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Abstract: Schisandra chinensis (known in Chinese as WuWeiZi, WWZ) has observable effects such as
astringing the lung to stop coughs, arresting sweating, preserving semen and preventing diarrhea.
The major components of WWZ include lignans, triterpenoids, organic acids and fatty acids. In this
paper, a reliable method for the rapid identification of multiple components in WWZ by their
characteristic fragments and neutral losses using UPLC-Q-TOF/MS technology was developed.
After review of the literature and some reference experiments, the fragmentation pattern of several
compounds were studied and summarized. Then, according to the corresponding characteristic
fragments coupled with neutral losses in the positive or negative ion mode produced by different
types of substances a rapid identification of target compounds was achieved. Finally, a total of
30 constituents of WWZ were successfully identified, including 15 lignans, nine triterpenoids,
three organic acids and three fatty acids. The method established in this study not only provides
a comprehensive analysis of the chemical ingredients of WWZ, providing a basis for further
phytochemical studies on WWZ but also provides a more efficient way to solve the problem of
identification of complex chemical constituents in traditional Chinese medicines.
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1. Introduction

Schisandra chinensis (the dried mature fruits of Schisandra chinensis (Turcz.) Baill or Schisandra
sphenanthera Rehd et Wils) is commonly used as a tonic, sedative and an anti-aging drug in clinical
practice, for it has good anti-inflammatory, anti-oxidative, immunomodulatory and anti-hepatic injury
effects [1,2].The main components in Schisandra chinensis (named WuWeiZi, WWZ) contain lignans,
triterpenoids, organic acids and fatty acids, volatile oils, and sugars. Many studies have shown that
lignans, which have various biological activities such as antihepatotoxic, antioxidant and detoxificant
effects, are the major bioactive constituents of WWZ [3–5], able to inhibit hepato-carcinogenesis and
enhance human intellectual activity [6]. Triterpenoids show anti-HIV effects and inhibitory activities
toward cholesterol biosynthesis [7]. Organic acids show antibiotic pharmacological activities [8],
while fatty acids have been associated with anti-inflammatory, immunomodulatory, analgesic and
anti-tumour properties [9]. Compared to the single compounds of Western medicine, the efficacy of
traditional Chinese medicines (TCMs) is characterized for its integrity and synergy resulting from the
various components. However, according to current research results, the qualitative identification
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of WWZ is mainly concentrated on the lignans [10,11]. Therefore, it is not only necessary to develop
multi-component fingerprints by UPLC-Q-TOF/MS, but more importantly to establish a rapid and
reliable method for the identification of different types of constituents in WWZ.

Many methods for analysing chemical ingredients of WWZ have been reported, including
thin layer chromatography (TLC) [12], high-performance liquid chromatography (HPLC) [13],
capillary electrophoresis (CE) [14], high speed countercurrent chromatography (HSCCC) [15], gas
chromatography-mass spectrometry (GC/MS) [16], among others. Nowadays, ultra-performance
liquid chromatography/time-of-flight mass spectrometry (UPLC-Q-TOF/MS) is widely used [17,18].
With the rapid development of modern analysis technology and data post-processing technology,
characteristic fragments filter (CFF) and neutral loss filter (NLF) represent two data post-processing
technology methods that can be used for the in-depth study of TCM components [19,20].
Under identical MS conditions, compounds with same or similar parent nuclei could be split into
different fragments. Characteristic fragment ions (CFs) refer to the fragments that could be used to infer
the cleavage types and the classification of substances, which helps to screen the target components
and filter congeners. Moreover, neutral fragments (NFs) lost during cleavage processes also play
an important role in screening substances, as they reflect the discrepancy of the m/z between the parent
ion and the fragment ions in high mass-to-charge ratio portions [21–26]. Therefore, it is propitious
to realize the rapid screening and qualitative analysis of constituents of TCM combined with data
post-processing techniques (CFF and NLF) on the basis of UPLC-Q-TOF/MS.

