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Abstract: Ephedra sinica polysaccharides have been reported to possess important activities,
so quality evaluation of polysaccharides from the genus Ephedra is urgent. In this study, enzymatic
digestions were performed to establish multiple saccharide fingerprints by ultra-performance liquid
chromatography with electrospray ionization triple quadrupole linear ion trap mass spectrometry
(UPLC-ESI-TQ-MS/MS) based on a multiple-reaction monitoring in negative mode. Under optimum
UPLC-ESI--TQ-MS/MS conditions, excellent separation and quantification of 21 constituents were
achieved within 20 min on a solid core column with a 1.6 µm particle using pre-column derivatization
with a PMP reagent. This method, coupled with enzymatic digestions and principal component
analysis, has been successfully applied to characterize and discriminate Ephedra polysaccharides
attributed to different species and plant parts. The results suggest that the proposed analytical strategy
could achieve a quality evaluation of plant polysaccharides from traditional Chinese medicines.
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1. Introduction

Mahuang is a famous traditional Chinese medicine (TCM) that has been used for thousands
of years for the treatment of allergies, asthma, pneumonia, bronchitis, hay fever, and colds [1].
According to the 2015 edition of the Chinese pharmacopoeia, Mahuang is dry stems of Ephedra sinica
Stapf, E. intermedia Schrenket C. A. Mey. and E. equisetina Bge., while Radix Ephedrae is recorded to be
another different TCM, which is the dry roots or rhizoma of E. sinica and E. intermedia in the official
pharmacopoeia of China [2]. Recently, some reports have demonstrated that the stems of E. sinica
contain a high amount of polysaccharides, ranging from 3% to 5% of the total weight [3,4]. In addition,
E. sinica stem polysaccharides showed obviously immunosuppressive effects by a carbon clearance
test, delayed type hypersensitivity reaction, and humoral immune response in vivo [4–6]. However,
so far there is no published information on discrimination of Ephedra polysaccharides from different
species and plant parts. Therefore, it is essential to develop an effective method for quality evaluation
of Ephedra polysaccharides.

A variety of chromatographic techniques such as gas chromatography (GC) [7], capillary
electrophoresis (CE) [8], high-performance liquid chromatography (HPLC) [9,10], and high-performance
anion exchange chromatography (HPAEC) [11,12] were previously considered as useful tools for the
determination of carbohydrates. Although existing techniques are increasingly mature and gradually
improving, they still face many problems and challenges. The limit of quantification of the GC,
HPLC-UV, and CE-UV method is too restrictive and cannot be used in trace quantification of
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carbohydrates. HPAEC can achieve more satisfactory separation than HPLC techniques, but the
epimerization and degradation can be issues at high pH [11,12]. Except for HPAEC, most of the LC
and CE techniques often use labeling with either fluorescence or UV tags for enhanced detection.
The reagent 1-phenyl-3-methyl-5-pyrzolone (PMP) has been widely used for composition analysis of
plant polysaccharides [3].

Carbohydrates encompass a number of homologues with similar structures, so the analysis
of carbohydrates inevitably requires high-resolution separation techniques. With the progress of
chromatographic techniques, ultra-performance liquid chromatography (UPLC) was developed with
a sub-2 µm diameter, which shortened the analysis time and provided high resolution and sensitivity
separation, especially tandem mass spectrometry (MS/MS). Although UPLC-MS/MS have been
applied to analyze plant polysaccharides, most reports are limited to several monosaccharides [13,14].

In this study, UPLC with triple quadrupole linear ion trap mass spectrometry (TQ-MS/MS)
was firstly developed for simultaneous analysis of 21 carbohydrates and one degradation product
(5-HMF, 5-hydroxymethyl furfural) based on a pre-column PMP derivatization. Elution of all eight
neutral sugars, two uronic acids, three amino sugars, and two acetyl amino sugars, was then
used to evaluate the performance of this method. Finally, UPLC-ESI−-TQ-MS/MS coupled with
enzymatic digestions and principal component analysis (PCA) has been successfully applied to
analyze and characterize 20 Ephedra polysaccharide samples attributed to different species and plant
parts. The results showed that the proposed analytical methods provided reasonable insight and
guidance for quality evaluation of plant polysaccharides from the genus Ephedra.

