Self-assembly with 2,6-bis(1-(pyridin-4-ylmethyl)-1H-1,2,3triazol-4-yl)pyridine: silver(I) and iron(II) complexes

Daniel A. W. Ross,¹ Dan Preston,^{1,*} and James D. Crowley^{1,*}

¹Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

> * jcrowley@chemistry.otago.ac.nz daniel.preston@otago.ac.nz

Contents

1	Expe	Experimental				
	1.1	General	3			
	1.2	Spectral data	4			
2	X-ra	y Data	10			
	2.1	[Ag _n (L) _n](NO ₃) _n	10			
	2.2	[Ag _n (L) _n](BF ₄) _n ·3DMF	11			
	2.3	[Ag _n (L) _n](SbF ₆) _n ·4nDMF	12			
	2.4	H _{1.5} [Fe(L) ₂](BF ₄) _{3.5} ·3CH ₃ NO ₂	13			
	2.5	[Fe _n Ag _{2n} (L) _{2n} (OH ₂) _{2n}](BF ₄) _{4n}	14			
	2.6	Crystallographic data	15			
3	Refe	erences				

1 Experimental

1.1 General

Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification, except for 2, 6- diethynylpyridine^[1] which was synthesised according to literature procedures. Solvents were laboratory reagent grade. Petroleum ether refers to the fraction of petrol boiling in the range 40-60 °C, isopropyl alcohol (IPA), methanol (MeOH), dichloromethane (CH₂Cl₂), ethylenediaminetetraacetate (EDTA), ethynyltrimethylsilane (TMS-acetylene), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF). ¹H and ¹³C NMR spectra were recorded on either a 400 MHz Varian 400-MR or Varian 500 MHz AR spectrometer. Chemical shifts are reported in parts per million and referenced to residual solvent peaks (CDCl₃: ¹H δ 7.26 ppm, ¹³C δ 77.16 ppm; CD₃CN: ¹H δ 1.94, ¹³C δ 1.32, 118.26 ppm, *d*₆-DMSO: ¹H δ 2.50 ppm; ¹³C δ 39.52 ppm, *d*₃-nitromethane: ¹H δ 4.30, ¹³C δ 57.3). Coupling constants (*J*) are reported in Hertz (Hz). Standard abbreviations indicating multiplicity were used as follows: m = multiplet, q = quartet, quin = quintet, t = triplet, dt = double triplet, d = doublet, dd = double doublet, s = singlet, br = broad. IR spectra were recorded on a Bruker ALPHA FT-IR spectrometer with an attached ALPHA-P measurement module. Microanalyses were performed at the Campbell Microanalytical Laboratory at the University of Otago. Electrospray mass spectra (ESMS) were collected on a Bruker micrOTOF-Q spectrometer.

CAUTION: Azides are explosive and care should be taken when handling them. Reactions were carried out on small scale. No problems were encountered during the course of this work.

Figure S3 ¹H NMR (500 MHz, *d*₆-DMSO, 298 K) of [Ag(L)]NO₃.

Figure S7 ¹³C NMR (126 MHz, *d*₆-DMSO, 298 K) of [Ag(L)]BF₄.

Figure S10 UV-Visible spectra (CH₃CN) of $[Fe(L)_2](BF_4)_2$ (red) and L (black).

Figure S11 ¹H NMR (500 MHz, CD₃CN, 298 K) of [Fe(L)₂](BF₄)₂

Figure S12 HR ESI-MS (DMF/CH₃CN) of [Fe(L)₂](BF₄)₂.

2 X-ray Data

2.1 [Ag_n(L)_n](NO₃)_n

CCDC #: 1576506. Vapour diffusion of diethyl ether into a 1:1 solution of L and AgNO₃ in acetonitrile/DMSO resulted in the formation of long, colourless needle crystals of $[Ag_n(L)_n](NO_3)_n$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[2] software. The structure was solved using SHELXS within the X-Seed package^[3] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[4] running within the WinGX package.^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbons were placed in calculated positions and refined using a riding model. The structure was solved in the body-centred space group $P2_1/c$ and refined to an R₁ value of 5.3%. The asymmetric unit contains one [Ag(L)](NO₃) subunit.

Figure S13 Mercury ellipsoid plot of the asymmetric unit of $[Ag_n(L)_n](NO_3)_n$. Ellipsoids are shown at the 50% probability level. Color scheme: carbon grey, hydrogen white, nitrogen blue, oxygen red, silver silver.

There was diffuse electron density within the lattice that could not be appropriately modelled. We assign this density to 4 DMSO solvent molecules (42 electrons each), 2 within each void space. The SQUEEZE routine running from within PLATON was employed to resolve the diffuse electron density.

