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Abstract: Genistein, but not daidzein, binds to copper(II) with a 1:2 stoichiometry in ethanol and
with a 1:1 stoichiometry in methanol, indicating chelation by the 5-phenol and the 4-keto group of the
isoflavonoid as demonstrated by the Jobs method and UV-visible absorption spectroscopy. In ethanol,
the stability constants had the value 1.12 × 1011 L2·mol−2 for the 1:2 complex and in methanol
6.0 × 105 L·mol−1 for the 1:1 complex at 25 ◦C. Binding was not detected in water, as confirmed by
an upper limit for the 1:1 stability constant of K = 5 mol−1 L as calculated from the difference in
solvation free energy of copper(II) between methanol and the more polar water. Solvent molecules
compete with genistein as demonstrated in methanol where binding stoichiometry changes from
1:2 to 1:1 compared to ethanol and methanol/chloroform (7/3, v/v). Genistein binding to copper(II)
increases the scavenging rate of the stable, neutral 2,2-diphenyl-1-picrylhydrazyl radical by more than
a factor of four, while only small effects were seen for the short-lived but more oxidizing β-carotene
radical cation using laser flash photolysis. The increased efficiency of coordinated genistein is
concluded to depend on kinetic rather than on thermodynamic factors, as confirmed by the small
change in reduction potential of −0.016 V detected by cyclic voltammetry upon binding of genistein
to copper(II) in methanol/chloroform solutions.
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1. Introduction

Polyphenols are a diverse group of phytochemicals acting as UV-light absorbers and singlet
oxygen quenchers, protecting plant tissue against photodamage, and acting as chelators of ions of
copper, iron, and other transition metals, thus protecting plant cells against oxidative degradation [1].
Among the plant phenols, the flavonoids are considered to be important micronutrients from fruit and
vegetables. Benefits to human health of fruit and vegetables has been assigned to the anti-inflammatory,
antiatherosclerotic, and antimutagenic activities of flavonoids. These and other positive effects of
a high intake of flavonoids from fruit and vegetables on human health have often been assigned to
radical scavenging capabilities [1–4]. The detailed mechanism behind such antioxidative protection
seems, however, unclear, as most flavonoids under some conditions also act as prooxidants [5,6].

The balance between prooxidative and antioxidative properties of flavonoids seems to be related
to the presence of ions of transition metals. Transition metal ions are redox active and may be active
in generating radicals through cleavage of peroxides after reduction to the lower oxidation states of
the metal ion by compounds like the flavonoids [7–9]. On the other hand, flavonoids also chelate
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transition metal ions, modifying both the redox properties of the flavonoid and of the metal ion.
Metal flavonoid complexes have many biological activities, i.e., as antioxidants, and as inflammatory,
anticancer, and antiallergic agents [10–12]. The interaction of flavonoids and metal ions is only poorly
understood. The metal binding is strongly dependent on the solvent and is labile, thus hampering
characterization of metal-flavonoid compounds [13], and the crystal structure is only known for
a few metal-flavonoid complexes [14–16]. Experimental data related to antioxidant activities are often
controversial. Some results indicate metal-flavonoid complexes exhibit higher antioxidant activity
than their parent flavonoids [13,17–21]. However, in some cases, a reduction in biological activity after
complexation by metals has been observed [22–26].

Genistein (Scheme 1) is an isoflavonoid found in soybeans, fava beans, and other important stable
foods for which chelation of copper(II) was studied using spectroscopic, time resolved photolytic
methods and electrochemical methods in order to understand the modification of this important
isoflavonoid as an antioxidant through metal chelation. In order to identify the functional groups of
isoflavonoids crucial for chelation, the complex formation of genistein was compared with complex
formation of the structurally similar daidzein, also shown in Scheme 1. The study of genistein
chelation holds the perspective for design of improved antioxidant protective systems and of drug
delivery systems.
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from Figure 1a,c. The spectral changes observed were assigned to coordination of genistein to 
copper(II). The genistein absorption in neutral methanol/chloroform (7/3, v/v) consists of an 
absorption band with a maximum at 262 nm and an absorption shoulder occuring between 320–400 
nm (Figures 1 and 2). Upon addition of copper(II), the absorbance band broadens, while the 
absorbance shoulder shows a significant bathochromic shift to 425 nm. Similar changes were not seen 
for copper sulfate dissolved in water (Figure 2a) or in tetrahydrofuran (THF, data not shown) with 
addition of genistein. 

Scheme 1. Molecular structures of (a) genistein; (b) daidzein, and proposed structures of
copper(II)-genistein complexes as formed in (c) methanol/chloroform (7/3, v/v) and ethanol, and in
(d) methanol.