2. Experimental

2.1. Materials and Reagents

E. sinica, E. intermedia, and E. equisetina were purchased in September 2012 from Datong,
Shanxi Province, China and identified by Professor Zhen-Yue Wang of Heilongjiang University of
Chinese Medicine. The voucher specimens (20120905) were deposited at the herbarium of Heilongjiang
University of Chinese Medicine, Harbin, China.

D-galacturonic acid (GalUA), D-glucuronic acid (GlcUA), D-fucose (Fuc), L-rhamnose (Rha),
D-glucose (Glc), D-galactose (Gal), D-mannose (Man), L-arabinose (Ara),D-ribose (Rib), N-Acetyl-D-(+)-
glucosamine (GlcNAc), N-Acetyl-D-(+)-galactosam-ine (GalNAc), D-glucosamine hydrochloride (GlcN),
D-galactosamine hydrochloride (GalN), D-mannosamine hydrochloride (ManN), 5-hydroxymethyl
furfural (5-HMF), lactose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose
were purchased from Sigma- Aldrich (St. Louis, MO, USA). D2-Glc, 1-phenyl-3-methyl-5-pyrazolone
(PMP), ammonium formate (AF), and formic acid (FA) were also obtained from Sigma-Aldrich. Pectinase,
α-amylase, and cellulose were purchased from Sigma-Aldrich; xylanase and endo-1,3-β-glucanase were
obtained from Megazyme. Water was obtained from a Milli-Q purification system (Millipore, Bedford,
MA, USA). All other chemicals were of the highest analytical grade.

2.2. Preparation of Polysaccharides from Genus Ephedra

The dried sample materials (100 g) were extracted three times with 10-fold volume of distilled
water under reflux for 3 h each time. The filtrate of the obtained extract was condensed under a vacuum
to syrup and precipitated with 95% ethanol added to a final concentration of 80%. After standing for 24 h
at 4 ◦C, the precipitate was collected and washed with anhydrous ethanol, then dried. The residue was
re-dissolved in water, and then, after centrifugation (4000 rpm for 15 min), the supernatant was dialyzed
(cut-off Mw 3500 Da) against tap water for 48 h and distilled water for 48 h and lyophilized to yield
crude polysaccharides. The crude polysaccharides, which were prepared in duplicate, were obtained
for further analysis.
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2.3. Specific Enzymatic Digestion of Ephedra Polysaccharides

Polysaccharide solutions (5 mg/mL, 200 µL) were mixed with specific enzymes (the final
concentrations of pectinase, endo-1,4-β-xylanase, cellulose, β-(1→3)-D-glucanase and α-amylase were
30 U/mL, 10 U/mL, 0.3 U/mL, 0.2 U/mL and 30 U/mL, respectively) in a 1.5-mL centrifuge tube
and digested overnight (≥15 h) at 50 ◦C. Then the mixtures were heated at 80 ◦C for 20 min to stop
the enzymatic digestion. After centrifugation (12,000 rpm/min) at room temperature for 20 min,
the supernatants were evaporated to dryness with a nitrogen evaporator at 70 ◦C and then used for
derivatization with PMP. Moreover, the blank control was treated as described above without enzymes.

2.4. Derivatization with PMP Reagent

PMP derivatization of carbohydrates was carried out as described previously with proper
modifications [3]. Briefly, PMP was prepared in methanol at a final concentration of 0.5 M. One hundred
microliters of each individual standard monosaccharide and oligosaccharide, mix standard solutions,
and the hydrolyzed polysaccharide samples were placed in 1.5-mL centrifuge tubes. Then, 0.5 M PMP
(100 µL) and ammonia (200 µL) were added. D2-Glc as an internal standard (2 M) was added to each
sample (2 µL). Each mixture was allowed to react for 20 min in a 70 ◦C water bath, then cooled to room
temperature and neutralized with 200 µL of formic acid. The solution was directly filtered through
a 0.22-µm membrane and diluted with deionized water before UPLC-TQ-MS/MS analysis.