The rapid identification and analysis of the components are helpful to further develop
pharmacodynamic material basis and determine the functional mechanism(s) of TCMs. Therefore,
analytical methods should be developed to rapidly classify and identify complex TCM components.
This paper is mainly based on the UPLC-Q-TOF/MS method. Firstly, the mass spectrometry
information in regard to the components of WWZ extract were classified and summarized after
a review of the literature and some reference experiments results. According to the above results, it can
be speculated that fragmentation regularity exists in the mass spectra of several different constituents
of WWZ. Then, the CF and NL rules of lignans, triterpenoids, organic acids and fatty acids were
established and generalized. Then, original mass spectral information was obtained and processed
by the Masslynx version 4.1 software (Waters, Milford, UK) to detect and align the peaks. Finally, the
identities of these compounds were determined on the basis of mass information in combination
with different CFs and NLs. In this study, more abundant mass spectrometry information was
acquired by scanning in the positive and negative ion mode, and in combination with a characteristic
post-processing technique for information integration, several compounds could be classified and
identified. To a certain degree, the method provides an effective way for solving the key issue of rapid
classification and identification of complex chemical components in TCMs, and also a foundation for
controlling the quality of different batches of original herbs.

2. Results and Discussion

2.1. The Establishment of Data Post-Processing Technology Based on UPLC-Q-TOF/MS

In order to obtain further material information of the fingerprint, based on the physical structure
and chemical characteristics of components in WWZ; a BEH C18 column was eventually used.
Good resolution with high and narrow peaks were obtained at a column temperature of 35 ◦C,
flow rate of 0.4 mL·min−1, injection volume of 2 µL and with a mobile phase consisted of (A) 0.1%
formic acid in water and (B) acetonitrile containing 0.1% formic acid. Additionally, the WWZ extract
was comprehensively analysed under positive and negative ion modes. Typical BPI chromatograms of
the substances in the WWZ extract in both modes are shown in Figure 1.
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Figure 1. Typical total ion current (BPI) chromatograms of substances in the WWZ extract, under
positive and negative ion modes.

In this study, WWZ extract was selected for the experiments. Firstly, according to the existing
literature, the fragmentation information about the lignans, triterpenoids, organic acids and fatty acids
as main components in WWZ was collected. Then, the fragmentation rules of CFs and NLs with regard
to the above four types of components were inferred and are listed in Table 1, and the ion information
of the constituents could be obtained using the Masslynx software.

Table 1. Characteristic fragments and neutral loss of different chemical constituents in WWZ extract.

Classification Subclass Neutral Loss Characteristic
Fragments

Lignans

Type 1 biphenyl cyclooctene lignans
(without OH)

70 Da (C5H10)
56 Da (C4H8)

415 [C24H31O6]+

401 [C23H29O6]+

331 [C18H19O6]+

330 [C18H18O6]+

301 [C17H17O5]+

Type 2 biphenyl cyclooctene lignans
(with OH)

18 Da (H2O)
54 Da (C4H6)

Type 3 biphenyl cyclooctene lignans
(with OH and benzoyl),

18 Da (H2O)
122 Da (C6H5COOH)

30 Da (CH2O)

Type 4 biphenyl cyclooctene lignans
(with OH and angeloyl or tigloyl)

18 Da (H2O)
100 Da (C4H7COOH)

30 Da (CH2O)

Open-loop lignans 182 [C9H10O4]+

122 [C7H6O2]+

Triterpenoids

Lanostane-type 46 Da (HCOOH)
45 Da (HCOO−)

Cycloartane-type 312 [C22H32O]+

271 [C19H27O]+

Schisanra-type 60 Da (CH2C(OH)2)
74 Da (CH3CH=C(OH)2)

Fatty acids
55 [C4H7]+ or 54[C4H6]−

67 [C5H7]+ or 66[C4H6]−

79 [C6H7]+ or 78[C4H6]−

Organic acids 44 Da (CO2)
18 Da (H2O)