2. Results

The UV-visble absorption spectra of copper(II) sulfate dissolved in ethanol, methanol, or in
methanol/chloroform (7/3, v/v) change upon additon of the isoflavonoid genistein, as may be
seen from Figure 1a,c. The spectral changes observed were assigned to coordination of genistein
to copper(II). The genistein absorption in neutral methanol/chloroform (7/3, v/v) consists of an
absorption band with a maximum at 262 nm and an absorption shoulder occuring between 320–400 nm
(Figures 1 and 2). Upon addition of copper(II), the absorbance band broadens, while the absorbance
shoulder shows a significant bathochromic shift to 425 nm. Similar changes were not seen for copper
sulfate dissolved in water (Figure 2a) or in tetrahydrofuran (THF, data not shown) with addition
of genistein.
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Figure 1. Absorption spectra of genistein and CuSO4 in different ratios varying from 9:1 to 1:9 in (a) 
methanol; (b) ethanol; (c) methanol/chloroform (7/3, v/v); and (d) in the presence of 2 equivalent 
(CH3)4N+OH‒ relative to concentration of genistein in methanol/chloroform (7/3, v/v). The inserts in 
figures are the corresponding Job’s plots for the absorbance (a–c) at 410 nm and (d) at 425 nm versus 
mole fraction of CuSO4. The total concentration of genistein/genistein2‒ and CuSO4 is 100 µM. 

The chelating properties of genistein was supported by the spectral changes observed for 
copper(II) in the presence of genistein but not of daidzein (Figure 2b). Based on the structures of 
genistein and daidzein, as are shown in Scheme 1, it was concluded that the 5-hydroxy group present 
in genistein, but not in daidzein, is important for complex formation for copper(II) with isoflavonoids. 

The stoichiometry of the complex formation of copper(II) by genistein in the different solvents 
was investigated using Job’s method of continous variation [27]. Absorbance at 410 nm for mixtures 
of copper(II) and genistein in different ratios varying from 9:1 to 1:9 in methanol, ethanol, and 
methanol/chloroform (7/3, v/v) showed an absorption maximum identified by a duplicate linear 
regression, as is seen from the inserts in Figure 1, which correspond to compositions of the complexes. 
For methanol/chloroform (7/3, v/v) under basic conditions with (CH3)4N+OH− added, absorbance at 
425 nm was used to identify the composition of the complex. In ethanol, both under neutral and basic 
conditions and methanol/chloroform (7/3, v/v), a ratio of 1:2 between copper(II) and genistein was 
determined, while in methanol both under neutral and basic conditions and in methanol/chloroform 
(7/3, v/v) under basic condition, a 1:1 ratio became evident, as seen in Figure 1 and Table 1. Similar 
1:1 and 1:2 complex formation between copper(II) and genistein was also reported by Dowling et al. 
in methanol at different pH [13]. The proposed structures for the 1:2 complex formed in ethanol and 
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(a) methanol; (b) ethanol; (c) methanol/chloroform (7/3, v/v); and (d) in the presence of 2 equivalent
(CH3)4N+OH− relative to concentration of genistein in methanol/chloroform (7/3, v/v). The inserts in
figures are the corresponding Job’s plots for the absorbance (a–c) at 410 nm and (d) at 425 nm versus
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Figure 2. Absorption spectra of a solution of (a) 25 µM genistein and 25 µM CuSO4, and the
superposition spectra S(Gen) + S(Cu(II)) of 25 µM genistein and 25 µM CuSO4 in water with 1%
ethanol solution; and (b) 20 µM daidzein and 20 µM CuSO4, and the superposition spectra S(Daid) +
S(Cu(II)) of 20 µM daidzein and 20 µM CuSO4 in methanol/chloroform (7/3, v/v).

The chelating properties of genistein was supported by the spectral changes observed for
copper(II) in the presence of genistein but not of daidzein (Figure 2b). Based on the structures of
genistein and daidzein, as are shown in Scheme 1, it was concluded that the 5-hydroxy group present
in genistein, but not in daidzein, is important for complex formation for copper(II) with isoflavonoids.
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The stoichiometry of the complex formation of copper(II) by genistein in the different solvents
was investigated using Job’s method of continous variation [27]. Absorbance at 410 nm for
mixtures of copper(II) and genistein in different ratios varying from 9:1 to 1:9 in methanol, ethanol,
and methanol/chloroform (7/3, v/v) showed an absorption maximum identified by a duplicate
linear regression, as is seen from the inserts in Figure 1, which correspond to compositions of the
complexes. For methanol/chloroform (7/3, v/v) under basic conditions with (CH3)4N+OH− added,
absorbance at 425 nm was used to identify the composition of the complex. In ethanol, both under
neutral and basic conditions and methanol/chloroform (7/3, v/v), a ratio of 1:2 between copper(II)
and genistein was determined, while in methanol both under neutral and basic conditions and in
methanol/chloroform (7/3, v/v) under basic condition, a 1:1 ratio became evident, as seen in Figure 1
and Table 1. Similar 1:1 and 1:2 complex formation between copper(II) and genistein was also reported
by Dowling et al. in methanol at different pH [13]. The proposed structures for the 1:2 complex formed
in ethanol and in methanol/chloroform (7/3, v/v) and for the 1:1 complex formed in methanol are
shown in Scheme 1. As will be discussed below, these structures further draw support from the mass
spectra of the complexes formed under the different conditions.

