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Abstract: Monovarietal virgin olive oils (VOOs) are very effective to study relationships among
sensory attributes, the compounds responsible for flavour, and factors affecting them. The stimulation
of the human sensory receptors by volatile and non-volatile compounds present in monovarietal
virgin olive oils gives rise to the sensory attributes that describe their peculiar delicate and fragrant
flavours. The formation of these compounds is briefly illustrated and the influence of the agronomic
and technological factors that affect their concentrations in the oil is examined. The relationships
between compounds responsible for the olive oil flavour and sensory attributes are discussed. Several
approaches for the varietal differentiation of monovarietal virgin olive oils are also overviewed.

Keywords: virgin olive oil; volatiles; phenolic compounds; sensory characteristics; cultivar;
agronomic and technological factors

1. Introduction

Virgin olive oils (VOOs) are unique among other vegetable oils. They are only mechanically
extracted and can be consumed without any further refining process, thus preserving natural
compounds, very important for their nutritional value, which give rise to their unique aroma and
taste [1,2]. The fragrant and delicate flavour of VOOs is usually described by perceptions ascribable to
fruity, the sensation reminiscent of the healthy olive fruit harvested at the optimum time of its ripeness,
and by perceptions reminiscent of just cut grass, leaf, floral notes, green fruits (e.g., apple, banana,
almond) or vegetables (e.g., tomato, artichoke), accompanied by more or less intense bitterness and
pungency notes [3].

VOOs are rich in phenolic compounds that possess beneficial biological activities [4–17].
A significant effect in the prevention of several important diseases, all related to high concentrations
of free radicals, is attributed to phenolic compounds, because of their antioxidant activity [4].
The protective activity against atherosclerosis and cardiovascular diseases [5,6,8,16,17], against several
kinds of cancer [7,16] and against cognitive deficits and neuropathology is attributable to the free
radical scavenging activity [9]. Phenolic compounds also contribute to the formation of oil flavour, as
they are responsible for gustative and trigeminal sensory notes. Bitterness and pungency, characteristic
attributes of fresh high quality oils, show the highest intensities, according to cultivar, when oils are
obtained from not completely ripe fruits, and are also related to phenolic compounds.

Among the sensations experienced by assessors during virgin olive oil tasting, only bitterness,
pungency and astringency are related to the stimulation of the gustative and trigeminal receptors
from non-volatile compounds; the remaining manifold sensations are elicited by the stimulation of
olfactory receptors by volatile compounds. This fraction, responsible for the unique aroma of VOOs,
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plays a very important role in human nutrition, stimulating the appetite and the gratifying effect, thus
affecting the food acceptability and directing consumer preference [18,19].

2. Compounds Responsible for the Monovarietal VOOs Flavour

2.1. Phenolic Compounds

The interest in olive phenolic compounds has greatly increased recently, because of their
antioxidant abilities [4,5,14,20,21], associated with both their nutraceutical properties [10–13,17,22–25],
the high stability they confer to the resulting olive oil during storage [4,26–31], and their sensory
impact [32,33].

Phenolic compounds in VOOs are responsible for the positive sensory attributes of bitterness
and pungency [3,32,34]. The intensity of these attributes, and therefore the pleasantness of a VOO,
depends on the concentration of phenolic compounds [34–37]. However, when the amount of phenols
in VOOs is very high, the intensities of bitterness and/or pungency are very strong and many people
with a special sensitivity to these attributes can reject this kind of oils, preferring oils characterized by
pleasant green aroma and light-medium strength of bitter and pungent notes [18,19,38–40].

The phenolic fraction of VOOs is formed only in a little part by simple phenols, mainly
hydroxytyrosol (3,4-dihydroxyphenylethanol: 3,4-DPHEA) and tyrosol (p-hydroxyphenylethanol:
p-HPEA), but also caffeic acid and some hydroxybenzoic and hydroxycinnamic acid derivatives.
Most of the phenolics in VOOs is represented by aglycons of secoiridoid glucosides [41–44], namely
oleuropein and ligstroside, naturally occurring in the fruit and exclusively present in plants belonging
to the Oleaceae family. While only trace levels of oleuropein have been detected in VOOs [45],
the secoiridoid aglycons, produced during the oil extraction process as the result of the β-glucosidase
activity, are partly dissolved into the oil. The most abundant are 3,4-DHPEA-EDA and p-HPEA-EDA,
the dialdehydic forms of elenolic acid (EDA) linked to 3,4-DHPEA and p-HPEA respectively, and an
isomer of the oleuropein aglycon (3,4-DHPEA-EA) [12,13]. An additional class of phenolics, namely
the lignans, isolated and characterized in VOOs [46,47] is represented by 1-acetoxypinoresinol
and pinoresinol.

Numerous studies have been carried out to clarify the relationship between taste attributes in
VOOs and their phenolic compound contents: bitterness intensity was initially related to the presence
of oleuropein derivatives [48–50], but other researchers, on the basis of sensory evaluations and amount
of some phenolic compounds, have attributed the bitter sensory note to both oleuropein and ligstroside
aglycons [33,51], or only to ligstroside derivatives such as p-HPEA-EDA [52].

In 2003 Andrewes and co-workers [32] separated the single phenolic compounds and evaluated
their sensory characteristics. On the basis of the estimated taste threshold reported by the same authors,
the main contribution to pungent attribute is given by the fraction containing p-HPEA-EDA, namely
the deacetoxyligstroside aglycon, which elicited a strong burning pungent sensation at the back of the
throat. In contrast, the fraction containing 3,4-DHPEA-EDA, at an equivalent concentration, produced
only a slight burning/numbing sensation, which was perceived more on the tongue. No other
phenolic fractions produced the intense burning sensation. Astringent attribute was mainly related to
3,4-DHPEA-EA, even if also other fractions contributed to elicit this sensation. Beauchamp et al. [53]
isolated p-HPEA-EDA from different virgin olive oils, and measured the pungent intensity, confirming
this compound as the principal responsible for throat irritation. Secoiridoid derivatives of oleuropein
and demethyloleuropein such as 3,4-DHPEA-EDA and 3,4-DHPEA-EA have been found to be the
main contributors of VOO bitterness [54]; simple phenols, lignans and flavones could not elicit any
bitter sensation.

2.2. Volatile Compounds

A great number of volatile compounds belonging to several chemical classes, especially carbonyl
compounds, alcohols, esters and hydrocarbons, have been found in the volatile fraction of VOOs [55,56].
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Lists of the different compounds, identified and assigned by GC–MS technique, were previously
reported in the literature [57,58]. The C6 and C5 compounds, especially C6 linear unsaturated and
saturated aldehydes, represent the most abundant fraction of volatile compounds of high quality
VOOs [59–61]. Other compounds belong to hydrocarbons, acids, ethers, oxygenate terpenes, furan
and thiophene derivatives. Some of the volatiles occurring in VOOs of different quality arise from
the activities of certain microorganisms and/or moulds [62–66]. Pseudomonas and Clostridium genera
produce five carbon branched alcohols determining the appearance of fusty defect [62]. Yeasts and/or
Acetobacter accumulate ethanol, ethyl acetate and acetic acid, as result of their activities: quite large
amounts of these compounds are responsible for the winey/vinegary defect [65]; butyrates and
2-ethyl butyrates, related to muddy sediment off-flavour, are formed by butyric fermentation of
micro-organisms belonging to the Clostridium genus [57]. Numerous Aspergillus and Penicillium genera
are involved in the production of C8 primary and secondary alcohols and C8 ketones, responsible for
musty defect [63]. Furthermore, the accumulation of products arising from the hydroperoxides
fragmentation in oils that have suffered an oxidizing process is responsible for rancid sensory
defect [61].