Void	x	У	Z	Volume	Electrons
1	0.000	0.500	0.000	359	83
2	0.000	0.000	0.500	359	83

Table S1	SOUFF7F	details for	$\left[Ag_{n}(L)_{n}\right]$	(NO ₂).
TUDIC DI	JQULLEL	actuns ioi	L, PRU - 101	1103/n.

2.2 [Ag_n(L)_n](BF₄)_n·3DMF

CCDC #: 1576507. Vapour diffusion of diethyl ether into a 1:1 solution of L and AgBF₄ in DMF resulted in the formation of long, colourless needle crystals of $[Ag_n(L)_n](BF_4)_n \cdot 3nDMF$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[2] software. The structure was solved using SHELXS within the X-Seed package^[3] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[4] running within the WinGX package.^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbons were placed in calculated positions and refined using a riding model. The structure was solved in the body-centred space group $P2_1/n$ and refined to an R₁ value of 4.3%. The asymmetric unit contains one [Ag(L)](BF₄)·3DMF subunit.

Figure S14 Mercury ellipsoid plot of the asymmetric unit of $[Ag_n(L)_n](BF_4)_n$ ·3nDMF. Ellipsoids are shown at the 50% probability level. Color scheme: carbon grey, hydrogen white, boron salmon, fluorine yellow, nitrogen blue, oxygen red, silver silver.

2.3 [Ag_n(L)_n](SbF₆)_n·4nDMF

CCDC #: 1576508. Vapour diffusion of diethyl ether into a 1:1 solution of L and AgSbF₆ in DMF resulted in the formation of long, colourless needle crystals of $[Ag_n(L)_n](SbF_6)_n \cdot 4nDMF$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[2] software. The structure was solved using SHELXS within the X-Seed package^[3] and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[4] running within the WinGX package.^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbons were placed in calculated positions and refined using a riding model. The structure was solved in the body-centred space group $P\overline{1}$ and refined to an R₁ value of 10.3%. The asymmetric unit contains one [Ag(L)](BF₄)·4DMF subunit.

Figure S15 Mercury ellipsoid plot of the asymmetric unit of $[Ag_n(L)_n](SbF_6)_n \cdot 4nDMF$. Ellipsoids are shown at the 50% probability level. Color scheme: carbon grey, hydrogen white, antimony violet, fluorine yellow, nitrogen blue, oxygen red, silver silver.

Disorder in the structure was modelled using the SADI, ISOR, SIMU and DFIX commands.

2.4 H_{1.5}[Fe(L)₂](BF₄)_{3.5}·3CH₃NO₂

CCDC #: 1576509. Careful layering of Fe(BF₄)₂·6H₂O and **L** in nitromethane and diffusion resulted in the formation of red block crystals of H_{1.5}[Fe(**L**)₂](BF₄)_{3.5}·3CH₃NO₂. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu Kα radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[2] software. The structure was solved using SHELXT and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[4] running within the WinGX package.^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbons were placed in calculated positions and refined using a riding model. The structure was solved in the hexagonal space group $P\overline{1}$ and refined to an R₁ value of 10.9%. The asymmetric unit contains one Fe(II) metal ion, two ligands **L**, 3.5 BF₄⁻ anions, 1.5 protons (on pendant pyridine rings) and 3 nitromethane solvent molecules.

Figure S16 Mercury ellipsoid plot of the asymmetric unit of H_{1.5}[Fe(L)₂](BF₄)_{3.5}·3CH₃NO₂. Ellipsoids shown at 50% probability level. Color scheme: carbon grey, hydrogen white, boron salmon, fluorine yellow, iron orange, nitrogen blue, oxygen red.

Disorder in the structure was modelled using the SADI, SIMU and ISOR commands. There was diffuse electron density (98 electrons) in the lattice that could not be appropriately modelled. The SQUEEZE routine running within PLATON was employed to resolve this problem. We assign this electron density to 2 solvent water molecules within 2 voids (2 x 10 electrons) and 2 lots of 1 nitromethane and 1 water molecules (32 and 10 electrons for 42 electrons total) each within one of another two voids, for 104 total electrons.

Void	х	У	z	Volume	Electrons
1	0.002	0.337	0.931	15	8
2	-0.003	0.663	0.069	14	8
3	0.219	0.095	0.366	70	40
4	0.309	0.211	0.067	18	1
5	0.691	0.789	0.933	18	1
6	0.781	0.905	0.634	70	40

2.5 $[Fe_nAg_{2n}(L)_{2n}(OH_2)_{2n}](BF_4)_{4n}$

CCDC #: 1576510. Layering of a solution of $[Fe(L)_2](BF_4)_2$ in acetonitrile above a solution of AgBF₄ in THF and diffusion resulted in the formation of red block crystals of $[Fe_nAg_{2n}(L)_{2n}(OH_2)_{2n}](BF_4)_{4n}$. X-ray data were collected at 100 K on an Agilent Technologies Supernova system using Cu K α radiation with exposures over 1.0°, and data were treated using CrysAlisPro^[2] software. The structure was solved using SHELXT and weighted full-matrix refinement on F^2 was carried out using SHELXL-97^[4] running within the WinGX package.^[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms attached to carbons were placed in calculated positions and refined using a riding model. The structure was solved in the monoclinic space group *Cmca* and refined to an R₁ value of 9.2%. The asymmetric unit contains 0.5 Fe(II) and 1 Ag(I) cations, 1 ligand L, 1 oxygen atom and 1.5 BF₄⁻ counterions.