Table 1. Coordination ratios (Cu(II):Gen) and stability constants (KC) for complexes of copper(II)
and genistein (Gen), as formed in methanol, ethanol, and methanol/chloroform (7/3, v/v) in the
absence and presence of (CH3)4N+OH−. Polarity (P(ε)) of solvents including H2O and THF with no
complex formation.

Solvent H2O CH3OH C2H5OH CH3OH:CHCl3 = 7/3 THF

Cu(II):Gen ---/--- a 1:1/b 1:1 a 1:2/b 1:2 a 1:2/b 1:1 ---
KC ---/--- a 6.0 × 105/b 8.8 × 104 a 1.1 × 1011/b 4.1 × 108 a 1.1 × 1011/b 9.8 × 104 ---

cP(ε) 0.963 0.914 0.887 0.887 0.684

--- no complex formation detected; a neutral; b solvent added 2 equivalent of (CH3)4N+OH− compared to genistein;
cP(ε): calculated according to P(ε) = ε−1

ε+2 ; where ε is dielectric constant, and P is the polarity of solvents calculated
from reference [28]. ε of methanol/chloroform (7/3, v/v) is calculated according to reference [29].

The stability constants for the 1:1 and 1:2 complexes formed under the different solvent conditions

Cu2+ + Gen 
 Cu(Gen−H)+ + H+ (1)

Cu2+ + 2Gen 
 Cu(Gen−H)2 + 2H+ (2)

were determined using the relationship (3) according to the method of reference [30] for the 1:1 complex
formation corresponding to the equilibrium of Equation (1),

Ae/[M0]
1
2 = εC[M0]

1
2 + (εG − εC)/KC

1
2 (3)

and using the relationship (4) for the 1:2 complex formation corresponding to the equilibrium of
Equation (2),

Ae/[M0]
1
3 = ε0[M0]

2
3 + [1/(4KC)

1
3 ](2εG − εC) (4)

In Equations (3) and (4), [M0] is the initial concentration of copper(II), while εG and εC are the
molar absorptivity of genistein and the complex, respectively. For neutral methanol/chloroform
(7/3, v/v) with formation of the 1:2 complex, the solution with copper(II) concentrations ranging from
18 µM to 78 µM and genistein concentrations ranging from 36 µM to 156 µM, absorbance at 410 nm
formed the basis for determination of a stability constant of 1.1× 1011 L2·mol−2 valid for 25 ◦C based on
Equation (4) as seen in Figure 3. For the 1:1 complex formed in methanol, using Equation (3), a stability
constant of 6.0 × 105 L·mol−1 was determined for 25 ◦C based on Equation (3). The stability constants
determined using this graphical method are collected in Table 1 for the three solvents methanol, ethanol,
and the methanol/chloroform (7/3, v/v) for neutral and basic conditions. The stability constant
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1.1 × 1011 L2·mol−2 for 1:2 complex in ethanol is comparable to most 1:2 flavonoid-metal complexes
from the literature, such as the rutin copper(II) complex in ethanol/water (5.7 × 1010 L2·mol−2),
3-hydroxyflavone aluminium(III) complex in methanol (1.6 × 1011 L2·mol−2), and the quercetin
iron(II) complex in phosphate buffer (5.0 × 1010 L2·mol−2). However, the stability constant
6.0 × 105 L·mol−1 for 1:1 complex in methanol is higher than of the results in the literature, such as
the kaempferol iron(III) complex in acetate buffer (2.2 × 103 L·mol−1), myricetin copper(II) complex
in ethanol/water (9.5 × 103~1.9 × 103 L·mol−1), and the morin barium(II) complex in ethanol/water
(3.5 × 104 L·mol−1) [10]. The polarity (P) of the three solvents and of water and THF, for which no
complex formation was detected, are also available in Table 1 for comparison for the neutral solutions
based on the dielectric constants (ε).
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concentrations of CuSO4 ranging from 18 µM to 78 µM for (a) CuSO4:genistein = 1:2, λ = 410 nm,
in methanol/chloroform (7/3, v/v) and for (b) CuSO4:genistein = 1:1, λ = 415 nm, in methanol.