Substances can be classified by NLs, that refers to the mass difference between molecular ion peaks
and high mass-to-charge ratio fragment peaks, combined with the CFs of other subtypes to determine
the type of compound. Finally, a method was established for rapid identification and classification
of chemical compositions in WWZ extract by using CFF and NLF. Lignans are generally divided
into biphenyl cyclooctene lignans and open-loop lignans. In line with the fragmentation information
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obtained in mass spectrometry from the literature and the total ion flow mass spectrometry information,
biphenyl cyclooctene lignans are characterised by CFs at m/z 415 [C24H31O6]+, m/z 401 [C23H29O6]+,
m/z 331 [C18H19O6]+, m/z 330 [C18H18O6]+. Combined with the CFs and NLs of other subtypes,
this type of compound could be rapidly determined among the many components. The biphenyl
cyclooctene lignans are divided into four categories according to their structure and different
connection groups. There are type 1 biphenyl cyclooctene lignans with closed loops (without OH), type
2 biphenyl cyclooctene lignans (with OH), type 3 biphenyl cyclooctene lignans (with OH and benzoyl),
type 4 biphenyl cyclooctene lignans (with OH and angeloyl or tigloyl moieties). The loss of neutral
molecules occurs through energy collisions. For example, type 3 biphenyl cyclooctene lignans (with
OH and benzoyl) have a symmetrical structure with benzoyl groups, so the neutral loss of a benzoyl
at 122 Da (C6H5COOH) are one of the major fragmentation pathways obtained by collision-induced
dissociation. According to the loss of molecules including 18 Da (H2O), 122 Da (C6H5COOH), 30 Da
(CH2O), the unknown component could be further identified as type 3 biphenyl cyclooctene lignans.

2.2. Lignans

Lignans are the main active ingredients in WWZ fruits. Based on the parent nucleus structure
lignans were divided into biphenyl cyclooctene lignans and open-loop lignans. According to their
fragmentions in multi-stage spectra, characteristic dissociation rules were obtained, which can be
summarized as follows: firstly, the fragment ions 415 [C24H31O6]+, 401 [C23H29O6]+, 331 [C18H19O6]+,
330 [C18H18O6]+ 301 [C17H17O5]+ are can be identified as CFs of biphenyl cyclooctene lignans. On
the contrary, open-loop lignans were identified according to CFs including 182 [C9H10O4]+, and 122
[C7H6O2]+. Additionally, biphenyl cyclooctene lignans were divided into four classes consisting of
type 1 biphenyl cyclooctene lignans with closed loop (without OH), type 2 biphenyl cyclooctene
lignans (with OH), type 3 biphenyl cyclooctene lignans (with OH and benzoyl) and type 4 biphenyl
cyclooctene lignans (with OH and angeloyl or tigloyl units) on the basis of their structure and different
groups. NLs often reveal the information related to the categories of compounds and also play an
important role in the rapid identification of compounds. Type 1 biphenyl cyclooctene lignans easily
lose neutral fragments of m/z 70 Da (C5H10) and 56 Da (C4H8) to produce five membered rings or
six membered rings formed from the eight membered ring. While type 1 of the parent nucleus is not
connected with hydroxyl groups, based on the characteristic NLs at m/z 18 Da (H2O), three other
classes and type 1 were distinguished. NLs at m/z 122 Da (C6H5COOH) and m/z 100 Da (C4H7COOH)
are the key to distinguishing between type 2 and type 3, type 4. Additionally, type 3 and type 4
exhibited benzoyl and angeloyl or tigloyl structures; 122 Da (C6H5COOH) and 100 Da (C4H7COOH)
peaks are characteristic NLs of type 3 and type 4 respectively. Lignans show adduct ions [M + Na]+ in
positive mode; however, without signals in the negative ion mode [6,10,11,27–33]. Thus, substances in
the WWZ extract were rapidly classified and identified using CFF combined with NLF.

Compound 1 had a retention time of 17.07 and formula of C24H32O6. In the positive ion mode,
fragment ions at m/z 417 [M + H]+, m/z 439 [M + Na]+, 440 [M + H + Na]+, m/z 402 [M + H − CH3]+,
m/z 347 [M + H − C5H10]+, m/z 361 [M + H − C4H8]+, m/z 370 [M + H − CH3 − CH3OH]+,
m/z 316 [M + H − C5H10 − OCH3]+, m/z 301 [M + H − C5H10 − OCH3 − CH3]+ were obtained.
According to the fragmentation rules, the fragment ion at m/z 301 [M + H − C5H10 − OCH3 − CH3]+

is a CFs that can be identified as corresponding to a biphenyl cyclooctene lignan. In addition, this
compound presented m/z 417 [M + H]+, m/z 439 [M + Na]+, m/z 440 [M + H + Na]+ peaks and
exhibited an NLs of 70 Da (C5H10) between the parent ion (m/z 417) and the fragment ion (m/z 347);
this result confirmed the eight membered ring reaction; thus, this compound can be inferred as a type
1 biphenyl cyclooctene lignan. The fragment ion at m/z 402 [M + H − CH3]+was derived from
the loss of one methyl (CH3) molecule. The fragment ion at m/z 370 [M + H − CH3 − CH3OH]+

