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Abstract: The traditional medicine licorice is the most widely consumed herbal product in the world.
Although much research work on studying the changes in the active compounds of licorice has been
reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in
licorice, that need to be further studied. In this study, the secondary metabolites from licorice under
two different methods of stress were investigated by ultra-high-performance liquid chromatography
coupled with hybrid linear ion trap–Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS).
A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by
different methods of stress during growth. The results showed that a total of 51 secondary metabolites
were identified in licorice under ABA stress. The partial least squares–discriminate analysis (PLS-DA)
revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress.
The targeted results showed that there were significant differences in the accumulation patterns of
the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses.
To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the
stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids
were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic
accumulation of secondary metabolites was detected. Taken together, our results suggest that
ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and
triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation
of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for
clinical applications and directional planting and licorice breeding.
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1. Introduction

Licorice is mainly derived from the root of Glycyrrhiza species, especially from the root of
Glycyrrhiza uralensis. Licorice has been widely used in medicine, food, chemicals, animal husbandry,
and other fields [1]. China is also one of the world’s largest exporter of licorice with an annual
exportation of over 30,000 tons. The annual value of global trade in licorice was estimated as being more
than US $42.1 million in 2007 [2,3]. Licorice has been recognized as one of the most famous medicinal
plants in traditional Chinese medicine for thousands of years [4]. Flavonoids and triterpenoids are the
main secondary metabolites from licorice. They have a wide range of biological activities and have
been widely used for the treatment of chronic diseases [5–7].
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Different external stress factors affect the accumulation of different compounds.
Phytohormones, which play a central role in most physiological processes in plants, are becoming
increasingly important [8]. Abscisic acid (ABA), a type of sesquiterpenoid phytohormone, is regarded
as an important growth inhibitor in plant senescence, cell death, and tissue loss [9]. ABA also plays
an important role in enhancing plant resistance to adverse effects and information transmission.
Extensive studies have been carried out to examine how ABA plays a role in the regulation of stress
responses under drought stress [10]. Furthermore, drought stress can increase the accumulation of
secondary metabolites in G. uralensis. These results suggest that ABA may play an important role
in inducing the accumulation of secondary metabolites [11]. Therefore, using exogenous ABA to
stimulate G. uralensis (i.e., induce ABA stress) and detecting the change in levels of other components
may help to reveal the dynamic accumulation of secondary metabolites in licorice.

Hybrid linear ion trap–Orbitrap (LTQ-Orbitrap) can greatly facilitate the task of metabolite
identification. This technique enables parallel data acquisition with high mass accuracy and resolution
in addition to providing multistage tandem mass spectrometry (MSn) with post-LTQ ion manipulations.
In this study, all secondary metabolic analyses were performed on an ultra-high-performance liquid
chromatography (UHPLC)-LTQ-Orbitrap, which was coupled with an ESI source. The UHPLC coupled
with LTQ-Orbitrap combines the multi-stage mass spectrum function of LTQ and the high-resolution
ability of Orbitrap. This can achieve high resolution and multi-level mass spectrometry of the parent
ion and daughter ion in a short period of time, which significantly improves the rapid identification of
the chemistry of traditional Chinese medicine complex system and analysis of ingredients [12].

A high-performance liquid chromatography (HPLC) method has been developed for studying
the chemical components of G. uralensis [13]. In this study, UHPLC-LTQ-Orbitrap-MS was utilized
to study the secondary metabolites of licorice under ABA stress. The data were analyzed with
multivariate statistical credit software. We aimed to understand the dynamic accumulation of the
secondary metabolites in licorice, which would be helpful in the directional planting and breeding of
Glycyrrhiza species.

2. Materials and Methods

2.1. Plant Material and Reagents

Glycyrrhiza uralensis Fisch. were collected from the Ili cultivation base of Xinjiang Province
in China and identified by Prof. Chunsheng Liu (Beijing University of Chinese Medicine,
Beijing, China). Newly harvested seeds of Glycyrrhiza uralensis Fisch. were collected from the
identified Glycyrrhiza uralensis Fisch. The seeds were submerged in concentrated sulfuric acid for 1.5 h.
Following this, the treated seeds were washed with deionized water and soaked in it for 24 h at 25 ◦C.
The seeds were sown in vermiculite in an artificial climate box that was controlled at 25 ◦C for 16 h
light/ 8 h dark cycle. Licorice seeds lasted for 28 days under this treatment. The seeds were divided
into 30 samples and cultivated for 28 days. We divided 30 samples into two groups. One group was
treated with ABA and the other group was the control group (CG). The plants of ABA-treated group
were subjected to treatment with 0.1 mM ABA every 48 h for 28 days [9,14].