Several pathways contribute to the production of volatile compounds of VOOs and the different
sensory nuances that can be appreciated depend on the relative importance of each pathway (Figure 1).
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2-penten-1-ol and 1-penten-3-ol, would be produced from the LnA hydroperoxide through an 

Figure 1. The main pathways involved in the formation of volatile compounds in VOOs.

The level and the activity of the different enzymes that are involved in the pathways affect the
qualitative and quantitative composition of the volatile fraction; their content is regulated by genetic
factors, whereas their activity is modulated by agronomic and technological variables [55,57,67]. Newly
formed compounds, deriving from phenomena of degradation, fermentation and autoxidation, are
added to compounds coming from the pathways typical of fruits. Some of them are active in olive
fruit, other ones during oil extraction.

In high quality VOOs, the contribution of pathways involving activities of microorganisms or
autoxidation process is practically negligible, and therefore only the lipoxygenase (LOX), the homolytic
cleavage of hydroperoxides (13-LOOH) pathways and the conversion of leucine, valine and isoleucine
are really active [57,68]; among them, because of the considerable amounts of corresponding
metabolites, the major activity is displayed by LOX pathway.

Most of volatiles are rapidly formed during the olive crushing, owing to the disruption of olive
cells [69]. Their production also continues during the malaxation step of olive processing.

Volatiles are biosynthesized in plants as a response to cell disruption from C18 unsaturated fatty
acids containing a cis,cis-1,4-pentadiene structure, namely linolenic (LnA) and linoleic (LA) acids, by a
LOX oxidation [59–61]. The pathway starts from the oxidation of linolenic (LnA) and linoleic (LA)
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acids mediated by LOXs, and a number of other enzymatic activities lead to the accumulation of C6
volatile compounds (Figure 2).

In addition C10 hydrocarbons (also known as pentene dimers) and C5 alcohols, namely
2-penten-1-ol and 1-penten-3-ol, would be produced from the LnA hydroperoxide through an
additional pathway, partly enzymatic, that involves an alkoxyl radical; the subsequent oxidation
of C5 alcohols could lead to C5 carbonyl compounds [70].

The LOX pathway involves, in addition to the activity of LOX [71], in sequence those of
hydroperoxide lyases (HPL) [72], alcohol dehydrogenases (ADH) [73], and alcohol acetyl transferases
(AAT) [74], whose levels are genetically determined, so that, according to their individual content and
activity, there is a different accumulation of C6 and C5 compounds, accounting for the various sensory
profiles of VOOs.
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It is very difficult to relate each volatile to sensory perceptions. HRGC-sniffing techniques were
applied by several researchers to investigate about the odour quality of compounds present in the oil
aroma [58,75]. Odour qualities of volatile compounds found by different authors and corresponding
references were reported in a paper [55]. Odour intensity seems to be more linked to a series of chemical
factors (e.g., size, volatility, type and position of functional groups) than to concentration [75–77].
Differences in individual sensitivity of human subjects affect the evaluation of the odour intensity [78],
so that the contribution of each volatiles to the oil aroma is better evaluated by the odour activity
value (OAV), that is the ratio between the concentration and the corresponding odour threshold [79,80].
According to Guth and Grosh [79,80] the most important contributors in VOOs high quality are
cis-3-hexenal, hexanal and cis-3-hexen-1-ol, because of their low odour threshold.

However the aroma of VOOs is the result of complex interactions occurring between volatiles
and receptors responsible for taste, smell, sight and trigeminal and tactile perceptions [35,76,81,82].
Thus positive and negative synergisms can occur and new kinds of perceptions could be produced
by the interaction between taste and odour [82]. In spite of these interactions, in literature sensory
perceptions are related to the concentrations of volatile compounds. Principal component analysis
(PCA) and partial least square regression (PLS) analysis were used to relate sensory and instrumental
data by Servili and co-workers [83]. PLS regression gave good predictions from headspace data of
some of the descriptors used in quantitative descriptive analysis. Inter-intra dissimilarities from data
sets of sensory attributes and volatile components were studied by means of multidimensional scaling
(MDS) [84]: volatiles completely explain the sensory perceptions, as described by different panels and
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categorized by them into aroma, odor, taste, after-taste, mouthfeel and after-mouthfeel. The plot of
the first two dimensions of MDS of datasets of volatiles and sensory notes evidenced the presence
of seven basic sectors (green, fruity, sweet, ripe, over-ripe, undesirable, and pungent) and volatiles
responsible for them. These results were in agreement with conclusions achieved by using a sensory
wheel [38,85,86], a robust statistical procedure that allowed clustering into the same seven sectors
sensory attributes with the same semantic description, obtained from a panel of six different countries.
The position of descriptors on the sensory wheel was found consistent with the sensation elicited
by the pure compound tested by HRGC sniffing methodology. The relation between sensory and
instrumental data was determined by projecting volatiles onto the sensory wheel. Volatiles took up the
appropriate place within the sector that corresponded to their perceptions detected by sniffing method:
all cis-3 compounds from LOX pathway belonged to the green sector, hexanal was placed in the sweet
one and some compounds such as trans-2-hexen-1-ol and hexan-1-ol in the undesirable sector.

Angerosa et al. [35] applied a Linear Regression Analysis (LRA) to sensory attributes perceived
by panel tasters and to C5 and C6 compounds from LOX pathways and phenolic compounds. Results
evidenced that hexanal plays an essential role in the formation of the majority of green attributes:
this compound showed a positive correlation with sweet sensory note, and a negative one with grass
and leaf sensations. trans-2-Hexenal contributed to grass perception, and 1-penten-3-one together
with phenolic compounds to leaf attribute. 1-Penten-3-one and cis-3-hexen-1-ol seemed to have a
synergic effect on the elicitation of bitter and pungent characters, positively correlated with phenolic
compounds and negatively with hexanal. Phenolic compounds contributed to the characterization
of walnut husk, whereas C5 compounds, especially 1-penten-3-one, strongly affected most attributes
(Table 1).

Table 1. Green attributes correlated to volatiles from LOX pathways and to the total amount of phenolic
compounds. (Source: Authors; unpublished results).