displayed loss of a molecule of CH3OH on the basis of m/z 402 [M + H − CH3]+, while
m/z 316 [M + H − C5H10 − OCH3]+ corresponds to the loss of a methoxyl group on the basis
of m/z 347 [M + H − C5H10]+. Taken together, this information allows the compound to be identified
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as deoxyschisandrin [10,27,28] (for more details, see Table 2). The specific fragmentation pathways for
deoxyschisandrin are shown in Figure 2.Molecules 2017, 22, 1778 5 of 17 
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Figure 2. The proposed fragmentation pathway of deoxyschisandrin in positive ion mode.

Compound 5 had a retention time of 10.35, formula of C24H32O7, and showed fragment ions at
m/z 433 [M + H]+, m/z 455 [M + Na]+, m/z 415 [M + H − H2O]+, m/z 384 [M + H − H2O − OCH3]+,
m/z 361 [M + H − H2O − C4H6]+. The fragment ion at m/z 415 [M + H − H2O]+ exhibited an neutral
loss of 18 Da for a H2O molecule, while the occurrence of the m/z 361 [M + H − H2O − C4H6]+

peak indicated a loss of 54 Da (C4H6) based on the fragment ion at m/z 415. According to the NL
rules, compound 5 can be inferred as a type 2 biphenyl cyclooctene lignans (with OH). Additionally, a
fragmentation at m/z 384 [M − H2O − OCH3]+ was obtained by the fragment ion m/z 415 [M + H −
H2O]+ to lose a methoxyl group (OCH3). This fragmentation information combined with reference
data allowed the compound to be identified as schisandrol A [11,29,30], and its cleavage pathways are
shown in Figure 3.
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Figure 3. The fragmentation pathways of schisandrol A in positive ion mode.

Compound 8 had a retention times of 14.90 and the formula C30H32O9. In our experiments, we
obtained fragment ions at m/z 537 [M + H]+, m/z 560 [M + H + Na]+, m/z 519 [M + H − H2O]+,
m/z 415 [M + H − C6H5COOH]+, and m/z 385 [M + H − C6H5COOH − CH2O]+. After reviewing
the literature and some reference experiments, the cleavage pathway suggested a type 3 biphenyl
cyclooctene lignan which easily loses 18 Da (H2O), 122 Da (C6H5COOH), 30 Da (CH2O). Additionally
the fragment ions at 519 [M + H − H2O]+, m/z 415 [M + H − C6H5COOH]+, m/z 385 [M + H −
C6H5COOH − CH2O]+ confirmed the compound was a type 3 biphenyl cyclooctene lignan.

The presence of the 415 [M + H− C6H5COOH]+ ion indicated a benzoyloxy group in the structure.
The fragmention at m/z 537 [M + H]+ was a molecular ion, which resulted in a fragment ion at m/z 560
[M + H + Na]+. Therefore, comparing the fragment ions rules from the literature [10,29], compound 8
was determined to be schisantherin A. The specific fragmentation pathways of schisantherin A are
shown in Figure 4.
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Figure 4. The specific fragmentation process of schisantherin A in positive ion mode.

2.3. Triterpenoids

Triterpenoids, according to their chemical structure, can be divided into three types:
lanostane-type triterpenoids, cycloartane-type triterpenoids, and schisanra-type triterpenoids.
Firstly, lanostane-type triterpenoids usually have carboxyl groups, and easily lose 46 Da (HCOOH)
and 45 Da (HCOO−) molecules. Secondly, based on the relative abundance of the fragments at
m/z 312 [C22H32O]+, 271 [C19H27O]+ in the MS data, the components which belong to cycloartane-type
triterpenoids can be identified. Finally, schisanra-type triterpenoids differ from the other two types, and
could be identified by their typical NLs, including 60 Da (CH2C(OH)2) and 74 Da (CH3CH=C(OH)2)
that appeared in the spectra. Thus, based on the CFs and NLs we could rapidly determine the
components which belong to the different types of triterpenoids [33–35].