All standards were purchased from the CHENGDU MANSITE BIO-TECHNOLOGY CO., LTD
(Chengdu, China). Analytical-grade methanol (Tedia, Fairfield, OH, USA) was used for the preparation
of sample extractions. Acetonitrile, distilled water and formic acid (Merck, Darmstadt, Germany) of
HPLC-grade were used for preparation of the mobile phase.

2.2. Sample Processing

We used the roots of G. uralensis as testing samples. Samples were carefully washed, frozen
(liquid N2), then stored at −80 ◦C until LC–MS analysis. Samples (100 mg) were accurately weighed,
ground, and extracted using an aqueous solution containing 50% methanol and 50% water for 30 min
at 4 ◦C, before the supernatant was collected before testing. Before the analysis, samples were thawed
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at 4 ◦C using ultra high purity water, mixed by a vortex and centrifuged at 14,000 rpm for 30 min at
4 ◦C. Next, the supernatants were analyzed by the UHPLC-LTQ-Orbitrap-MS system [15–17].

2.3. Chromatographic Conditions

Compounds was separated on the UHPLC system and through a phase column (Waters BEH
C18 Column with dimensions of 1.7 µm × 2.1 mm × 100 mm, Waters Corp, Milford, MA, USA).
The gradient was composed of A (water with 0.1% formic acid) and B (aetonitrile). A constant flow
rate of 0.25 mL/min was used with the following optimized gradient: 1% B (0–0.5 min), 1–40% B
(0.5–10.0 min), 40–99% B (10.0–11.0 min), 99% B (11.0–12.0 min), and 99–100% B (12.0–15.0 min).
The column was maintained at 45 ◦C at a flow rate of 0.25 mL/min. A 5 µL injection of this sample
was inserted into the column [18,19].

2.4. MS Conditions

All metabolic analyses were performed on a UHPLC-LTQ-Orbitrap MS, which was coupled with
an ESI source (Thermo Fisher Scientific, San Jose, CA, USA). The negative polarity mode was applied
for compound ionization. The optimized parameters were the following: A capillary voltage of 25 V,
an electrospray voltage of 4 kV, a capillary temperature of 350 ◦C, a sheath gas flow rate of 30 (arbitrary
units), an auxiliary gas flow rate of 10 (arbitrary units), and a tube lens of 110 V [18–23].

2.5. Statistical Analysis

Compared with the standard procedures, the UHPLC-LTQ-Orbitrap-MS data pre-processing
includes filter noise, peak recognition, overlapping peak analysis, peak alignment, peak filling,
standardization, and normalization. Based on the analysis results, different metabolites were identified.
A massLynx software version 4.1 workstation(Waters Corp, Milford, MA, USA) and Xcalibar V2.0
(Thermo Fisher Scientific, San Jose, CA, USA) were used for analysis, while normalized data were
examined using SPSS 20.0 and SIMCA-P version 13.0 software (Umetrics, Umea, Sweden) for
multivariate statistical analyses. Principal component analysis (PCA), an unsupervised analysis,
was performed for the different stresses. PCA, an extremely important approach of multivariate
statistical analysis, is widely used for decomposing the 2D matrices, which was set to explain the
correlation among numerous variables through a smaller number of underlying factors without losing
much information. The peak area of secondary metabolite obtained by UHPLC-LTQ-Orbitrap-MS
is standardized by SPSS 20.0. To analyze secondary metabolites, the data were processed to obtain
a data matrix containing the samples × variables (samples represent the 30 samples of licorice,
variables represent the standardized peak area of secondary metabolites). A supervised partial
least squares discriminant analysis (PLS-DA) was employed to compare the differences between
different samples of the two groups to identify the key significant compounds. To analyze secondary
metabolites, the data were processed to obtain a data matrix containing the samples × variables
(samples represent the 30 samples of licorices, variables represent the standardized peak area of
secondary metabolites). A typical cross-validation was employed to estimate the number of significant
compounds. A permutation test was employed to calculate the validity of the PLS-DA model in
terms of overfitting. Compounds with a variable influence on projection (VIP) values greater than
1.0 and a p-value below 0.05 were identified as potential biomarkers that could be obtained from
the PLS-DA model [24]. Files of data matrices applying PCA and PLS-DA have been added as
Supplementary Materials.