Sensory Notes R2 Volatile Compounds Positively Related Volatile Compounds Negatively Related

Bitter 0.80 1-penten-3-one, polyphenols hexanal, cis-3-hexen-1-ol
Pungent 0.80 1-penten-3-one, polyphenols hexanal, trans-2-hexenal

Sweet 0.72 hexanal trans-2-hexenal, trans-2-pentenal

Fruity 0.66 cis-2-penten-1-ol trans-2-hexen-1-ol, trans-2-pentenal,
1-penten-3-one

Leaf 0.65 1-penten-3-one, polyphenols hexanal
Freshly cut grass 0.57 trans-2-hexenal hexanal

Almond 0.62 cis-2-penten-1-ol trans-2-hexenal, 1-penten-3-ol,
cis-3-hexen-1-ol, polyphenols

Banana 0.60 hexanal, cis-3-hexenyl acetate trans-2-pentenal, trans -2-hexenal,
cis-2-penten-1-ol

Walnut husk 0.57 cis-3-hexenyl acetate, trans-2-pentenal,
polyphenols hexan-1-ol, cis-3-hexen-1-ol

Wild flowers 0.56 trans-2-hexen-1-ol hexyl acetate, hexanal
Tomato 0.51 hexan-1-ol, 1-penten-3-one trans-2-hexen-1-ol, hexanal, 1-penten-3-ol

3. Factors Affecting Compounds Responsible for Flavour of Monovarietal VOOs

While enzyme levels are genetic characteristics and therefore typical of the cultivar, their activity
is affected by several but not less important factors, related to ripeness and growing area of fruits, time
and conditions of their storage, technological aspects of oil extraction. Therefore these parameters
quantitatively modify the composition of flavour compounds. Monovarietal oils are very useful for
studying the influence of factors such as agronomic or technological ones on the sensory notes and on
compounds responsible for their flavour.
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3.1. Agronomic Factors

3.1.1. Cultivar

Cultivar plays an essential role, as the amount of the enzymes involved in the pathways of volatile
and phenolic compounds is genetically determined. The phenolic composition of olive fruit is tightly
connected to genotype [87–90].

Oleuropein and demethyloleuropein are the predominant secoiridoids of olive fruit, which
also contains verbascoside. The phenolic composition of olive fruits from different cultivars is also
reflected on that of corresponding oils. While the phenolic profile is almost the same, the absolute
concentration of each secoiridoid derivative is cultivar dependent [12]. The concentration of the lignans
1-acetoxypinoresinol and 1-pinoresinol in VOOs is strongly related to the botanical origin, and could
be used as varietal index [12].

The influence of the cultivar on the volatile fraction can be evidenced by the different
concentrations of these compounds if changes of the activity of enzymes involved in the LOX pathway
are removed. Table 2 reports the concentrations of C6 and C5 compounds in oils, obtained in the same
operative conditions of the extraction process, from fruits of different cultivars grown in the same
botanical garden and harvested at the same ripening stage.

Table 2. Levels (mg/kg) of C6 and C5 volatile compounds in some extra virgin monovarietal olive oils.
Results are expressed as mean of three samples of each monovarietal olive oil. A = all C6 compounds
from LA; B = all C6 compounds from LnA; C = all C5 compounds. (Source: Authors; unpublished results).

Compound Dritta Frantoio Bosana Moraiolo Canino Coratina Koroneiki

Hexanal 0.7 2.7 1.2 0.1 0.5 0.5 0.8
Hexan-1-ol 0.7 0.3 0.6 0.2 0.2 0.1 0.2

Hexyl acetate 0.2 0.4 0.6 0.1 traces 0.0 0.2
trans-2-Hexenal 11.4 38.9 12.1 1.8 30.3 23.8 3.3

trans-2-Hexen-1-ol 1.5 0.6 1.5 0.2 0.9 0.6 0.1
cis-3-Hexen-1-ol 0.2 0.4 0.3 1.7 0.7 0.3 0.9

cis-3-Hexenyl acetate 0.6 1.3 1.1 0.4 0.1 0.1 2.0
2-Pentenal 0.1 0.2 0.2 0.1 0.3 0.3 0.2

1-Penten-3-ol 0.1 0.4 0.2 0.2 0.2 0.4 0.4
1-Penten-3-one 0.2 0.7 0.2 0.2 0.2 0.9 0.8

cis-2-Penten-1-ol traces 0.6 0.5 0.2 0.3 0.4 0.3
Pentene dimers 0.5 0.7 0.6 0.5 1.1 0.6 2.3
Total aldehydes 12.2 42.0 13.5 2.0 31.1 24.6 4.3
Total alcohols 2.5 2.3 3.1 2.5 2.3 1.8 1.9

Total esters 0.8 1.7 1.7 0.5 0.1 0.1 2.2
B/A 8.6 12.1 6.3 10.3 45.7 41.3 5.3
B/C 15.2 17.2 8.8 3.4 15.2 9.5 1.6

Total C6 and C5
compounds 16.2 47.2 19.1 5.7 34.8 28.0 11.5

The different genetic stores give rise to a different total amount of compounds from LOX pathways.
trans-2-Hexenal is the most abundant compound in all the seven cultivars, but its concentration is quite
different: Frantoio and Canino show the higher values, while Koroneiki and Moraiolo the lower ones.
Similar contents are observed for Dritta and Bosana. These results agree with the findings of Aparicio
and Luna [91], who suggested that monovarietal VOOs could be distinguished by trans-2-hexenal
content. Coratina and Canino have a negligible concentration in esters, which, on the contrary,
characterizes Frantoio, Bosana and especially Koroneiki. Also the ratio between total amounts of C6
compounds from LnA and LA respectively and the one between total amounts of C6 compounds
from LnA and total amount of C5 compounds are different and evidence varietal differences. Several
investigations correlated C6 and C5 compounds with green perceptions [35,61,86,92], thus the different
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concentration of C6 and C5 compounds will elicit the different nuances and intensities of green
attributes. Figure 3 shows the sensory profiles of some of the oils reported in Table 2.Molecules 2017, 22, 1833 7 of 28 
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3.1.2. Ripening Degree

The development and the ripening of olive fruit are a combination of biochemical and
physiological events that occur under both strict genetic control and influence of several environmental
conditions [93]. It is generally accepted that the content of glucosides in the fruits, and consequently
that of aglycons in the oil, shows a first reduction in the green ripening phase because of an increased
activity of hydrolytic enzymes; it then falls after fruits turn to purple colour [94–97].

An esterase activity has been invoked to explain the rapid decline of oleuropein in the black
ripening phase [94]. Consequently to the hydrolytic activity, the amount of simple phenols increases
during the ripening process [88,95,98–101]. The presence of high levels of phenolics enhances the
nutritional and healthy properties of the resulting oils, but it is related to strong intensities of bitter
and pungent, not very appreciated by habitual and potential consumers [18,19,40].

The significant decrease of phenolic fraction, especially of oleuropein from spotted until black
fruits, is perceived as a weakening of bitterness and pungency in VOOs [32,54,55]. The weakening
does not only concern bitter and pungent attributes, but also the olfactory perceptions; this means that
also volatile compound profile changes, according to the progress of ripeness (Figure 4).
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Figure 4. Sensory profiles of oils from Coratina, Carolea and Gentile di Chieti cultivars, at two different
stages of ripeness. Figures were obtained on the basis of data collected by our team. Data represent
the average of intensities recorded by fully trained tasters in three independent trials. The oils were
presented according to an experimental design, which minimized possible biases and carry-over effects.
Standard deviation ranged between ±0.2–0.5. (Source: Authors; unpublished results).