Compound 19 presented a retention time of 19.56 min and a formula of C30H46O4.
Several main fragment ions at m/z 469 [M − H]−, m/z 423 [M − H − HCOOH]−,
m/z 378 [M − H − HCOOH − HCOO]− were observed in the multi-stage spectra. The characteristic
dissociation rules of lanostane-type triterpenoids showed the loss of neutral molecules of 46 Da
(HCOOH), 45 Da (HCOO−) dominate in the multi-stage fragmentations, resulting in the formation of
423 [M−H−HCOOH]−, m/z 378 [M−H−HCOOH−HCOO]− ions, respectively. Additionally, the
protonated molecular ion 469 [M − H]− was observed. These results are consistent with the
fragmentation pathway of kadsuricacid [35]. A proposed mechanistic pathway for fragments formed
in negative ion mode is shown in Figure 5.
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Figure 5. The specific fragmentation process of kadsuricacid in negative ion mode.

Compound 15 possessed a retention time of 20.48 min and a formula of C30H44O3. In the
positive ion mode, it showed several fragments at m/z 453 [M + H]+, m/z 312 [M − C8H12O2]+,
m/z 271 [M − C8H12O2 − C3H5]+, m/z 269 [M − C8H12O2 − C3H7]+, m/z 111 [C6H7O2]+. The ions
at m/z 312 [C22H32O]+ and m/z 271 [C19H27O]+ as CFs suggested this compound belonged to the
cycloartane-type triterpenoids, and the fragment ion at m/z 111 [C6H7O2]+ indicated loss of a benzoyl
fragment from the parent nucleus. The fragment at m/z 453 [M+H]+ is the protonated molecular ion.
Thus, compound 15 was determined as sohisanlaotone D by combining the fragmentation rules with
literature data [35]. A pathway for the fragments formed in the MS is shown in Figure 6.
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Compound 24 was eluted at 8.79 min and its molecular formula was C29H35O10. The fragments
included peaks at m/z 542[M − H]−, m/z 524 [M − H − H2O]−, m/z 482 [M − H − CH2C(OH)2]−,
m/z 408 [M − H − CH2C(OH)2 − CH3CH=C(OH)]−, m/z 390 [M − H − H2O −
CH2C(OH)2 − CH3CH=C(OH)]− obtained in negative ion mode, and 60 Da (CH2C(OH)2)
and 74 Da (CH3CH=C(OH)2) are characteristic NLs of schisanra-type triterpenoids according
to the consulted literature information and mass fragmentation patterns (NLF). The ions at
m/z 408 [M − H − CH2C(OH)2 − CH3CH=C(OH)]−, m/z 390 [M − H − H2O − CH2C(OH)2 −
CH3CH=C(OH)]− further support the identification of this type of triterpenoid. The fragmentation at
m/z 524 [M−H−H2O]− was obtained from the fragment at m/z 542 [M−H]− by loss of a molecule of
H2O. These results are in conformity with the CF and NL rules shown in Table 1. Therefore, compound
24 was determined as schindilactone A [33]. The proposed fragmentation pathways of schisantherin
A are shown in Figure 7.Molecules 2017, 22, 1778 14 of 17 
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2.4. Fatty Acids

Fatty acids are divided into saturated fatty acids and unsaturated fatty acids. CFs at
m/z 74 [C5H14]+ of saturated fatty acids produced by Mclafferty rearrangements in the mass
spectrometer were observed. Unsaturated fatty acids undergo fragmentations through hydrogen
transfer, gamma, and alpha cleavage that produce CFs of 55 [C4H7]+, 67 [C5H7]+, 79 [C6H7]+ or
54 [C4H6]−, 66 [C5H6]−, 78 [C6H6]−. As a result, we can quickly identify the different types of fatty
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acids, such as compound 26, for which m/z 66 [C5H6]−, m/z 261 [M − H − H2O]−, m/z 279 [M−H]−

peaks were obtained. According to the fragmentation rules and other ion information, the compound
showing an ion of [M − H]− at m/z 279 corresponding to the molecular formula C18H32O2, can be
inferred as 9,12-linoleic acid [36]. For more details, see Table 3.