Mass spectrometry was used for determining the molecular weight of the copper(II)-genistein
complex as formed, and the results for methanol and methanol/chloroform (7/3, v/v) are shown
in Figure 4 and in Table 2. The signal at m/z 602 was assigned to Cu(II) + (Gen-H)2 + H+ for the
1:2 complex in methanol/chloroform (7/3, v/v), and for methanol as solvent, the signal at m/z 396 was
assigned to Cu(II) + (Gen-H) + 2CH3OH for 1:1 complex, as shown in Scheme 1, in agreement with the
results obtained by the Jobs method.

Table 2. ESI mass spectra ions peaks (m/z) of Cu(II)Gen2 and Cu(II)Gen complexes formed in
methanol:chloroform (7/3, v/v) and methanol.

Methanol:Chloroform = 7/3 Methanol

m/z
Experimental

m/z
Calculated Cu(II)Gen2

m/z
Experimental

m/z
Calculated Cu(II)Gen

271.0594 271.0607 Gen + H+ 271.0593 271.0607 Gen + H+

349.1825 349.0090 (Gen-H) + Na+ + K+ + H2O 327.2522 327.0271 Gen + K+ + H2O
393.2088 393.1397 Gen + 5H2O + CH3OH + H+ 396.0254 396.0370 (Gen-H) + 63Cu2+ + 2CH3OH
437.2352 437.1241 Gen + 4CH3OH + K+ 398.2316 398.0252 (Gen-H) + 65Cu2+ + 2CH3OH
481.2611 481.2285 Gen + H2O + 6CH3OH + H+ 488.3938 488.9968 Gen-2H + 4H2O + CH3OH + 3K+

525.2871 525.2159 Gen + 4H2O + 5CH3OH + Na+ 516.4255 516.0967 Gen-H + 4H2O + 3CH3OH + 2K+

569.3133 569.2212 Gen + 2H2O + 7CH3OH + K+ 544.4503 544.2731 Gen + 8CH3OH + H2O + H+

602.0257 602.0374 2(Gen-H) + 63Cu2+ + H+

604.0252 604.0256 2(Gen-H) + 65Cu2+ + H+

701.4918 701.2446 2Gen + 5CH3OH + H+
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in methanol/chloroform (7/3, v/v); and of (b) 100 µM genistein and 100 µM CuSO4 in methanol.
(Right frame: Enlarged copper isotopic peaks of copper genistein complexes).

1H-NMR spectra of genistein and copper(II)-genistein complex were obtained using
methanol/chloroform (7/3, v/v) as solvent. The chemical shifts of each compounds as may be
seen in Figure 5 are listed in Table 3. 1H-NMR data shows the values of the chemical shifts δ of the
CuGen2 with characteristic broadened signals of the copper(II) complex changed to lower field as
compared to the genistein [31]. Chemical shifts are transferred to lower field due to the increase of
the conjugation caused by coordination of copper(II) to genistein, which increases the planarity of the
flavonoid molecule [32]. The peaks are broadened, as copper(II) is paramagnetic with a d9 electronic
configuration, and copper(II) added to genistein accordingly will disturb the magnetic field.

Table 3. Chemical shifts (ppm) of genistein (Gen) and Cu(II)Gen2 complex in deuterated
methanol/chloroform (7/3, v/v).

Chemical Shift/ppm 2-H 6-H 8-H 2’,6’-H 3’,5’-H

Gen 8.0 6.2 6.4 7.4 6.9
Cu(II)Gen2 8.2 6.3 6.5 7.5 6.8
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Figure 5. 1H-NMR spectra of (a) 2 mM genistein and (b) the mixed solution of 16 mM genistein and
8 mM CuSO4 in methanol/chloroform (7/3, v/v).

The standard reduction potential of the copper(II) complex with genistein was determined in the
methanol/chloroform (7/3, v/v) in which the 1:2 complex is formed and compared to the standard
reduction potential of genistein and of copper(II) using cyclic voltametry. The cyclic voltammograms of
genistein and copper(II) complex show characteristic oxidation peaks of flavonoids and no reversible
reduction peaks, which were generally ascribed to two electron electrochemical process [33,34].
The cyclic voltammograms for all three compounds for 25 ◦C are shown in Figure 6, from which
half wave potentials of 0.553 V for genistein and 0.537 V for Cu(Gen)2 were obtained.
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Figure 6. Cyclic voltammograms of a solution of 100 µM genistein, a solution of 50 µM CuSO4,
and a solution of 100 µM genistein and 50 µM CuSO4 obtained in methanol/chloroform = 7/3 solutions
with 0.10 M NaClO4 and 50 µM ferrocene.