The evolution of the volatiles responsible for VOO green aroma in relation to ripening degree
of fruits was studied by several researchers. Some of them [102–104], studying monovarietal oils
extracted with the same plant and conditions from fruits grown in the same botanical garden, found
that, during the ripening, the amount of volatiles, especially C6 aldehydes, increases up to a maximum
concentration occurring at spotted or reddish ripening stage; beyond that point, the volatile content
decreases, because of the activity decline of enzymes involved in their production, with a consequent
weakening of the intensity of some “green” sensory notes, as depicted in Figure 4 [102–106]. The content
of volatile compounds and the stage at which the maximum is achieved are variety-dependent.
Gómez-Rico et al. [100] confirmed an increase of C6 compounds in the early stages of ripeness in some
Spanish cultivars. Aparicio and Morales [105] described a steady decrease of the level of the volatile
compounds, including trans-2-hexenal, from the unripe to the over-ripe stages, except for oil from
Coratina fruits that, on the contrary, showed the behaviour observed by the other researchers [102–104].
Angerosa and Basti [102] evidenced the decrease of C6 esters and alcohols from LnA and the increase
of hexan-1-ol, a compound considered eliciting a not completely desirable odour [85,86] in the later
ripening stages.

The application of multiple regression to the quantitative values of volatile compounds allowed
Aparicio and Morales [105] to conclude that the major contributors to the characterization of the
ripening process are trans-3-hexen-1-ol, cis-3-hexen-1-ol, trans-2-hexen-1-ol, hexanal and hexyl acetate.
The best characterized ripening stage was the unripe one.

3.1.3. Pedoclimatic Factors

In the last thirty years many cultivars has been extensively cultivated outside their traditional
area, in new producer zones where they were not present at all. This is the case of some varieties
that are now cultivated either in areas of the same country where they were not autochthonous (see
Northern cv Arbequina in the South of the Spain), or even in countries where olive tree was completely
unknown (see Frantoio and Leccino cv in Andalusia, Tunisia, Argentina, South Africa). The use of
non-autochthonous cultivars is interesting to evaluate their productivity and adaptation capacity to
different agronomical conditions, together with the composition and sensory characteristics of the
resulting oils. Temperature, water availability and altitude often are very different from those of the
habitual growing areas, and several researches were carried out to elucidate their influence on the
physical-chemical and sensory composition of the oils.

The majority of these investigations were carried out on monovarietal oils: in these studies
the ripening stage of fruits and the conditions of oil extraction were made uniform to evidence the
influence of environmental factors.
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• Altitude

Phenolic and volatile compositions are affected by altitude and temperature since these factors
modify the enzymatic activities. Issaoui et al. [107] evidenced higher levels of trans-2-hexenal and
1-hexanol in oils from low altitude and high temperature. The greater abundance of cis-3-hexenyl
acetate and hexyl acetate, the first associated to green odors and the last described as fruity, pear-like by
Bauer et al. [108], seem to characterize the oils from high altitude and low temperature. These results are
consistent with those of Vichi et al. [109], who found that levels of hexanal, 1-hexanol, trans-2-hexenal,
cis-3-hexenal, cis-3-hexen-l-ol, trans-3-hexen-l-ol, and trans-2-hexen-l-ol showed a strong dependence
on geographical origin.

Pedoclimatic conditions seem to influence the contents of some hydrocarbons, that have been
indicate as possible markers for the varietal or geographical origin characterization [91,109–111].
In oils from mountain the levels of α-copaene, α-pinene and trans-β-ocimene were significantly higher
than in oils from low altitude and high temperature [107,109,112]. Several studies [107,113] showed
a higher total amount of phenolic compounds and o-diphenols in oils from high altitude and low
temperature, compared with those from low altitude and high temperature. The changed composition
in relation to different environmental conditions affects the sensorial characteristics: oils from mountain
elicited more intense notes of fruity and bitterness and pungency than those from fruits grown at
sea level [107]; sometimes assessors perceived wood and fig tree attributes, typical of oils with high
phenolic concentration in oils from high altitude [113].

• Water stress and irrigation

Olive trees come from regions with limited water resources and are generally grown under
rain-fed conditions, but in the last years many new orchards have adopted irrigation techniques to
considerably increase fruit yields per hectare and therefore total production of the oil [114,115]. Results
of an investigation carried out in the climatic conditions of Central Italy gave evidence that the changes
in volatile composition due to rainfall were pre-eminent and the rainfall were negatively correlated
to some compounds, such as hexanal and isobutyl acetate [116]. These features were confirmed by
Gómez-Rico et al. [117], who studied the modification of volatile fraction in oils from Cornicabra
and Morisca cultivars grown under different irrigation strategies. They found that in both cultivars,
the volatiles mostly affected by the water status of olive trees were hexanal, trans-2-hexenal and
hexan-1-ol, which show an inverse relationship with the water stress integral observed in the plants.
The concentration of VOOs volatile compounds from a medium–high stressed treatment was clearly
lower than that obtained under irrigation strategies. Similar trends in C6 aldehydes and alcohols were
reported by other researchers in oils from Cornicabra [118] and Leccino [119] cultivars.

On the other hand, Aparicio and Luna [91] and Gómez-Rico and co-workers [118] evidenced
differences in the oil composition and in some sensory characteristics of VOOs from irrigated and
rain-fed olive trees. In particular they found a greater phenolic concentration and more intense
bitterness and pungency in oils from fruits of rain-fed trees than in those from irrigated trees. A similar
behaviour was observed also by other researchers [120–123]. The different total amount of phenolic
compounds has been related to the water stress level of olives from rain-fed to irrigation conditions,
since the activity of enzymes responsible for phenolic compound synthesis, such as L-phenylalanine
ammonia-lyase, is greater under higher water stress conditions [121,124].

The water availability affects not only the total amount of phenolic compounds, but also their
composition. In oils from some cultivars, such as Arbequina, Cornicabra, Morisca, Leccino, a great
decrease in 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA was found, as the water stress of
olive trees fall off [52,112,118,119,125–127], probably for a reduced activity of enzymes involved in
the phenolics synthesis [121], due to the irrigation. As a consequence of the decrease of 3,4-DHPEA
and p-HPEA secoiridoid derivatives [118], water volumes affect the oxidative stability [128] and the
intensities of bitterness and pungency perceptions, being both tightly connected with the concentrations
of phenolics [4,32,54,129].
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A considerable weakening of these sensory notes in oils from irrigated olive trees was observed by
several researchers [117,123,130], but their decline in these oils was also accompanied by the weakening
of odour notes [117]. Low water levels produced oils that emphasize woody and herbaceous sensory
notes and very strong intensities of bitterness and pungency that make these oils poorly attractive for
consumers; conversely high irrigation levels lowered oil aroma and considerably reduced bitterness
and pungency [123,125,127,130,131].