2.5. UPLC Apparatus and Conditions

An ACQUITY ultra-performance liquid chromatographic system (Waters, Milford, MA, USA)
was applied. The chromatographic separation was conducted on a cortecs UPLC C18 column
(1.6 µm, 2.1 × 100 mm) equipped with a cortecs UPLC C18 guard column (1.6 µm, 2.1 × 5 mm).
The binary mobile phase was composed of acetonitrile as solvent A and deionized water with 10 mM
AF as solvent B. Optimal run time for separation was 20 min using the following gradient program
at a flow rate of 0.3 mL/min and a column oven temperature of 30 ◦C: isocratic 13% A at 0–0.5 min;
0.5–2 min, linear from 13% to 16% A (v/v); 2–15 min, linear from 16% to 21% A (v/v); 15–16 min,
linear from 21% to 60% A (v/v); 16–17 min, linear from 60% to 90% A (v/v); followed by column
re-equilibration using 13% A at 17–20 min. The injection volume was set to 2 µL.

2.6. MS Apparatus and Conditions

The MS detection was performed using an API 4000 Qtrap (AB Sciex, Foster City, CA, USA)
equipped with an electrospray ionization (ESI) interface, and operated in negative ion mode with
multiple reaction monitoring (MRM). Turbo V ion source parameters were common to all analytes,
as follows: the capillary voltage was −4.5 kV, and the source temperature was at 550 ◦C. The curtain
gas and collision gas setting were 30 psi and 10 psi, respectively. The pressure for nebulization gas and
vaporization gas setting were 55 psi. The declustering potential (DP) and collision energy (CE) were
optimized for each analyte.

2.7. Data Processing

Evaluation of the different polysaccharides from genus Ephedra could be facilitated using
multivariate statistical analysis. PCA was applied to visualize the data structure, classify the samples
according to their components and detect corresponding markers. The PCA was carried out using
SPSS version 16.0 (SPSS, Inc., Chicago, IL, USA).
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3. Results and Discussion

3.1. Derivatization and MS Conditions

In order to achieve a fast and accurate sample preparation, a simplified PMP-derivatization
procedure was developed. The PMP reaction mechanism was illustrated in Figure 1A. This modified
procedure was characterized by extreme simplification without using any liquid–liquid extraction
and concentrated steps by comparison with our previous reports [3]. The resulting solution was
directly filtered and diluted with deionized water before UPLC-ESI−-TQ-MS/MS. Furthermore,
the comparative experiments between before and after liquid–liquid extraction showed that the
simplified workflow did not affect the chromatographic separation and MS signal intensities at all.
This simplified sample preparation was applied successfully in the current study.
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Figure 1. (A) Condensation reaction with PMP; (B) characteristic fragmentation pathways of bis-PMP
derivatives of monosaccharides in negative ESI-MS/MS mode. Peaks were as follows: 1, Man; 2, GlcN;
3, ManN; 5, Rib; 6, Rha; 8, GalN; 11, GlcUA; 12, GalUA; 14, GlcNAc; 16, D2-Glc; 17, Glc; 18, GalNAc;
19, Gal; 20, Ara; 21, Fuc.

Regarding MS detection, carbohydrate PMP derivatives could be monitored under both ESI−

and ESI+ modes. In the present work, much less noise was observed in the ESI− than ESI+ modes.
Furthermore, the [M − H]− precursor ions were more intense for all analytes than [M + H]+ and
[M + Na]+, so [M−H]− precursor ions were used for the detection of the carbohydrate PMP derivatives.
Taking collision-induced dissociations of deprotonated PMP-labeled monosaccharides as examples,
peaks 1–3, 5, 6, 8, 11, 12, 14, 16 and 17–21 produced similar fragmentation patterns. The typical ESI−