Genistein and the copper(II)-genistein complexes formed were compared as antioxidants using
two methods for determination of radical scavenging, one based on the very reactive carotenoid
radical cations and the other based on a semi-stable slow reacting radical. Polyphenols are known as
scavengers of carotenoids radical cations (Car•+), which are the first degradation product of carotenoids
under oxidative stress:

β-Car→ β-Car•+ + e− (5)
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Bleaching of β-Car upon irradiation with monochromatic 532 nm light was protected moderately
by the presence of the 1:2 copper(II)-genistein complex in neutral methanol/chloroform (7/3, v/v),
whereas genistein increased bleaching, and copper(II) had no effect, as is evident from Figure 7a.
For basic conditions, the protective effect against bleaching of the 1:1 copper(II)-genistein complex is
more significant, and genistein also shows some effect, while copper(II) has no effect, see Figure 7b.
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Figure 7. Absorption spectra of solutions of CuSO4, genistein and β-Car methanol/chloroform
(7/3, v/v) before and after laser flash photolysis at 532 nm for (a) neutral and (b) basic conditions
(addition of 100 µM (CH3)4N+OH−). (a) 7 µM β-Car prior to laser flash irradiation (—), 7 µM β-Car
and 50 µM genistein after 3 min irradiation (—), 7 µM β-Car and 25 µM CuSO4 after 3 min irradiation
(—) and 7 µM β-Car, 50 µM genistein and 25 µM CuSO4 after 3 min irradiation (—); (b) 7 µM β-Car
prior to laser flash irradiation (—), 7 µM β-Car and 50 µM genistein2− after 3 min irradiation (—),
7 µM β-Car and 50 µM CuSO4 after 3 min irradiation (—) and 7 µM β-Car, 50 µM genistein2− and
50 µM CuSO4 after 3 min irradiation (—). 50 µM genistein2− was formed from addition of 100 µM
(CH3)4N+OH− to 50 µM neutral genistein solution.

The moderate protection of β-Car against bleaching was studied in more details using time
resolved absorption spectroscopy (Figure 8). Bleaching of β-Car in neutral methanol/chloroform
(7/3, v/v) was found to occur on the µs time scale, and the 1:2 copper(II)-genistein complex showed
only little protection in agreement with the steady state absorption results. For basic conditions, a more
clear protection became evident, as both genistein and the 1:1 copper(II)-genistein complex efficiently
scavenged the β-Car•+ reproducing β-Car with no or very little difference between genistein and the
1:1 copper(II)-genistein complex. Scavenging of the fast reacting β-Car radical cation was confirmed
for genistein by time resolved absorption at 940 nm where β-Car•+ is known to absorb, but complex
formation showed little if any improvement of this antioxidative activity.

For the slow reacting 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) in neutral
methanol/chloroform (7/3, v/v), a clearer effect of the copper(II)-genistein complex became
evident as an example followed by absorption spectroscopy (Figure 9a). Copper(II) was not found
to react with DPPH• resulting from the time profile in Figure 9b. Genistein had some scavenging
effect, but clearly complex binding of genistein to copper(II) increased the scavenging rate by a factor
of approximately four. This method was not explored under basic conditions like β-Car bleaching
experiments due to instability of DPPH• under such conditions.
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Figure 9. (a) Absorption spectra of 35 µM DPPH• in the presence of 100 µM genistein and 50 µM 
CuSO4 in methanol/chloroform (7/3, v/v) at indicated delay times; (b) Time profile for bleaching of 
DPPH• and of DPPH• by 100 µM genistein, by 50 µM CuSO4, and by 100 µM genistein and 50 µM 
CuSO4 followed by absorbance at 521 nm for methanol/chloroform (7/3, v/v) as solvent. 

Figure 8. Normalized time evolutions of absorbance at 940 and 510 nm following pulsed
photoexcitation using laser flash photolysis with 7 ns flash for (a) neutral and (b) basic solutions.
(a) For a solution of 40 µM β-Car, a solution of 40 µM β-Car and 80 µM genistein, a solution of
40 µM β-Car and 40 µM CuSO4, and a solution of 40 µM β-Car, 80 µM genistein and 40 µM CuSO4;
(b) For a solution of 40 µM β-Car, a solution of 40 µM β-Car and 40 µM genistein2−, a solution of
40 µM β-Car and 40 µM CuSO4, and a solution of 40 µM β-Car and 40 µM genistein2− and 40 µM
CuSO4 in methanol/chloroform (7/3, v/v). 40 µM genistein2− was formed from addition of 80 µM
(CH3)4N+OH− to 40 µM neutral genistein solution.