Figure S17 Mercury ellipsoid plot of the asymmetric unit of $[Fe_nAg_{2n}(L)_{2n}OH_2)_{2n}](BF_4)_{4n}$. Ellipsoids shown at 50% probability level. Color scheme: carbon grey, hydrogen white, boron salmon, fluorine yellow, iron orange, nitrogen blue, oxygen red, silver silver. Hydrogen atoms not shown on oxygen atoms.

The crystals were highly prone to desolvation, even on the loop under the nitrogen stream. As such there was a necessary compromise between targeted resolution and number of frames. This particular data set was the best of multiple attempts. Disorder within the structure was modelled using the SADI, FLAT and DFIX commands. The two silver(I) cations, coordinated oxygen atoms and coordinated pendant pyridyl rings were disordered over two sites and were modelled using the PART command. There was diffuse electron density within the lattice (4 x 251 electrons = 1004 electrons) that could not be appropriately modelled and the SQUEEZE command running within PLATON was employed to resolve this issue. We assign this electron density to the four missing BF₄⁻ counterions and assorted solvent molecules.

Void	x	У	z	Volume	Electrons
1	0.000	0.013	0.000	833	251
2	0.500	-0.002	0.000	833	251
3	0.000	0.400	0.500	833	251
4	0.500	0.900	0.500	833	251

Table S3 SQUEEZE details for [FenAg_{2n}(L)_{2n}(OH₂)_{2n}](BF₄)_{4n}.

2.6 Crystallographic data

Identification code	[Ag _n (L) _n]([Ag _n (L) _n](NO₃) _n		[Ag _n (L) _n](BF₄) _n ·3nDMF		[Ag _n (L) _n](SbF ₆) _n ∙4nDMF	
Empirical formula	C ₂₁ H ₁₇ AgN ₁₀ O ₃		$C_{30}H_{38}AgBF_4N_{12}O_3$		$C_{54}H_{62}Ag_2F_{12}N_{22}O_4Sb_2$		
Formula weight	565.32		809.4		1770.49		
Temperature	99.97(10) K		100(2) K		100.00(10) K		
Wavelength	1.5418	4 Å	0.71073 Å		1.54184 Å		
Crystal system	Monoclinic		Monoclinic		Triclinic		
Space group	P2 ₁ /	c	P2 ₁	/n	ΡĪ		
Unit cell dimensions	a = 8.4354(4) Å	α= 90°	a = 7.6033(3) Å	α= 90°	a = 10.0993(4) Å	α= 91.355(4)°	
	b = 18.8604(9) Å	β= 91.064(5)°	b = 25.8625(10) Å	β= 93.513(4)°	b = 12.9821(6) Å	β= 93.148(3)°	
	c = 17.5483(7) Å	γ = 90°	c = 18.3349(8) Å	γ = 90°	c = 25.1748(10) Å	γ = 90.745(4)°	
Volume	2791.4(2) Å ³	3598.6	3598.6(3) Å ³		3294.4(2) Å ³	
Z	4		4		2		
Density (calculated)	1.345 mg/m ³		1.494 mg/m ³		1.785 mg/m ³		
Absorption coefficient	6.125 mm ⁻¹		0.631 mm ⁻¹		11.977 mm ⁻¹		
F(000)	1136		1656		1752		
Crystal size	0.434 x 0.151 x 0.068 mm ³		0.4119 x 0.2174 x 0.1383 mm ³		0.457 x 0.031 x	: 0.023 mm ³	
Theta range for data collection	4.689 to 7	4.890°	3.071 to	29.587°	3.406 to 5	5.320°	
Index ranges	-9 ≤ h ≤ 10, -22 ≤ k :	≤ 19, -21 ≤ ≤ 21	-10 ≤ h ≤ 9, -34 ≤ k	≤ 34, -25 ≤ l ≤ 20	-10 ≤ h ≤ 9, -13 ≤ k :	≤ 13, -23 ≤ l ≤ 26	
Reflections collected	1123	4	245	02	1598	36	
Independent reflections	5332 [R(int)	= 0.0220]	8758 [R(int)	8758 [R(int) = 0.0406]		= 0.0552]	
Completeness	96.50% to thet	a = 67.684°	99.50% to the	eta = 25.242°	98.30% to theta = 55.320°		
Absorption correction	Gauss	ian	Gaus	Gaussian		ian	
Max. and min. transmission	1.00000 and	0.35593	1.00000 an	1.00000 and 0.89047		1.00000 and 0.67209	
Refinement method	Full-matrix least-squares on F2		Full-matrix least-squares on F2		Full-matrix least-squares on F2		
Data / restraints / parameters	5332 / 0	/ 316	8758 / 0 / 466		8238 / 211 / 872		
Goodness-of-fit on F ²	1.46	9	1.148		1.037		
Final R indices [I>2sigma(I)]	R ₁ = 0.0523, w	$R_2 = 0.1740$	$R_1 = 0.0423$, $wR_2 = 0.1226$		$R_1 = 0.1032$, $wR_2 = 0.2657$		
R indices (all data)	R ₁ = 0.0558, w	$R_2 = 0.1769$	R ₁ = 0.0607, v	vR ₂ = 0.1561	R ₁ = 0.1484, wR ₂ = 0.3097		
Largest diff. peak and hole	1.020 and -1	079 e. Å ⁻³	0.975 and -1.249 e. Å ⁻³		2.182 and -2.577 e. Å ⁻³		
Absolute structure parameter	-		-		-		

