z100) and were calculated using the 2-AACt method [54].

4.10. Statistical Analysis

Figures were processed using Origin Pro 9.0. (OriginLab Corporation, Northampton, MA, USA)
and correlation analysis and variance between treatments were all processed using SPSS 20.0. (IBM,
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Palo Alto, CA, USA) Treatments were compared by LSD multiple range test (p < 0.05). All presented
data is mean of three biological replicates (1 = 3) and standard deviations were always less than 5% of
data value.

Supplementary Materials: Supplementary materials are available online, Table S1: Gene Table for Profile 38
(0.0, 0.0, —1.0, —1.0, —1.0, —1.0) correlated with carbon and nitrogen metabolism. Date are means of three
biological replications. Table S2: Gene Table for Profile 73 (0.0, 0.0, 1.0, 1.0, 1.0, 1.0) correlated with carbon and
nitrogen metabolism. Date are means of three biological replications; Table S3: The primers used in real-time PCR.
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