Molecules 2017, 22, 1757  9 of 14 

 

0 200 400 600 800
-1.0

-0.5

0.0

0.5

1.0

0 20 40 60 80
-1.5

-1.0

-0.5

0.0

0.5

1.0

(a)

510 nm

 -Car
 -Car+Gen
 -Car+Cu(II)
 -Car+Gen+Cu(II)


O

D
 (

or
m

al
iz

ed
)

940 nm

510 nm

940 nm

Delay time / s

 -Car+base
 -Car+Gen2

 -Car+Cu(II)+base
 -Car+Gen2+Cu(II)

(b)

? ? 

 
Figure 8. Normalized time evolutions of absorbance at 940 and 510 nm following pulsed photoexcitation 
using laser flash photolysis with 7 ns flash for (a) neutral and (b) basic solutions. (a) For a solution of 
40 µM β-Car, a solution of 40 µM β-Car and 80 µM genistein, a solution of 40 µM β-Car and 40 µM 
CuSO4, and a solution of 40 µM β-Car, 80 µM genistein and 40 µM CuSO4; (b) For a solution of 40 µM 
β-Car, a solution of 40 µM β-Car and 40 µM genistein2‒, a solution of 40 µM β-Car and 40 µM CuSO4, 
and a solution of 40 µM β-Car and 40 µM genistein2‒ and 40 µM CuSO4 in methanol/chloroform (7/3, v/v). 
40 µM genistein2‒ was formed from addition of 80 µM (CH3)4N+OH‒ to 40 µM neutral genistein solution. 

500 550 600 650
0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6
0.30

0.32

0.34

0.36

0.38

0.40

Wavelength / nm

 0 h
 1 h
 2 h
 3 h
 4 h
 5 h
 6 h

CuGen2(a)







(b)A
bs

or
ba

nc
e

Time / h

 DPPH
 DPPH +Cu(II)
 DPPH +Gen
 DPPH +Gen+Cu(II)
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CuSO4 in methanol/chloroform (7/3, v/v) at indicated delay times; (b) Time profile for bleaching of 
DPPH• and of DPPH• by 100 µM genistein, by 50 µM CuSO4, and by 100 µM genistein and 50 µM 
CuSO4 followed by absorbance at 521 nm for methanol/chloroform (7/3, v/v) as solvent. 

Figure 9. (a) Absorption spectra of 35 µM DPPH• in the presence of 100 µM genistein and 50 µM
CuSO4 in methanol/chloroform (7/3, v/v) at indicated delay times; (b) Time profile for bleaching of
DPPH• and of DPPH• by 100 µM genistein, by 50 µM CuSO4, and by 100 µM genistein and 50 µM
CuSO4 followed by absorbance at 521 nm for methanol/chloroform (7/3, v/v) as solvent.
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3. Discussion

Cu(II) is a d9 system and is subject to Jahn-Teller effects. The solvated copper ion is a distorted
octahedron with the four planar ligands of equal bond length, while the two axial ligands have a longer
bond length as has been demonstrated for water as solvent [35]. The four equatorial water ligands are
more strongly bonded as is reflected by pKa = 6.5 [36] for the copper(II) aqua ion

Cu(H2O)4
2+ 
 Cu(H2O)3OH+ + H+ (6)

Cu(II) is bound more weakly in solvents less polar than in water. The free energy of copper(II)
transfer from water to methanol corresponding to the reaction (7)

Cu(H2O)4
2+ + 4CH3OH→ Cu(CH3OH)4

2+ + 4H2O (7)

has the value ∆Gθ = 28.9 kJ ·mol−1 as determined electrochemically [37], while the value for transfer
of copper(II) from water to ethanol corresponding to the reaction (8)

Cu(H2O)4
2+ + 4CH3CH2OH→ Cu(CH3CH2OH)4

2+ + 4H2O (8)

has ∆Gθ = 50.6 kJ ·mol−1 indicating that ethanol is more weakly bound to copper(II) than methanol.
From the stability constant determined for the 1:1 copper(II)-genistein complex in methanol, see Table 1,
KC = 6.0× 105 mol−1 · L, a value of ∆Gθ = −33.0 kJ ·mol−1 may be calculated for

Cu(CH3OH)4
2+ + Gen→ Cu(CH3OH)2Gen2+ + 2CH3OH (9)

which combined with the reaction of Equation (7) for the complex formation in water