3. Result and Discussion

3.1. Flavonoids and Triterpenes in the Targeted Metabolomics Study

In this study, we used the total ion scans and the analysis of flavonoids and triterpenes
by multistage mass spectrometry. The peaks in the whole ion scans of licorice samples
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(ABA-treated and CG groups) were found, while the main components of flavonoids and
triterpenes in licorice were identified (Figure 1). Through analysis, a total of 51 compounds were
identified, of which 41 were flavonoid pathway metabolites and 10 were triterpenoid saponin
pathway metabolites. Seven chalcones were observed: Licoriceglycoside A, licoriceglycoside B,
licochalcone A, neolicuroside, isoliquiritin, isoliquiritigenin, and neoisoliquiritin. Seven flavanones
were observed: uralenin, naringenin, catechin, liquiritin, liquiritin apioside, liquiritigenin, and
glabridin. Five flavonoids were observed: topazolin, trihydroxyflavone, uralene, kaempferol, and
luteolin. Eight isoflavones were observed: genistein, gancaonin G, licoisoflavone A, formononetin,
licoisoflavone B, semilicoisoflavone B, licoricone, and ononin. Six flavonols were observed:
isoquercitrin, neouralenol, quercetin, uralenol, quercitrin, and rutin. Five upstream flavonoids
compounds were observed: caffeic acid, ferulic acid, protocatehuic aldehyde, trans-isoferulic acid, and
protocatehui acid. Three coumarins were observed: Glycyrol, isoglycyrol, and licopyranocoumarin.
Ten terpenoid saponins and their metabolic pathways were observed: Isoglycyrrhizin, glycyrrhizin,
licoricesaponin G2, licoricesaponin A3, licoricesaponin B2, licoricesaponin J2, licoricesaponin E2,
oleanolic acid, glycyrrhetinic acid, and ursolic acid.
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3.2. Comparison of Content of Licorice Samples in Two Groups

Secondary metabolites are often notably changed under different stresses. This study analyzed
51 major secondary metabolites in licorice (Figure 2). With regard to flavonoids, the results showed that,
more than five times, the content was as follows: Neoisoliquiritin, isoliquiritin, liquiritigenin, liquiritin
apioside, catechin, kaempferol, licoricone, rutin, and ferulic acid under ABA stress. The results
showed that, less than five times, the content was as follows: Licoriceglycoside B, licoriceglycoside A,
isoliquiritigenin, neolicuroside, naringenin, luteolin, uralene, trihydroxyflavone, topazolin, ononin,
licoisoflavone B, formononetin, genistein, gancaonin G, neouralenol, quercetin, isoquercitrin, caffeic
acid, protocatehuic acid, trans-isoferulic acid, licopyranocoumarin, glycyrol licochalcone A, uralenin,
liquiritin, licoisoflavone A, semilicoisoflavone B, uralenol, quercitrin, protocatechuic aldehyde, and
isoglycyrol under ABA stress.

With regard to triterpenoids, the results showed that isoglycyrrhizin, glycyrrhizin, licoricesaponin
G2, licoricesaponin A3, licoricesaponin B2, licoricesaponin J2, and licoricesaponin E2 were increased
under ABA stress.

The components of licorice often determine its quality and the amount of its active ingredient
is closely related to the ABA stress. To explore the active ingredients of licorice and the relationship
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between levels of these components and ABA stress, we aimed to determine the influence of licorice
flavonoid ingredients and the triterpene composition on the metabolic differences under different
stresses. Therefore, we performed a multivariate statistical analysis.Molecules 2017, 22, 1742 5 of 12 
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3.3. Principal Component Analysis

Principal component analysis, an unsupervised analysis, was performed on the compounds
under different stresses. We used an unsupervised pattern recognition analysis method. To analyze
flavonoids, the data were processed to obtain a data matrix containing 30 (sample) × 41 (variable).
The sample consists of 30 licorice samples, and the variable was the relative peak area of the chemical
composition of flavonoids. In the analysis of flavonoids, eigenvalues of more than 1 were extracted,
and the three primary components were obtained. All principal components (PCs) had a data variance
of approximately 86.6%, while the roles of other PCs were insignificant. From the score map, all the
ABA-treated samples were completely distinguished from the CG samples (Figure 3A). To analyze
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triterpenoids, the data were processed to obtain a data matrix containing 30 (sample) × 10 (variable),
before the PCA method was used to analyze these data in order to explain the correlation among
numerous variables. The sample included 30 licorice samples, while the variable was the relative
peak area of the chemical composition of triterpenoids. For triterpenoids, an eigenvalue of more than
1 was extracted. The main components had a contribution rate of 87.9%. All samples of PCA 3D
projections were available. All samples of PCA 3D projections were available. From the score map, all
the ABA-treated samples were completely distinguished from the CG samples (Figure 3B).
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Hierarchical cluster analysis (HCA) was also assessed in our study. This method provided more
reliable and intuitive evidence for understanding differences between ABA-treated and CG groups.
The result showed that the samples could be clearly classified into two major clusters with two
sub-clusters (Figure 4). The ABA-treated group and CG group were completely separated. However,
it was still not clear which major compounds caused the classification of these samples. Therefore, a
PLS-DA technique development is necessary to find out definite indexes for describing the differences.