fragmentation pathway is illustrated in Figure 1B. The [M−H]− precursor first experienced the loss of
a PMP unit to afford a [M − PMP − H]− ion, which further produced α-cleavage to give characteristic
[M′ − H]− ions at m/z 214, 215 or 256. This [M′ − H]− was considered to be a characteristic product
ion based on the fact that this fragment was always stable with prominent intensity when using
a specific collision energy. Therefore, the experimental MRM transition used those intact deprotonated
m/z values of precursors (Q1) and characteristic fragments [M′ −H]− as product ions (Q3) for accurate
detection of bis-PMP derivatives of monosaccharides—3, 5, 6, 8, 11, 12, 14 and 16–21. As a contrast,
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bis-PMP derivatives of oligosaccharides 4, 7, 9, 10, 13 and 15 showed more complex fragmentation
mechanism in ESI−-MS/MS mode, so the most intense product ion was chosen as Q3.

Finally, the optimal DP and CE values for all MRM transitions (1–22) are summarized in Table 1.
Another advantage of the current method in comparison with traditional HPLC-UV methods is that it
could effectively eliminate the interference of the PMP ion peak using UPLC-ESI−-TQ-MS/MS with
MRM detection.

Table 1. Mass spectrometry parameters used for analysis of targeted saccharides and internal
standards (IS).

Peaks Original Mw PMP Derivatives (m/z) Q1 (m/z) Q3 (m/z) DP (V) CE (V)

1 180.2 [M − H]− 509.1 215.1 −49.2 −28.1
2 215.6 [M − H]− 508.2 214.0 −65.9 −29.8
3 215.6 [M − H]− 508.4 213.7 −64.5 −26.0
4 1153.0 [M − H]− 1481.9 1308.0 −96.4 −35.1
5 150.1 [M − H]− 478.7 215.0 −58.4 −29.9
6 164.2 [M − H]− 493.2 214.9 −60.6 −29.0
7 990.9 [M − H]− 1319.7 869.8 −99.5 −61.2
8 215.6 [M − H]− 508.2 213.8 −67.9 −33.2
9 828.7 [M − H]− 1157.7 707.6 −90.3 −51.7
10 666.6 [M − H]− 995.6 214.8 −80.8 −52.6
11 212.2 [M − H]− 523.2 215.0 −55.9 −30.3
12 194.1 [M − H]− 523.1 215.0 −57.5 −47.4
13 504.4 [M − H]− 833.6 215.3 −98.4 −46.8
14 221.2 [M − H]− 550.2 256.2 −63.9 −32.9
15 360.3 [M − H]− 671.5 214.8 −61.2 −34.1
16 182.2 [M − H]− 511.2 214.6 −63.7 −28.0
17 180.2 [M − H]− 509.0 214.7 −59.9 −26.1
18 221.2 [M − H]− 550.3 256.0 −69.4 −34.1
19 180.2 [M − H]− 509.2 215.0 −65.0 −29.9
20 150.1 [M − H]− 479.0 215.1 −48.4 −33.9
20 150.1 [M − H]− 479.1 215.0 −63.1 −28.1
21 164.2 [M − H]− 493.1 215.1 −54.5 −30.4
22 126.1 [M − H]− 455.4 173.1 −60.9 −14.1

Peaks 1–3, 5, 6, 8, 11, 12, 15 and 16–21 were the same as in Figure 1. Other peaks are as follows: 4, maltoheptaose;
7, maltohexaose; 9, maltopentaose; 10, maltotetraose; 13, maltotriose; 15, lactose; 22, 5-HMF.

3.2. Quantification and Validation

The chromatographic conditions were optimized to achieve the best resolution of various
saccharides of interest within a short analysis. Some carbohydrate PMP derivatives might have
different structures, but have the same precursor ion and daughter ion. So it is difficult to fully separate
them by common HPLC techniques. Thus, UPLC-ESI−-TQ-MS/MS was explored to separate and
detect carbohydrates. To establish an ideal separation, the chromatographic parameters involving
column types, additives of mobile phases, flow rates and column temperatures were optimized.