Cu(H2O)4
2+ + Gen→ Cu(H2O)2Gen2+ + 2H2O (10)

gives a value of ∆Gθ = −4.1 kJ ·mol−1 corresponding to an equilibrium constant of KC = mol−1 · L
for the coordination of one genistein as ligand to copper(II) in water at 25 ◦C. The strong binding
of water compared to methanol explains the observation, that complex formation between genistein
and copper(II) in water could not be detected spectrophotometrically, since the equilibrium of
Equation (10) with KC = 5 mol−1 · L will only entail 10−2% complex formation for the concentrations
of 25 × 10−6 mol·L−1 for both copper(II) and genistein as used in the present investigation. A similar
calculation based on a comparison between complex formation in water and ethanol and ∆Gθ for
the reaction of Equation (8) gives a comparable result. The strong solvation of copper(II) salts in
water accordingly prevents genistein as a relatively weak ligand of coordination to copper in this
strongly polar solvent. Methanol and especially ethanol solvate copper(II) more weakly, resulting in
a 1:1 complex formation in the more polar of the two alcohols, methanol, and a 1:2 complex in ethanol.
The tendency of genistein to bind to copper(II) seems to be inversely correlated with the polarity of the
solvent, see Table 1. Genistein was, however, not found to bind to copper(II) in THF, and other effects
may be important for this aprotic solvent including a stronger solvation of the more hydrophobic
genistein by THF.

Genistein is known as a reductant and a radical scavenger and both functions are important for
the antioxidative activity of genistein. The standard reduction potential only changed from 0.553 V to
0.537 V by binding to copper(II). A similarly minor difference was also found for quercetin (0.62 V)
and quercetin copper(II)/iron(II) complexes (0.58 V), and for 3-hydroxyflavone (0.91 V) and the
3-hydroxyflavone copper(II) complex (0.89 V) [33]. In contrast, the radical scavenging efficiency of
genistein was found to increase in reaction with the slow reaction radical DPPH• upon complex binding.
The radical scavenging effect was, in contrast, not enhanced in the reaction with the fast reacting
carotenoid radical cation β-Car•+ suggesting different mechanisms behind the radical scavenging.
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Two molecular mechanisms behind the increased rate of radical scavenging of DPPH• by genistein
upon binding to copper(II) need to be considered. One mechanism would entail reduction of copper(II)
to copper(I) by genistein

Cu2+ + Gen→ CuGen2+ → Cu+ + Gen•+ (11)

followed by a reaction of the copper(I) formed with DPPH•. The equilibrium concentration of
copper(I) may be calculated from the standard reduction potentials for copper(II) and for genistein.
The equilibrium constant for the overall reaction of Equation (11) has a value of approximately 10−10,
as calculated from the standard reduction potentials, and for the concentration intervals of interest,
an equilibrium concentration of around 10−10 M for copper(I) is estimated. This concentration seems
too low to be identified as the actual reactant for reacting with DPPH•. For the actual concentrations,
bimolecular scavenging of DPPH• by copper(I) would have to be faster than the diffusion limit in
order to be significant.

Another molecular mechanism depends on perturbation of the conjugated bonding systems of
genistein upon coordination to copper(II). A clearer understanding of such effects will depend on
theoretical calculations of the electron distribution in genistein and genistein coordinated to copper(II).
The difference between the radical scavenging efficiency of the copper(II)-genistein complexes observed
for the β-Car radical cation and the DPPH• may result from a difference in radical scavenging
mechanism. β-Car•+ cannot accept a hydrogen atom and is rather scavenged by electron transfer [38],
which may also explain the minor difference in the oxidation potentials for genistein and the genistein
copper(II)-complex. In contrast, for DPPH•, hydrogen atom transfer [27,32] may be dominate and at
a slower rate.

Genistein increases the radical scavenging efficiency upon coordination to copper(II). An efficient
binding of genistein to copper(II), however, depends on the polarity of the solvent and is favored
by less polar solvents. The important coordination of flavonoids like genistein for increasing the
antioxidant efficiency through improved radical scavenging may accordingly be most significant in
interfaces between aqueous media and lipid layers, such as in membranes. The increased radical
scavenging efficiency is further concluded to result from perturbation of the conjugated bonding
system of genistein rather than from formation of copper(I) by an internal electron transfer from the
genistein ligand to the metal center.

4. Materials and Methods

4.1. Chemicals and Reagents

Genistein (Gen) and daidzein (Daid) were from Huike Plant Exploitation Inc., (>98%,
for both compounds, Shanxi, China) and used as received. Cu(II)SO4·5H2O from Beijing
Chemical Works (>99%, Beijing, China) was used as received. All-trans-β-carotene (β-Car) was
from Sigma-Aldrich (St. Louis, MO, USA), and the β-Car was purified by recrystallization
in n-hexane/acetone mixed solutions, and the purity checked by high-performance liquid
chromatography (HPLC) was ~98%. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•) was purchased
from ZhongShengRuitai Technology Inc. (>97%, Beijing, China). Ferrocene (98%) and NaClO4 (>98%)
were from Sigma-Aldrich (St. Louis, MO, USA).