Medium irrigation levels produced complex oils characterized by several well balanced attributes
such as artichoke, grass, green apple, and pleasant intensities of bitter and pungent notes [130].
Therefore, the suitable control of the irrigation levels could be a useful tool to produce oils well
appreciated by consumer, being characterized by agreeable intensities of olfactory notes, bitterness
and pungency. These findings are of great interest, especially for cultivars characterized by high
concentrations of phenolic compounds, such as the Spanish Cornicabra and the Italian Coratina
varieties. It should be recommended to grow these cultivars under irrigation regime, since high
levels of phenolics may negatively influence the olive oil acceptability. The concentrations of lignans
1-acetoxypinoresinol and pinoresinol are slightly influenced by the irrigation practices and should
seem to decrease in oils extracted from fruits of low irrigated treatments [119,125,127].

3.1.4. Time and Conditions of Preservation of Fruits

In high quality VOOs, obtained from fruits immediately processed after their harvesting, there is
not time for establishing phenomena of degradation and/or fermentation and no effects are observed
on the volatile and phenolic composition. Irrational conditions and relatively long times of the olive
preservation determine both the decrease of the concentration of volatiles from the LOX pathways
and phenolic compounds, and the production of volatile compounds related to off-flavours [62–66],
as described above.

3.2. Technological Factors

The quality of virgin olive oils is tightly dependent on the process of their extraction from olive
pastes, where the enzymatic activities represent the main cause of modification of their both sensory
characteristics and antioxidant store. On the basis of the system and the conditions adopted for oil
extraction, the various mechanical actions cause, with a different importance, a series of interactions
among oily phase, vegetation water and solids in the olive paste. This results in: (1) incomplete
recovery of the oil that partly remains into pomaces and partly goes away in the vegetation water;
(2) losses of minor compounds; (3) beginning of hydrolytic and oxidative phenomena, which can
compromise the oil quality. All the steps of oil extraction can modify the volatile and phenolic fractions:
the more critical steps are represented by olive crushing and paste malaxation.

3.2.1. Crushing

Olive crushing is performed with stone mill or with hammer crusher. During crushing, when the
oil flow from vacuole owing to the cell disruption, several enzymes are activated: their activities result
in the hydrolysis of secoiridoid glucosides, with production of corresponding aglycons, and in the
activation of the LOX pathways that rapidly give rise to C6 and C5 compounds.

The concentration of phenolic compounds in olive oils is dependent on the activities of
native enzymes occurring in the fruits that mainly affect the technological steps of crushing and
malaxation [3,55,132,133]. The secoiridoid glucosides of olive fruits are hydrophilic compounds and
they are not solved into the oil during the extraction process. However, the activation of the endogenous
β-glucosidases during crushing [34,134] allows the production of 3,4-DHPEA-EDA, 3,4-DHPEA-EA
and p-HPEA-EDA in olive oils; in fact the inactivation of these enzymes in blanched olives before
crushing is responsible of the absence of aglycons [34] in the corresponding oils.

While the kind of metallic crusher (hammer or blade crusher) poorly affects the amount and
the composition of phenolic compounds, as reported by Servili et al. [133], some difference was
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found in oils obtained with stone mill or with metallic crusher [51]: oils from metallic crusher were
more bitter and pungent than those from stone mill. Conversely, the kind of crusher affects the
amount of volatile compounds [51] formed during this technological operation as a response to cell
disruption. The violence of grinding that characterizes the action of metallic crushers, greater than the
one of stone mills, causes an instantaneous rise of the temperature that reduces the activity of HPL.
This enzyme, catalyzing the fragmentation of hydroperoxides, plays a crucial role in the formation of
volatiles. Its activity has a maximum at temperatures around 15 ◦C [72]; beyond this temperature its
activity rapidly declines and therefore a lower amount of volatiles is formed when compared with that
observed in oils from more soft crushing.

Salas et al. [67], evaluating the impact of the depletion of LOX and HPL on the volatile composition
of leaves from potato plants, evidenced a severe decrease in the amount of volatiles produced by the
leaves and in the intensity of their aroma, confirming the crucial role played by HPL in the production
of C6 compounds responsible for green attributes.

Angerosa and Di Giacinto [51] compared volatile fraction of oils obtained by using stone mill
and disc metallic crusher. They concluded that a greater accumulation of hexanal, trans-2-hexenal,
cis-3-hexen-1-ol is observed by grinding olives with traditional stone mills. In addition oils from stone
mill were more aromatic and balanced than those obtained by using the disc crusher. Data are in
agreement with results of Servili and co-workers [133]: oils obtained by using the blade crusher show
significant increases of C6 aldehydes and esters and reduction of some alcohols such as 1-hexanol and
trans-2-hexen-1-ol with respect to the oil obtained by using the hammer crusher.

Hexanal and trans-2-hexenal are correlated with apple, green, sweet and just cut grass, bitter
almond respectively, hexyl acetate and cis-3-hexenyl acetate with sweet, fruity and green banana,
green leaves respectively [49], whereas 1-hexanol and trans-2-hexen-1-ol are related to hay-like sensory
note [135]. The sensory analysis (Figure 5) confirmed that the violence of crushing has a negative
impact on the intensities and on the harmony of sensory notes [51,133].
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Figure 5. Sensory profiles of oils from fruits of two batches of Provenzale cultivar obtained with the
same processing diagram except for crushing. FD = hammer crusher; FMO = stone mill. Figures
were obtained on the basis of data collected by our team. Data represent the average of intensities
recorded by fully trained tasters in three independent trials. The oils were presented according to
an experimental design, which minimized possible biases and carry-over effects. Standard deviation
ranged between ±0.2–0.5. (Source: Authors; unpublished results).
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• Destoning

Destoning is a new non-conventional olive processing system by which removal of stones before
kneading the olive paste increases the quality and sensory properties of VOOs. This improvement
arises from the different composition and distribution of endogenous enzymes in olive fruit [34,136]:
the partial inhibition of peroxidase (POD) activity, mainly contained in the endosperm of olive, reduces
the oxidative degradation of hydrophilic phenols during processing, and increases their content
in VVOs. On the other hand destoning does not affect the activity of LOX, mainly contained in
the olive pulp tissues, so that the production of volatiles is assured. Removal of the olive stone
evidences in the corresponding oils a considerable increases of the phenolic fraction, especially the
secoiridoid derivatives such as 3,4-DHPEA-EDA, p-HPEA-EDA and 3,4-DHPEA-EA, whereas no
significant variations of lignans are observed. Moreover destoning also modifies the volatile profile
of VOOs. In oils obtained from destoned olives there is an accumulation of C6 compounds, mainly
those arising from LA, compared with oils extracted from whole fruit [136–138]. The high quantity of
C6 compounds may be explained by a greater release of membrane-bound enzymes involved in the
LOX pathways, owing to a higher degree of cellular damage caused by the grinding of pulp tissue in
destoned fruits [137]. Hexanal, reminiscent of green apple or green fruit odour notes [105], gives a
great contribution to olive oil flavour because of its low odour threshold [80], and plays an essential
role in the formation of majority of green attributes [35].

3.2.2. Malaxation

Malaxation consists in a low and continuous kneading of the olive paste and it is an essential
operation for achieving high and satisfactory yields of extraction, expecially if the crushing has been
performed by using a metallic crusher that causes the oil breakdown into very small droplets. The slow
kneading of the olive paste causes the repeated breakdown of lipoproteic membranes, improving the
coalescence of the oil droplets, and allows the partition of compounds between the oil and watery
phase and vice versa. In the same time, the active endogenous enzymes produce secoiridoid aglycons
from corresponding glucosides, oxidized phenolics and volatiles, generating compounds responsible
of the flavour.