3.2.1. Effects of Columns

The UPLC method was developed to achieve a possible separation of various carbohydrate
PMP derivatives of interest. The result showed that some tested PMP derivatives were inadequately
separated (2 and 3, 5 and 6) by BEH C18 (2.1 × 100 mm, 1.7 µm) or available at a lower MS response
intensity (1, 2, 3, 8, 11, 12 and 16–19) using the HSS T3 column (2.1 mm × 100 mm, 1.8 µm) and ACE
C18 (150 × 2.1mm, 3 µm) or a longer retention time up to 20–30 min (16–19) employing a HSS T3
column (2.1 mm × 150 mm, 1.8 µm) and BEH C18 (2.1 × 100 mm, 1.7 µm). Therefore, a cortecs UPLC
C18 (2.1 × 100 mm, 1.6 µm) column was used in this work to detect PMP derivatives 1–22. It was
found that this specific column could provide high column efficiency and good MS response while
retaining a relatively short run time.
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3.2.2. Effects of Additives

To obtain chromatograms with good resolution and high intensity, various additives such as
acetic acid, FA, and AF were investigated in the pre-experiment, and AF was shown to give the
best separation and peak shape. The effects of additive AF concentrations (8 mM, 10 mM, 15 mM
and 10 mM AF with 0.1% FA) were also investigated on resolutions and MS response intensities.
The results showed the moderate 10 mM AF showed the highest MS intensity for most of the peaks
tested. If 10 mM AF with a lower pH was applied, it seemed to make some peaks co-eluted, such as
1–3 and 5–8. Therefore, 10 mM AF was used for further, optimized steps.

3.2.3. Effects of Column Temperature and Flow Rate

The effects of different column temperatures (25 ◦C, 30 ◦C and 35 ◦C) were assayed. Generally,
all carbohydrate PMP derivatives tested were eluted to be a sharp peak at column temperatures of
25–35 ◦C; there was no obvious effect on the peak symmetry and resolution of eluted analytes. However,
peak responses were much better when the column temperature was applied at 30 ◦C. Therefore,
the column temperature of 30 ◦C was used for further optimization steps. The effect of different
flow rates (0.2, 0.3 and 0.4 mL/min) has also been evaluated. After comprehensive consideration of
peak resolutions, symmetries, retention time, and column pressures, 0.3 mL/min was selected as the
optimum flow rate.

Under the above optimum conditions, the MRM chromatograms of reference standards 1–22 are
given in Figure 2, which shows the complete baseline separation of all corresponding isomeric
carbohydrate PMP derivatives, including 1, 17 and 19 (Q1/Q3, 509/215), 2, 3, and 18 (Q1/Q3,
508/214), 5 and 20 (Q1/Q3, 479/215), 6 and 21 (Q1/Q3, 493/215), and 11 and 12 (Q1/Q3, 523/215).
These targeted analytes include 14 monosaccharides (1–3, 5, 6, 8, 11, 12, 14, 17–21), one internal
standard compound (16), six oligosaccharides (4, 7, 9, 10, 13 and 15) and one degraded product (22).
Although some peaks such as 1, 2, 5, 6, 10–14 and 16–18 were not fully separated in total ion
chromatography (Supplementary materials Figure S1), they were still accurately quantified due
to the presence of different MRM selections. It is worth mentioning that this is the first example on
simultaneous analysis of eight neutral sugars (1, 5, 6, 16, 17, 19–21), two uronic acids (11 and 12),
three amino sugars (2, 3 and 8), two acetyl amino sugars (14 and 17), six oligosaccharides (4, 7, 9, 10,
13 and 15), and one degradation product (22) using UPLC-ESI−-TQ-MS/MS.
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3.3. Method Validations

The analytical procedure has been validated in order to confirm its reliability. Table 2 summarizes
the calibration curves, LOD and LOQ values of the carbohydrate PMP derivatives analyzed by
UPLC-ESI−- TQ-MS/MS with MRM mode. Since it is difficult to be precise about sample preparations
due to the presence of derivatization procedures, the internal standard method is used. Here synthetic
D2-Glc was chosen to be the internal standard in terms of different Q1/Q3 MRM selection. All the
peaks showed good linearity (R2 > 0.99) in quite a wide concentration range. The LOD and LOQ were
determined at a signal-to-noise (S/N) of about 3 and 10, respectively. The results showed that the LODs
of monosaccharides and oligosaccharides were in the range of 3–48 nM and 12–780 nM, respectively,
indicating that the sensitivity of the method was satisfactory. The intra-day and inter-day RSD values
of the analytes were all less than 4.86%, implying good precision and reproducibility. For stability
testing, the same sample solution was analyzed with 21 analytes every 4 h over 24 h with RSD less
than 4.03%, which indicated that the sample was stable over two days under experimental conditions.