2.5. Organic Acids

Organic acids play a major role in antibiotics [8]. According to our literature review this kind of
compound strongly loses acid groups [37], besides, organic acids easily produce H2O and CO2

groups in negative ion mode. Thus, this kind of compound was identified on the basis of the
parention fragments [M+H]− combined with neutral losses. For example, compound 28, ions at
m/z 191 [M − H]−, m/z 146 [M − HCOOH]−, m/z 147 [M − H − CO2]−, m/z 129 [M − H −
CO2−H2O]−, m/z 85 [M − H − CO2 - CO2 − H2O]– were obtained in the negative ion mode, and
ones at m/z 146 [M −HCOOH]−, m/z 147 [M −H − CO2]−, corresponding to the NLs of 44 Da (CO2),
18 Da (H2O) and the parention fragmentation m/z 191 [M − H]- indicated citric acid [37,38], which
formula is C6H8O7, shown in Table 3.
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Table 2. Identification of the chemical constituents of the WWZ extract by using UPLC-Q-TOF/MS in positive ion modes.

No. Classification Name Formula m/z [M + H]+ Time (min) Experimental
m/z [M + H]+ ppm Fragment Ions Ref

1
Type 1 biphenyl

cyclooctene lignans
(without OH)

Deoxyschisandrin C24H32O6 417.2277 17.07 417.2289 2.88

417 [M + H]+

439 [M + Na]+

440 [M + H + Na]+

402 [M + H − CH3]+

347 [M + H − C5H10]+

370 [M + H − CH3 − CH3OH]+

316 [M + H − C5H10 − OCH3]+

301 [M + H − C5H10 − OCH3 − CH3]+

361 [M+H − C4H8]+

[10,27,28]

2
Type 1 biphenyl

cyclooctene lignans
(without OH)

SchisandrinB C23H28O6 401.1964 17.97 401.1962 0.50

401 [M + H]+

423 [M + Na]+

386 [M + H − CH3]+

331 [M + H − C5H10]+

301 [M + H − C5H10− OCH3]+

371 [M + H − CH3− CH3]+

[10,11,28]

3
Type 1 biphenyl

cyclooctene lignans
(without OH)

Schisandrin C C22H24O6 385.1651 18.41 385.1642 2.08

385 [M + H]+

407 [M + Na]+

370 [M + H − CH3]+

315 [M + H − C5H10]+

300 [M + H − C5H10 − CH3]+

[10]

4 Other lignans Gomisin J C22H28O6 389.1964 11.43 389.1953 2.83

389 [M + H]+

411 [M + Na]+

319 [M + H − C5H10]+

342 [M + H − CH3OH − CH3]+

358 [M + H − OCH3]+

374 [M + H − CH3]+

[10]

5
Type 2 biphenyl

cyclooctene lignans
(with OH)

Schisandrol A C24H32O7 433.2226 10.35 433.2226 0.00

433 [M + H]+

455 [M + Na]+

415 [M + H − H2O]+ 384 [M + H − H2O − OCH3]+

361 [M + H − H2O − C4H6]+

[11,29,30]

6
Type 2 biphenyl

cyclooctene lignans
(with OH)

Schisandrol B C23H28O7 417.1913 11.58 417.1889 5.75

417 [M + H]+

439 [M + Na]+

399 [M + H − H2O]+

345 [M + H − H2O − C4H6]+

367 [M + H − H2O − OCH3]+

[10]

7
Type 2 biphenyl

cyclooctene lignans
(with OH)

Schisanhenol C23H30O6 403.212 14.50 403.2109 2.73

403 [M + H]+

425 [M + Na]+

385 [M + H − H2O]+

331 [M + H − H2O − C4H6]+

354 [M + H − H2O − OCH3]+

[10]

8
Type 3 biphenyl

cyclooctene lignans
(with OH and benzoyl)

Schisantherin
A C30H32O9 537.2124 14.90 537.2104 3.72

537 [M + H]+

560 [M + H + Na]+

519 [M + H − H2O]+

415 [M + H − C6H5COOH]+

385 [M + H − C6H5COOH − CH2O]+

371 [M + H − C6H5COOH − C2H4O]+

[10,11,29]
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Table 2. Cont.