During malaxation, glucosides degradation gives rise to a significant decrease of their
content [139]. The observed losses of secoiridoids derivatives are related to both the greater solubility
of phenolic compounds into the aqueous phase [140] and to enzymatic oxidative processes, mediated
by polyphenoloxidases (PPO) and peroxidases (POD) [141] occurring in the olive paste. In addition,
some interactions between polysaccharides and phenolic compounds may reduce the release of these
latter into the oil, contributing to justify the losses due to malaxation step [142].

Time and temperature of processing and oxygen concentration affect the level of phenolic
compounds [130,143,144]. High temperature more than time of malaxation causes greater losses
in phenolic compounds, because of an increase of PPO and POD activities [132,143,145]. The losses of
the phenolic fraction have important repercussions, besides on the gustative perceptions, on the oil
stability against the oxidation, and therefore on its shelf-life [146].

Malaxation time and temperature should be attentively studied for the oil production from
cultivars especially rich in phenolic substances, such as the Italian Coratina and the Spanish Cornicabra,
in order to reduce the concentration of phenolic substances without modifying in a considerable way
the volatile compound level; the suitable choice of these parameters will weaken the intensity of bitter
and pungent attributes, making the oil more agreeable for consumers.

On the contrary, it is important to preserve phenolic compounds in the production of oils from
cultivars having a low phenolic content. A partial inhibition of PPO and POD, performed by reducing
the O2 level in the paste, that is replacing air with N2 in the headspace of malaxer during processing,
minimizes the oxidative degradation of phenolic compounds determining the strong increase of their
content in the oil [34,139,147,148] with significant repercussion on its sensory and healthy qualities.
A research carried out modifying the Time of Exposure of Olive Paste to Air Contact (TEOPAC), with
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the aim to optimize the malaxation operative conditions in the extraction of Frantoio and Moraiolo
oils, evidenced the deleterious effect of high temperatures on the oil quality, according to results of
other researchers [132,143,149,150].

Higher amount of phenolic compounds are detected in oils from malaxed destoned pastes than
those of oils from integral ones. This feature is explained by a reduced activity of peroxidases (POD),
partially eliminated being mainly contained in the olive seed [151]. Moreover this increase could be
also dependent on the greater extraction of phenolic compounds due to minute shapes of the olive
paste. Volatile compounds, in addition to phenolic ones, are affected by malaxation, because of the
activities of enzymes of LOX pathways during the kneading of the olive paste.

Consumers like almost all aroma descriptors qualified with the adjective green [18,19] and
therefore the presence of volatiles responsible for pleasant sensory perceptions should be promoted.
The ratio among volatiles in the final product is only modified by changing temperature and time
of malaxation. Prolonged times increase yields, but promote the accumulation of C6 alcohols
and aldehydes, especially hexanal. But long times, in addition to the reduction of phenolic
compounds, cause the loss of C6 esters and the increase of C6 alcohols [143], included hexan-1-ol
and trans-2-hexen-1-ol, related to not completely agreeable perceptions [86]. However the malaxation
temperature has the most important effect on the olive oil volatile composition. High temperatures, in
addition to the loss of phenolic compounds, have as a consequence the reduction of the amount of all
volatile compounds, especially of cis-3-hexen-1-ol and C6 esters, because of the partial inactivation
of HPL [150]. Moreover high temperatures promote the production of trans-2-hexen-1-ol, a volatile
characterized by a green smelling and an astringent bitter tasting, the latter being an undesirable
sensory perception for potential consumers [18].

Prolonged times, and more heavily, high temperatures cause the increase of branched aldehydes,
quite low in high quality VOOs, but without accumulation of corresponding alcohols [143] correlated
with “fusty” defect [62,66].

In general, the highest concentrations of aldehydes are measured when malaxing time is shorter,
the production of alcohols is promoted at high temperature (35 ◦C), and the concentration of esters is
higher at low temperature (25 ◦C). Malaxing at high temperatures (≥35 ◦C) promoted formation of
green volatiles responsible for undesirable sensory perceptions, whereas low temperatures (≤25 ◦C)
favoured production of desirable green sensory perceptions [149]. The same conclusions were achieved
by Kalua et al. [144]. The use of an inert gas in the headspace of malaxer does not significantly affect
the production of volatile compounds [141].

3.2.3. Oil Extraction

VOOs are usually obtained by means of pressure and centrifugation systems. Such separation
systems differ not only for the physical forces involved in the oil separation, but also in the amount
of water used in the process. Generally pressure does not require any addition of water, whereas
centrifugation system needs more or less variable amounts of water to allow the separation of the oil
from the olive paste. The added water, modifying the original partition equilibria between oil and water
present in the olive paste, affects the chemical composition of the oil and, as a consequence, its sensory
and healthy characteristics [152,153]. These partition phenomena are of particular importance for the
phenolic fraction, essentially formed by hydrophilic compounds.

Phenolics concentration of oils obtained by means of three-phase centrifugation is significantly
lower than their level in oils extracted by pressure. In fact the traditional centrifugation needs
the addition of a considerable amount of lukewarm water (40–60 L/100 kg of olives) before the
centrifugation, to reduce the viscosity of olive pastes. The loss in phenolic compounds extracted
by such system, due to a modified distribution for both a dilution effect and a new partition
equilibrium [152–155], has significant repercussions on the induction time and therefore on the
shelf-life of VOOs. The sensory analysis highlights a weakening of bitter and pungent attributes
as a consequence of the reduced levels of secoiridoids. Moreover, the addition of lukewarm water
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can explain the decrease of some volatiles, such as hexan-1-ol and trans-2-hexen-1-ol, with respect to
oils separated by pressure [156,157]. The adoption of centrifugation systems requiring no addition of
water (two-phase decanters) or needing small volumes of water, known as water saving decanters
(0–30 L/100 kg of olive paste), allows to obtain oils richer in hydrophilic phenols than those obtained
by the traditional three-phases centrifuges [48,152,158–162]. Less important changes have been found
in volatile composition of oil from two and three phase decanters, due to a lower water solubility of
these compounds when compared with phenolics [55]. At sensory levels these oils are more aromatic
and more bitter and pungent than those obtained by traditional centrifugation.