Table 2. Summarization of calibration results, LOD, and LOQ values.

No. Calibration Curves R2 Linear Range (µM) LOD (nM) LOQ (nM)

1 y = 0.2634x + 0.1916 0.9938 0.02–49.60 3.00 8.00
2 y = 0.1721x + 0.0360 0.9982 0.19–49.60 24.00 58.00
3 y = 0.2135x + 0.2631 0.9931 0.05–49.60 12.00 34.00
4 y = 0.0002x + 0.0002 0.9995 3.10–49.60 780.00 2240.00
5 y = 0.4846x + 0.2466 0.9960 0.02–49.60 3.00 92.00
6 y = 0.1496x + 0.1560 0.9952 0.19–49.60 48.00 140.00
7 y = 0.0012 x + 0.0013 0.9938 0.78–49.60 193.00 640.00
8 y = 0.1692x + 0.2124 0.9920 0.05–49.60 12.00 48.00
9 y = 0.0042x + 0.0009 0.9985 0.19–49.60 97.00 260.00

10 y = 0.0325x − 0.0110 0.9952 0.10–49.60 12.00 34.00
11 y = 0.0661 x + 0.0919 0.9955 0.05–49.60 24.00 48.00
12 y = 0.0223x + 0.0342 0.9935 0.39–49.60 32.00 96.00
13 y = 0.0144x − 0.0040 0.9967 0.10–49.60 48.00 16.00
14 y = 0.1207x + 0.0956 0.9938 0.05–49.60 12.00 34.00
15 y = 0.0317x − 0.0026 0.9989 0.02–49.60 48.00 14.00
17 y = 0.3381x + 0.2201 0.9973 0.02–49.60 3.00 6.00
18 y = 0.3737x + 0.1974 0.9954 0.02–49.60 12.00 36.00
19 y = 0.6961x + 0.4415 0.9954 0.02–49.60 3.00 10.00
20 y = 0.6961x + 0.4415 0.9954 0.02–49.60 3.00 10.00
21 y = 0.3787x + 0.4894 0.9925 0.19–49.60 24.00 72.00
22 y = 0.4953x − 0.2220 0.9972 0.05–49.60 2.00 5.00

Peaks 1–22 were the same as Table 1. Peak 16 was the internal standard compound.

Furthermore, recovery experiments were performed in order to investigate the accuracy of
the method. Known amounts of carbohydrate solutes were added to the sample with same
procedures including extraction and hydrolysis, and the resulting spiked sample was subjected
to the entire analytical sequence. The recovery rate of the method was 94.37%–104.37%, with RSD
less than 4.23%, suggesting that the method is accurate and practical for the composition analysis in
plant polysaccharides.

The occurrence of matrix effects in UPLC-ESI−-TQ-MS/MS is well known and has an important
impact on the determination of the constituents in complex plant samples. A matrix effect was obtained
by relative recoveries: relative recoveries = (sample contents after adding− original contents)/contents
of standard solutions for adding. The relative recoveries for all compounds ranged between 94.94%
and 100.75%, thus showing the minimal matrix suppression or enhancement of this method.
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3.4. Application to Real Samples