HPLC grade methanol (Mreda Technology, Inc., Lake Forest, CA, USA) and spectral purity grade
ethanol (≥99.9%, Fine Chemical Industry Research Institute, Tianjin, China) were used as received.
Ultrapurified water was prepared by Mingche TM-D 24UV (Merck Millipore Corp., Shanghai, China).
Tetrahydrofuran (THF, >99.8%, Feng Yue Chemical Inc., Tianjin, China) was HPLC-grade. Chloroform
(>99.0%, Beijing Chemical Works, Beijing, China) was purified before use by passing through
an alumina column (AR, Tianjin Fuchen Chemical Plant, Tianjin, China). Solutions of the
genistein dianion were prepared by addition of 2 equivalents of tetramethylammonium hydroxide
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(CH3)4N+OH− (97%, Sigma Aldrich, St. Louis, MO, USA) to a neutral solution [38]. Methanol-d4 and
chloroform-d (>99.8%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Reaction of Cu(II) with Genistein

All UV−vis absorption spectra were measured on a Cary50 spectrophotometer
(Varian, Inc., Palo Alto, CA, USA) using 1.0 cm quartz cells in a thermostated room of 25 ◦C.
The solutions were prepared by mixing solutions of genistein and copper(II) with total molar
concentrations of 1.0 × 10−4 M in ratios varying from 1:9 to 9:1, and Job’s plots were obtained from the
absorbance at 410 nm versus mole fraction of copper(II) for experiments in methanol/chloroform
(7/3, v/v), methanol, and ethanol. For alkaline methanol/chloroform (7/3, v/v), 425 nm absorbance
was used for the calculations. Reactions of copper(II) with daidzein were used for comparison in
methanol/chloroform (7/3, v/v).

4.3. NMR and Mass Spectra Characterization

1H-NMR spectra were obtained on a Bruker AM 400 MHz spectrometer (Karlsruhe, Germany).
MS spectra were obtained on a Thermo Scientific™ Q Exactive™ HF (Waltham, MA, USA) in the
positive ion mode. The samples were prepared by mixing solutions of genistein and copper(II),
and then the mixed solutions were pushed through the nylon membrane with 220 nm sieve pores.
The samples were analyzed by direct infusion ESI by means of a syringe pump (Thermo UltiMate 3000,
Waltham, MA, USA) at a flow rate of 5 µL/min. Capillary temperature is 320 ◦C and spray voltage is
3.50 kV.

4.4. Determination of Oxidation Potentials

Cyclic voltammetry (CV) was performed on a three-electrode CHI 760D electrochemical analyzer
(ChenHua Instruments Inc., Shanghai, China). The working electrode was a glassy carbon piece
(diameter = 4 mm), the reference electrode was a silver wire [39], and the auxiliary electrode was
a platinum wire. 0.10 M NaClO4 was used as supporting electrolyte. 5.0 × 10−5 M ferrocene was used
as internal standard and CVs were obtained in the potential range of −0.5 V to +1.4 V at 0.1 V/s scan
rate. The concentration of genistein and copper(II) were 1.0 × 10−4 M and 5.0 × 10−5 M, respectively.

4.5. β-Carotene Bleaching Assay and β-Carotene Radical Cation Quenching Kinetics

The laser pulses at 532 nm (4 mJ/pulse, 7 ns, and 10 Hz) for the bleaching assay were supplied
by a Nd3+: YAG laser (Quanta-Ray PRO-230, Spectra Physics Lasers, Inc., Mountain View, CA, USA).
The samples in the bleaching assay were irradiated by pulse laser for 3 min. The laser
flash photolysis apparatus for quenching kinetics was described in detail in reference [40].
The same excitation laser pulses at 532 nm (3 mJ/pulse) as for the bleaching assay were used.
510 and 940 nm probe lights were provided by a laser-driven white light source (LDLS-EQ-1500,
Energetiq Technology, Inc., Woburn, MA, USA). The kinetics were detected with a photodiode
(model S3071, Hamamatsu Photonics, Hamamatsu, Japan). The optical path length of the flow
cuvette was 5 mm. All of the measurements were carried out in a thermostated room of 25 ◦C.
Methanol/chloroform (7/3, v/v) was used as the solvent.

4.6. DPPH Radical Scavenging

Absorption spectra of DPPH• at different delay times were recorded in the absence and in the
presence of genistein, CuSO4, and for mixtures of genistein and CuSO4. Decrease of absorbance at
521 nm with time was used for determining the radical-scavenging activities. Methanol/chloroform
(7/3, v/v) was used as the solvent.
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