4. Varietal Characterization

Monovarietal olive oils have some specific characteristics related to the olive variety from which
they are obtained. DNA markers have been used to identify cultivars. Montalegre et al. [162] have
recently published an extensive review. Food DNA analysis may represent an attractive and alternative
choice to the more classical analytical methods, because DNA provides an opportunity for direct
comparison of different genetic material [163–167]. However, Claros et al. [168] showed that soil and
climate have significant influence on cultivar differentiation during the years and in addition there is
evidence that the genetic diversity of olive cultivars is strongly dependent on the region and country
of origin [169]. Since the discovery of amplifiable DNA from olive oil, different genetic markers,
generally fragments of DNA or specific sequences of DNA bases or nucleotides, have been used to
recognize the cultivar employed for oil production [163,165,169–171]. The assignment of the cultivar is
based on the comparation of genetic markers extracted from olive oil, suitably amplified, with those
obtained from olive leaves. As an example, by using genetic markers, Breton et al. [169] identified
66 cultivars from their leaves and then they proposed the use of their database for cultivar identification
of monovarietal oils and blended commodities. Recently, Consolandi et al. [172] proved that genetic
markers are able to differentiate 49 cultivars, the most common of the Mediterranean basin. In spite of
some successes in varietal characterization, ascribable to adoption of genetic markers having a great
discriminatory power, this approach shows some limitations due to the difficult extraction of genetic
material in sufficient quantity and high quality from oils, since oil DNA is highly degraded. Moreover
the reproducibility of the amplification markers depends on the quality of the recovered DNA.

Another approach to achieve the differentiation among olive oils, according to the olive variety,
is represented by the use of compositional markers. They are affected by the environmental or
technical conditions, and this makes difficult the interpretation of the results obtained. They have
been differentiated in major components (fatty acids and triglycerides) and minor components (sterols,
phenolic compounds, volatile compounds, pigments, hydrocarbons, and tocopherols), according
to their presence in olive oils. Many authors claim that the VOO authentication is possible in
relation to cultivar, geographic area [173–175], extraction methodologies [149,176,177] by using
compositional markers. However, the dependence of the level of many chemical compounds from
agronomic and technological factors does not allow to achieve the characterization on the basis of the
simple observation of data related to some fractions of VOO composition. Therefore, for the VOO
characterization, a great number of variables are needed and data have to be analyzed by statistic
techniques or artificial intelligence algorithms. In the application of these statistic methodologies it
should be considered the removal of redundant information and the selection of artefacts that can lead
to wrong conclusions. In addition, the problem of the characterization is complicated by the fact that
data reported in literature are often obtained by using different analytical methodologies and lump
them together for characterization. Fatty acids and triacylglycerols, the major components, are the
fractions that were mainly used for the varietal characterization of VOOs [161,178–185].

Varietal characterization was also carried out by analyzing only one class of minor
compounds [111,175,186–194]. Other researchers used more classes to achieve the varietal
characterization [38,84,110,195–202]. In a recent investigation [68] volatiles were used for the
characterization of oils from 39 cultivars, native of several producer countries and all grown in
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the same botanical garden. Oils were obtained from fruits harvested at the same ripening degree,
processed with the same system and in the same operative conditions. Therefore, as there were no
external variables that might unequally affect the enzyme activity of a particular variety, the differences
observed in the volatile concentration are related to the variety. Authors first differentiated cultivars
according to the content of total volatile compounds, hydrocarbons, aldehydes, alcohols, ketones and
esters. A more profound analysis was carried out on C6 compounds because of their importance as
green attributes contributors. The application of a cluster analysis to data of C6 compounds gave
pieces of evidence of some similarities among the 39 cultivars. Two main groups, in their turn divided
in two groups each one, appeared in the dendrogram, so that there were four groups all formed by
varieties of different geographical origin (Table 3).

The contribution of volatiles to aroma of the monovarietal oils is different: Luna and
co-workers [68] found that thirteen volatiles did not contribute at all because their odour activity
values were lower than 1.0, thirteen of them contributed only for a certain number of varieties and
only seven concurred to the sensory profile of all cultivars.

The application of solid phase micro-extraction (SPME) to the analysis of VOOs headspace [109]
allowed the detection of significant differences in the proportion of C6 esters, trans-2-hexenal,
trans-2-hexen-1-ol and total amount of metabolites from LnA in monovarietal oils obtained from
two different areas of Northern Italy. No differences were observed for C5 compounds with respect
to the cultivar. Moreover authors gave emphasis to the great differences found in the content of
α-copaene, α-farnesene, and hydrocarbons with >20 carbon atoms [111]. These differences prove that
hydrocarbons can be possible markers for varietal characterization of VOOs, as suggested by other
researchers [91,110,111].

Table 3. Cultivars belonging to the four groups evidenced by HCA, and elements they shared.

Group Subgroup Cultivars Elements Shared

1 a

Arbequina, Coratina, Cima di Bitonto, Chemlal of
Kabylie, Frantoio, Manzanilla, Manzanillo
Cordobe’s, Mastoides, Moraiolo, Morruda, Negro,
Nevado, Nisjot, Santa Caterina, Konservalia

high content of trans-2-hexenal; mean
content of alcohols and esters; low
concentration of hexanal

1 b Leccino, Lechín, Megaritiki, Ogghiaredda

high content of trans-2-hexenal; low
concentration of alcohols; high
concentration of esters; concentrations of
hexanal and alcohols similar

2 a Cornicabra, Empeltre, Hojiblanca, Imperial, Picual,
Memecik, Picholine Marrocaine, Sourani

high concentrations of hexan-1-ol and
cis-3-hexen-1-ol; very low concentrations of
trans-2-hexenal and esters; hexanal
concentration higher than trans-2-hexenal

2 b
Adramytini, Cañivano, Chami, Chetoui, Chorruo,
Koroneiki, Nevadillo, Picudo, Redondilla, Tsounati,
Verdial de Huévar, Zaity

high content of trans-2-hexenal and hexanal,
mean content of alcohols; low
concentration of and esters

Considerable differences were found in the total amount of volatile compounds, alcohols,
aldehydes, ketones, and C6 and C5 compounds of oils obtained from fruits of 18 cultivars grown in
the same orchard on the western coast of the Garda Lake (Northern Italy) [203]. On the basis of the
differences in volatile compositions and sensory profiles, some of the varieties could be differentiated.
Headspace-mass spectrometry (HS-MS) methodology was used to characterize varieties [201,204];
data obtained from this procedure need to be processed by statistical procedures and allow to predict
the assignation of monovarietal oils, according to olive varieties and geographical origins, correctly
classifying ca. 87% of samples [204].

The different composition in phenolic and volatile compounds from LOX pathway, perceived by
consumers as different sensory profiles (Figure 6), can be a useful tool for the varietal characterization.
In particular, volatiles arising from LnA LOX pathway have been proposed for the varietal
characterization of oils from 20 cultivars [205,206].
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The varietal characterization can be made through these metabolites, according to an approach
that takes into account the different store of enzymes involved in the LOX pathway of the examined
cultivars. This metabolic pathway, having linolenic acid as precursor (Figure 2), mainly accumulates
trans-2-hexenal and trans-2-hexen-1-ol, owing to the isomerisation of cis-3-hexenal (A branch),
and cis-3-hexen-1-ol and cis-3-hexenyl acetate, for subsequent enzymatic reduction and esterification
of cis-3-hexenal (B branch), and involves several enzymes.

The amount of each enzyme is strongly dependent of the enzymatic store of each cultivar, as it
is proved by the percent of the corresponding accumulation products (Table 4). The sum of amount
of all mentioned metabolites represents the amount of their common precursor cis-3-hexenal that,
only to a very small extent, does not undergo the activities of isomerase and in some cultivars of
alcohol dehydrogenase.
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amount of phenolic compounds of some monovarietal virgin olive oils obtained from fruits harvested
at the same ripening degree and processed in the same operative conditions. (Source: Authors;
unpublished results).