After PMP derivatization of Ephedra polysaccharide-treated enzymatic digestions, it was directly
injected and separated under the optimum conditions described above. The results of multiple
enzymatic digestions are shown in Supplementary materials Table S1. Figure 3A–E shows typical
MRM ion chromatograms of E. sinica root polysaccharides using UPLC-ESI−-TQ-MS/MS before
and after multiple enzymatic digestions, respectively. When the α-amylase was used for the
treatment of polysaccharides from genus Ephedrae, Ara (20), Glc (17), Gal (19), Man (1), lactose (15),
and maltotriose (13) were readily liberated (Figure 3A). The β-(1→3)-D-glucanase digestion could
produce both Ara (20) and Glc (17) (Figure 3B), while the pectinase digestion enabled Ara (20),
Glc (17), GlcUA (11), GalUA (12), and lactose (15) to be liberated from the core skeletons of
Ephedrae polysaccharides (Figure 3C). Meanwhile, a large amount of Glc (17), Ara (20), lactose (15),
and maltotriose (13) were freed using the cellulose digestion of Ephedra polysaccharides (Figure 3D).
If the endo-1,4-β-xylanase was applied, the predominant compositional saccharides were detected
to be Ara (20), Glc (17), lactose (15), maltotriose (13), and maltotetraose (10) (Figure 3E). Note also
that a tetrasaccharide (Glc1(α)→4Glc(α)→4Glc(α)→4Glc(α)) residue should be linked in the side chain.
The above evidence showed that Ephedra polysaccharides from different species and parts (stems or
roots) may possess similar structural characteristics. Therefore, it is difficult to directly classify and
discriminate these polysaccharides from genus Ephedra by eye.
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enzymatic digestions. (A), α-amylase; (B), β-(1→3)-D-glucanase, (C), pectinase; (D), cellulose;
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3.5. Discrimination of Ephedra Polysaccharides Based on PCA

As shown in Figure 4A,B,D, 20 Ephedra polysaccharide samples from different species and
plant parts were well distinguished using α-amylase, β-(1→3)-D-glucanase, and cellulose enzymatic
digestions, respectively. It was noticeable that samples 1–20 were clustered into four groups,
a–d, which were unambiguously identified as polysaccharides from E. sinica stem, E. sinica root,
E. intermedia stem, and E. equisetina stem, respectively. The principal components of enzymatic
digestions (endo-1,4-β-xylanase and pectinase) had a minor effect on the model. The typical PCA
scores from endo-1,4-β-xylanase and pectinase digestion are illustrated in Figure 4C,E, respectively.

The PCA loadings (not shown) were used to identify the differential components accountable for
the separation among different groups. Ara, Gal, Glc, lactose, Man, and maltotriose were the principal
components in classifying these samples for the α-amylase digestion of Ephedra polysaccharides.
The Ara and Glc may play essential roles in the discrimination of Ephedra polysaccharides treated
by the β-(1→3)-D-glucanase digestion. Meanwhile, the lactose, maltotriose, Ara, GalUA and Glc
could be considered marker components to differentiate these samples using the cellulose digestion.
These results further indicated that Ephedra polysaccharides, which were digested by α-amylase,
β-(1→3)-D-glucanase, and cellulose, produced characteristic saccharide fingerprints. Therefore,
UPLC-ESI−-TQ-MS/MS coupled with PCA could be used for differentiating Ephedra polysaccharides
attributed to different species and plant parts through specific enzymatic digestions.
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4. Conclusions

In this work, a reliable, simple, and sensitive UPLC-ESI−-TQ-MS/MS method was developed
for the simultaneous analysis of 21 PMP derivatives characterized by the presence of seven neutral
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sugars, two uronic acids, three amino sugars, two acetyl amino sugars, six oligosaccharides, and one
degradation product based on a solid core cortecs C18 column within 20 min. The proposed
method minimizes sample handling, permits high-throughput analysis, and has been successfully
applied to analyze 20 Ephedra polysaccharide samples from different species and plant parts.
Multivariate statistical analysis results indicated that the specific enzymatic digestions (α-amylase,
β-(1→3)-D-glucanase, and cellulose) could be used for distinguishing these polysaccharides from
genus Ephedra. UPLC-ESI−-TQ-MS/MS, coupled with enzymatic digestions and multivariate statistical
analysis, may be a powerful and useful approach for quality evaluation of plant polysaccharides from
Traditional Chinese Medicine.

Supplementary Materials: Supplementary Materials are available online.
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