Next Article in Journal
Synthesis, Single Crystal X-ray Analysis, and Antifungal Profiling of Certain New Oximino Ethers Bearing Imidazole Nuclei
Previous Article in Journal
Atractylenolide II Inhibits Proliferation, Motility and Induces Apoptosis in Human Gastric Carcinoma Cell Lines HGC-27 and AGS
Article Menu

Export Article

Open AccessArticle
Molecules 2017, 22(11), 1894; doi:10.3390/molecules22111894

Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study

1
School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
2
Chinese Medicine Department, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi City 60002, Taiwan
3
Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4
Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
*
Author to whom correspondence should be addressed.
Received: 7 October 2017 / Revised: 31 October 2017 / Accepted: 2 November 2017 / Published: 3 November 2017
View Full-Text   |   Download PDF [26820 KB, uploaded 7 November 2017]   |  

Abstract

Hemp nut is commonly incorporated into several food preparations; however, most countries set regulations for hemp products according to their cannabinoid content. In this study, we have developed an efficient microwave-assisted extraction (MAE) method for cannabinoids (i.e., Δ9-tetrahydrocannabinol, cannabidiol, and cannabinol) in hemp nut. Optimization of the MAE procedure was conducted through single factor experiments and response surface methodology (RSM). A comparative study was also conducted to determine the differences in the extraction yields and morphology of hemp nut between MAE and reference extraction methods, namely heat reflux extraction (HRE), Soxhlet extraction (SE), supercritical fluid extraction (SFE), and ultrasound-assisted extraction (UAE). Among the independent variables in RSM, the temperature was the most significant parameter. The optimal conditions of MAE were as follows: extraction solvent of methanol, microwave power of 375 W, temperature of 109 °C, and extraction time of 30 min. Compared with reference extraction methods, MAE achieved the highest extraction yields of total cannabinoids in hemp nut (6.09 μg/g for MAE; 4.15 μg/g for HRE; 5.81 μg/g for SE; 3.61 μg/g for SFE; 3.73 μg/g for UAE) with the least solvent consumption and shortest time. Morphological observations showed that substantial cell rupturing occurred in the microstructure of hemp nut after MAE, indicating enhanced dissolution of the target compounds during the extraction process. The MAE method is thus a rapid, economic, and environmentally friendly extraction method that is both effective and practical for industrial applications. View Full-Text
Keywords: Δ9-tetrahydrocannabinol; cannabidiol; cannabinol; marijuana; cannabis Δ9-tetrahydrocannabinol; cannabidiol; cannabinol; marijuana; cannabis
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chang, C.-W.; Yen, C.-C.; Wu, M.-T.; Hsu, M.-C.; Wu, Y.-T. Microwave-Assisted Extraction of Cannabinoids in Hemp Nut Using Response Surface Methodology: Optimization and Comparative Study. Molecules 2017, 22, 1894.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top