In Table 4 the amount of trans-2-hexenal includes also the very small amount of cis-3-hexenal
since in our gas chromatographic conditions the separation of the two compounds was not complete,
because their retention time are very close. The accumulation of trans-2-hexenal in all cultivars,
except for Moraiolo, evidences that the isomerisation of cis-3-hexenal is the dominant process.
However, the different amounts of trans-2-hexen-1-ol (more than 5%) in some cultivars (Leccino,
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Dritta, Bosana, Meski, Chetoui) prove a reasonable activity of alcohol dehydrogenases in the reduction
of trans-2-hexenal, connected with a fair amount of this enzyme in their genetic store.

B branch is active in different way in many of the cultivars examined, namely Carolea, Bosana,
Provenzale, Nocellara del Belice, Gentile di Chieti, Maurino, Koroneiki, Pisciottana, Chetoui, Moraiolo.
Among them, only Bosana shows a negligible activity of alcohol dehydrogenases and some activity of
alcohol acetyl transferases, owing to the accumulation of 5.2% of cis-3-hexenyl acetate. In all the other
varieties tested, the activity of enzymatic reduction of cis-3-hexenal is the most important process of B
branch. This last is especially important in Moraiolo, Pisciottana and Maurino, since cis-3-hexen-1-ol
ranges from 42.4 in Moraiolo to 32.9 in Pisciottana and 20.9 in Maurino, respectively. High levels of
alcohol acetyl transferases characterize Koroneiki, Provenzale and Pisciottana.

A branch is the only active in Mastoidis, Coratina, Frantoio, Chemlali, Taggiasca, Canino,
and Picual, proving that the activity of isomerase is dominant. The content of trans-2-hexenal
differentiates the cultivars. However, Mastoidis and Taggiasca show similar content of trans-2-hexenal.
The percent of cis-3-hexen-1-ol and cis-3-hexenyl acetate in Taggiasca indicate some activity of enzymes
of B branch, practically absent in Mastoidis cultivar. Picual is characterized by some activity of ADH of
B branch, proved by a 5% of cis-3-hexen-1-ol. Oils from Leccino are characterized only by high activity
of isomerases and by a fair activity of ADHs in A branch. Dritta and Bosana, having similar contents
of trans-2-hexenal and trans-2-hexen-1-ol, are differentiated by a more important activity of alcohol
acetyl transferases in Bosana, proved by the accumulation of a 5% of cis-3-hexenyl acetate.

Both A and B branches are active in oils from Provenzale, Nocellara del Belice, Gentile di Chieti
and Maurino. In all these cultivars alcohol dehydrogenases in A branch are practically absent, whereas
are active those of B branch that cause the accumulation of cis-3-hexen-1-ol. The percent of this
metabolite, ranging from about 10% up to 20%, differentiates the cultivars. In addition, Provenzale is
characterized by a considerable activity of alcohol acetyl transferases that is negligible in Maurino,
whereas play an important role in Koroneiki, Pisciottana, Moraiolo and Chetoui. Therefore it possible
to differentiate all cultivars according to the activities of enzymes involved in A and B branches.

Table 4. trans-2-Hexenal as mg/kg, and percent distribution of the main metabolites coming from LnA
oxidation in some extra virgin monovarietal olive oils. Results are expressed as mean of three samples
of each monovarietal olive oil. (Source: the authors, unpublished results).

Cultivar trans-2-Hexenal
(mg/kg) % trans-2-Hexenal % trans-2-Hexen1-ol % cis-3-Hexen-1-ol % cis-3-Hexenyl

Acetate

Mastoidis 17.1 99.4 0.1 0.5 0.0
Coratina 43.5 97.8 1.5 0.7 0.0
Frantoio 53.4 96.6 1.2 0.7 1.5
Chemlali 14.7 95.6 1.5 1.9 1.1
Taggiasca 17.2 94.9 1.6 1.6 1.9

Canino 30.3 94.8 2.8 2.2 0.2
Picual 23.2 92.6 1.2 5.0 1.2

Leccino 47.3 89.0 10.1 0.9 0.0
Dritta 11.4 84.5 10.9 1.5 3.1

Carolea 7.4 83.4 2.2 14.4 0.0
Bosana 12.1 82.7 10.1 2.0 5.2

Provenzale 5.7 79.4 1.4 9.6 9.6
Nocellara
del Belice 6.8 78.4 1.1 15.8 5.0

Gentile di
Chieti 6.5 75.1 2.3 18.1 4.5

Maurino 6.3 74.4 2.3 20.9 2.4
Meski 6.2 61.3 37.8 1.0 0.0

Koroneiki 4.6 58.7 3.8 16.3 21.3
Pisciottana 1.1 52.6 4.7 32.9 9.9

Chetoui 3.1 49.5 27.8 17.0 5.6
Moraiolo 1.8 45.6 5.0 42.4 7.0
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Some investigations carried out on oils from Leccino, Coratina and Picual varieties, grown in the
botanical garden in two different olive crops from fruits sampled at the same ripening degree and
processed in the same conditions, proved that such distribution is the same over the production crop,
even if the climatic conditions were very different [206]. On the other hand the same distribution was
observed regardless of where the fruit was grown when the fruits show the same ripening degree and
are processed in the same conditions: the same results were obtained for oils from Koroneiki and Picual
cultivars grown in Central Italy (Pescara) and in Greece (Crete) [206]. Moreover it has been proved that
C6 distribution is stable during the ripening process from the half-cherry stage to the black one that is
from when the final oil content is reached on. This means its independency from the ripening degree
of fruits at least in the usual harvesting time [102]. The independence from where the fruit is grown,
the year variability and the ripening degree of olives makes very interesting this approach for varietal
characterization and for the control of truthfulness of the cultivar stated on the label. The method is
closely dependent on genetic factors, fast, based on a simple head-space analysis and could allow to
identify several cultivars, without any application of statistical procedures. The different compositions
in volatile compounds, in addition to different content in phenolic compounds, are perceived by
consumer as different sensory profiles, as shown in Figure 6.

5. Conclusions

Nowadays there is an increasing attention to food. Consumers address their choice to food
having special sensory characteristics and able to supply basic nutrients, to improve physical and
mental health and to reduce the risk of the most common diseases. High quality VOOs meet all these
requirements, being rich in antioxidant compounds having the requested beneficial activities and
possessing sensory characteristics that greatly improve the acceptability of food. Sensory profiles of
monovarietal VOOs represent an important element able to characterize and differentiate them and,
actually, their productions is constantly increasing. Therefore, the main goal of the oil production is to
preserve all compounds responsible for sensory notes. The knowledge of the profile of volatiles and
phenolics that characterize oil obtained by fruit of a cultivar is, in our opinion, of major importance
since it conditions the choice of several parameters affecting the quality of the resulting oil. To achieve
the result of an oil with balanced sensory characteristics and highly appreciated by consumers, it is
necessary to choose in an appropriate manner factors such as the harvesting time of fruits, the possible
amount of irrigation water, the type of system used for the oil extraction, especially the kind of crusher,
all greatly dependent by the cultivars.
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