No. Classification Name Formula m/z [M + H]+ Time (min) Experimental
m/z [M + H]+ ppm Fragment Ions Ref

9

Type 3 biphenyl
cyclooctene

lignans(with OHand
benzoyl)

Gomisin G C30H32O9 537.2124 14.55 537.2114 1.86

537 [M + H]+

559 [M + Na]+

519 [M + H − H2O]+

415 [M + H − C6H5COOH]+

385 [M + H − C6H5COOH − CH2O]+

371 [M + H − C6H5COOH − C2H4O]+

340 [M + H − C6H5COOH − C2H4O − OCH3]+

[10]

10
Type 3 biphenyl

cyclooctene lignans
(with OH and benzoyl)

Schisantherin
D C29H28O9 521.1811 15.09 521.1818 1.34

521 [M + H]+

543 [M + Na]+

559 [M + K]+

399 [M + H − C6H5COOH]+

369 [M + H − C6H5COOH − CH2O]+

[10]

11
Type 3 biphenyl

cyclooctene lignans
(with OH and benzoyl)

Benzoyl
gomisin O C30H32O8 521.2175 18.63 521.2138 7.10

521 [M + H]+

543 [M + Na]+

399 [M + H − C6H5COOH]+

369 [M + H − C6H5COOH − CH2O]+

384 [M + H − C6H5COOH − CH3]+

[10]

12
Type 3 biphenyl

cyclooctene lignans
(with OH and benzoyl)

Benzoyl iso-
gomisin O C30H32O8 521.2175 18.62 521.2128 9.01

521 [M + H]+

399 [M + H − C6H5COOH]+

384 [M + H − C6H5COOH − CH3]+
[33]

13 Other lignans Gomisin K1 C23H31O6 404.2199 15..36 404.2158 10.14 403 [M]+ [27]

14 Other lignans Pregomisin C22H31O6 387.1807 16.39 387.1801 1.55

391 [M + H]+

361 [M + H − CH2O]+

331 [M + H − 2CH2O]+

373 [M + H − H2O]+

358 [M + H − H2O − CH3]+

[10]

15 Cycloartane-type
triterpenoids

Sohisanlaotone
D C30H44O3 453.3368 20.48 453.3349 4.19

453 [M + H]+

312 [M − C8H12O2]+

271 [M − C8H12O2 − C3H5]+

269 [M − C8H12O2 − C3H7]+

111 [M − C24H37O]+

[35]

16 Fatty Acids Eicosapentaenoic
Acid C20H30O2 303.2324 20.33 303.2294 9.89 303 [M + H]+

79 [C6H7]+ [36]

17 Lanostane-type
triterpenoids

Micranoic
acid B C22H32O3 343.2273 20.03 345.2415 4.06 345 [M + H]+

299 [M + H − HCOOH]+ [35]
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Table 3. Identification of the chemical constituents of the WWZ extract by using UPLC-Q-TOF/MS in negative ion modes.

No. Classification Name Formula m/z [M − H]− Time (min) Experimental
m/z [M − H]− ppm Fragment Ions Ref.

18 Open-loop lignans
3′,4′-Dimethoxybenzoicacid
-(3′ ′,4′ ′-dimethoxyphenyl)
-2-methyl-3-oxobutyl ester

C22H26O7 401.1601 12.68 401.1614 3.24 401 [M − H]−

182 [C9H10O4]− [32]

19 Lanostane-type triterpenoids Kadsuricacid C30H46O4 469.3318 19.56 469.3318 0.00
469 [M − H]−

423 [M − H − HCOOH]−

378 [M − H − HCOOH − HCOO]−
[35]

20 Lanostane-type triterpenoids Kadsuricacid 3-methyl dster C31H48O4 483.3475 23.02 483.3483 1.66
483 [M − H]−

452 [M − H − OCH3]−

407 [M − H − OCH3 − HCOO]−
[34]

21 Cycloartane-type triterpenoids Ganwuweizic acid C30H46O3 453.3369 21.77 453.3368 0.22 453[M − H]−

435 [M − H − H2O]− [35]

22 Schisanra-type triterpenoids Henridilactone A C29H35O10 542.2152 8.91 542.2133 3.50
542 [M − H]−524 [M – H − H2O]−464 [M − H −

H2O − CH2C(OH)2]−390 [M – H − H2O −
CH2C(OH)2 − CH3CH=C(OH)]−

[33]

23 Schisanra-type triterpenoids Lancifodilactone D C29H35O9 526.2203 9.50 526.2167 6.84
526 [M − H]−

466 [M – H − CH2C(OH)2]−

448 [M − H − CH2C(OH)2 − H2O]−
[33]

24 Schisanra-type triterpenoids Schindilactone A C29H35O10 542.2152 8.79 542.2139 2.40

542 [M − H]−

524 [M – H − H2O]−

482 [M – H − CH2C(OH)2]−

408 [M − H − CH2C(OH)2 − CH3CH=C(OH]−

390 [M − H− H2O − CH2C(OH)2 −
CH3CH=C(OH]−

[33]