Identification code	H _{1.5} [Fe(L) ₂](BF ₄) _{3.5} ·3CH ₃ NO ₂		[Fe _n Ag _{2n} (L) _{2n} (OH ₂) _{2n}](BF ₄) _{4n}		
Empirical formula	$C_{45}H_{45}B_{3.5}F_{14}FeN_{21}O_6$		$C_{21}H_{18.5}AgB_{1.5}F_{6}Fe_{0.5}N_{9}O$		
Formula weight	1335.7		678.96		
Temperature	100.00(10) K		100(2) K		
Wavelength	1.54184 Å		1.54184 Å		
Crystal system	Triclinic		Orthorhombic		
Space group	PĪ		Стса		
Unit cell dimensions	a = 14.2058(4) Å	α= 90.798(2)°	a = 38.275(3) Å	α= 90°	
	b = 15.3752(4) Å	β= 92.639(2)°	b = 22.727(2) Å	β= 90°	
	c = 15.5408(4) Å	γ = 116.583(3)°	c = 15.2664(13) Å	γ = 90°	
Volume	3030.06(16) Å ³		13279.8(18) Å ³		
Z	2		16		
Density (calculated)	1.464 m	g/m³	1.358 mg/m ³		
Absorption coefficient	2.947 mm ⁻¹		7.110 mm ⁻¹		
F(000)	1359		5392		
Crystal size	0.262 x 0.197 x 0.120 mm ³		0.347 x 0.080 x 0.057 mm ³		
Theta range for data collection	3.485 to 74.769°		4.525 to 3	39.960°	
Index ranges	$-17 \leq h \leq 17, -19 \leq k$	≤ 19, -19 ≤ ≤ 19	-31 ≤ h ≤ 31, -18 ≤ k	: ≤ 13, -11 ≤ ≤ 12	
Reflections collected	5125	7	757	8	
Independent reflections	12215 [R(int) = 0.0308]		2053 [R(int)	= 0.0683]	
Completeness	100.00% to theta = 67.684°		99.10% to theta = 39.960°		
Absorption correction	Gaussian		Gaussian		
Max. and min. transmission	1.00000 and 0.70125		1.00000 and 0.50967		
Refinement method	Full-matrix least-squares on F2		Full-matrix least-squares on F2		
Data / restraints / parameters	12215 / 87 / 841		2053 / 1608 / 497		
Goodness-of-fit on F ²	1.609	9	1.239		
Final R indices [I>2sigma(I)]	R ₁ = 0.1096, wl	$R_2 = 0.3304$	$R_1 = 0.0922$, $wR_2 = 0.2520$		
R indices (all data)	R ₁ = 0.1140, wi	$R_2 = 0.3411$	R ₁ = 0.1090, wR ₂ = 0.2660		
Largest diff. peak and hole	3.466 and -0.	783 e. Å ⁻³	1.667 and -0.612 e. Å ⁻³		
Absolute structure parameter	-		-		

3 References

- [1] B. H. Dana, B. H. Robinson, J. Simpson, J. Organomet. Chem. **2002**, 648, 251.
- [2] O. CrysAlisPro; Agilent Technologies: Yarnton, England, 2012.
- [3] L. J. Barbour, J. Supramol. Chem. **2001**, *1*, 189.
- [4] G. Sheldrick, *Acta Cryst.* **2008**, *A64*, 112.
- [5] L. Farrugia, J. Appl. Cryst. **1999**, *32*, 837.