25 Other terpenoids Lancifodilactone c C29H36O10 543.223 5.07 543.2225 0.92

543 [M − H]−

525 [M − H − H2O]−

445[M − H − C4H7O2]−

499 [M − H − COO]−

481 [M − H − H2O − COO]−

[34]

26 Fatty Acids 9,12-Linoleic acid C18H32O2 279.2324 20.33 279.2329 1.79
66 [C5H6]−

261 [M − H − H2O]−

279 [M − H]−
[36]

27 Fatty Acids α-Linolenic acid C18H30O2 277.2168 19.31 277.2173 1.80 277 [M − H]−

78 [C6H6]− [36]

28 Organic acids Citric acid C6H8O7 191.0192 0.78 191.0199 3.66

191 [M − H]−

146 [M − HCOOH]−

147 [M − H − CO2]−

129 [M − H − CO2 − H2O]−

85 [M − H − CO2 − CO2 − H2O]−

[37,38]

29 Organic acids 6-methyl citrate C7H10O7 205.0349 0.988 205.0353 1.95
205 [M − H]−

161 [M − H − CO2]−

174 [M − H − OCH3]−
[37]

30 Organic acids Dimethyl citrate C8H12O7 219.0505 1.08 219.0508 1.37
219 [M − H]−

175 [M − H − CO2]−

188 [M − H − OCH3]−
[37]
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3. Materials and Methods

3.1. Sample Preparation

The dried WWZ fruits were pulverized and then the coarse powder (10 g) was accurately weighed
and extracted twice with four times the amount of 85% ethanol (made up of 34 mL of ethanol and
6 mL of water). Each reflux time lasted 3 h at room temperature (about 25 ◦C). The combination of the
two extracts was filtered, and the filtrate was subsequently passed through a 0.22 µm membrane and
then 2 µL of the sample was injected into the UPLC-Q-TOF/MS for constituent analysis [28,39].

3.2. UPLC and MS Conditions

UPLC was performed using a Waters Acquity UPLC system (Waters, Milford, MA, USA), which
consisted of a quaternary pump, an autosampler, a DAD detector and a column compartment.
UPLC separation was achieved on Waters ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm,
1.7 µm particle size). The mobile phase composed of (A) 0.1% formic acid in water and (B) acetonitrile
containing 0.1% formic acid. The gradient elution program employed was as follows: 0–5min, 20–30%B;
5–15min, 30–60%B; 15–20min, 60–90%B; 20–25min, 90–90%B; 25–30min, 90–20%B; 30–35min, 20–20%B.
The flow rate was 0.4 mL/min. The column and autosampler were maintained at 35 ◦C [24,25,28,39].
The UPLC system was coupled to a Q-TOF-MS instrument equipped with electrospray ionization (ESI)
in positive and negative ion modes. Ultra-high purity helium (He) was used as the collision gas and
high-purity nitrogen (N2) was used as nebulizing gas. The range of the data acquisition was 50 to
1000 Da. Other conditions of ESI source were as follows: capillary voltage, 3.5 kV; collision energy,
20–40 eV, drying gas temperature, 325 ◦C; desolvation gas flow rate, 600 L h−1; and nebulizing gas
pressure, 350 psi. The Leu-Enkephalin ions at m/z 556.2771 and 554.2615 were used to calibrate the
mass accuracy [24,25,28,39].

4. Conclusions

In this study, based on a powerful integrated approach that UPLC-Q-TOF/MS combined with
data post-processing technology, 30 compounds were screened successfully (for further information,
see Tables 2 and 3). The structures of compounds were confirmed by using their MS fragments
and by comparison with reference standards and corresponding reference data on the basis of the
typical cleavage pathways of four chemical constituent classes in WWZ. In addition to the main
component lignans found in WWZ, it also contains triterpenoids, organic acids and fatty acids.
The method described in this report has high resolution and sensitivity that reduces difficulty of
identification of complicated and diverse components in WWZ fruits, and laid the foundation for
study on pharmacological and pharmacokinetics in WWZ fruits. To some extent, it made up for the
deficiency of the existing analytic methods for TCMs. Furthermore, the novel strategy was a powerful
tool for the systematic screening and identification of quality control and chemical analysis of TCM,
and promoted the development of TCM.
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