3.4. Partial Least Squares Discriminant Analysis

To explore the factors that contribute to distinguishing ABA-treated from CG groups, a PLS-DA
analysis of the supervised model was performed [25]. For flavonoids, the data were processed to
obtain a data matrix containing the absolute peak area of 30 (sample) × 41 (variable). As shown in
Figure 5, ABA-treated and CG samples were significantly discriminated (Figure 5). The values of
R2Y and Q2 were 0.99 and 0.95, which indicates that this model may have good fit and predictive
ability in data processing. The VIP map, based on the variable projection importance criteria, can
reveal the contributing factors that discriminate the samples. The results showed that 9 flavonoids,
licoriceglycoside B, licoriceglycoside A, isoliquiritigenin, licochalcone A, neoisoliquiritin, isoliquiritin,
neolicuroside, liquiritigenin, and liquiritin, were potential factors that greatly contributed to the
identification of the ABA-treated samples.

For triterpenoids, the data were processed to obtain a data matrix containing the absolute peak
area of 30 (sample) × 10 (variable). As shown in Figure 5, ABA-treated and CG samples were
significantly different (Figure 5). The values of R2Y, and Q2 were 0.99 and 0.97, which indicates that
this model may have a good fit and predictive ability in data processing. The results showed that the
9 flavonoids, including licoricesaponin A3, licoricesaponin J2, licoricesaponin E2, and oleanolic acid,
were potential factors that greatly contributed to the identification of ABA-treated samples.

Briefly, our results presented that ABA stress could significantly change the content of secondary
metabolites in licorice and generally contribute to the accumulations of secondary metabolites, which
suggest that ABA can be an excellent regulator for directionally planting licorice [26,27].
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on the content of the 41 flavonoids and 10 triterpenoids. (A) Represents the PLS-DA of flavonoids;
while (B) represents the result of triterpenoids. Red points represent the ABA-treated samples, and
blue points represent the CG samples. Plots C and D show the influence of variables on projection
(VIP) diagrams (Numbers in the diagram above: 1. Licoriceglycoside B, 2. Licoriceglycoside A,
3. Isoliquiritigenin, 4. Licochalcone A, 5. Neoisoliquiritin, 6. Isoliquiritin, 7. Neolicuroside, 8. Uralenin,
9. Liquiritigenin, 10. Liquiritin, 11. Naringenin, 12. Liquiritin apioside, 13. Glabridin, 14. Catechin,
15. Luteolin, 16. Kaempferol, 17. Uralene, 18. Trihydroxyflavone, 19. Topazolin, 20. Licoricone,
21. Ononin, 22. Licoisoflavone A, 23. Semilicoisoflavone B, 24. Licoisoflavone B, 25. Formononetin,
26. Genistein, 27. Gancaonin G, 28. Uralenol, 29. Neouralenol, 30. Rutin, 31. Quercetin, 32. Isoquercitrin,
33. Quercitrin, 34. Caffeic acid, 35. Ferulic acid, 36. Protocatehuic acid, 37. Protocatechuic aldehyde,
38. Trans-isoferulic acid, 39. Licopyranocoumarin, 40. Glycyrol, and 41. Isoglycyrol. Numbers in
the diagram below: 1. Isoglycyrrhizin, 2. Glycyrrhizin, 3. Licoricesaponin G2, 4. Licoricesaponin A3,
5. Licoricesaponin B2, 6. Licoricesaponin J2, 7. Licoricesaponin E2, 8. Oleanolic acid, 9. Glycyrrhetic
acid, and 10. Ursolic acid).

3.5. Analysis of Metabolic Pathways of Two Compounds

To comprehensively understand the dynamic accumulating pattern of metabolites, all the
characterized secondary metabolites in licorice were integrated and analyzed with corresponding
pathways. As shown in Figure 6, the overall metabolites that increased in the biosynthetic pathway of
flavonoids were coumarins, chalcone, flavanones, flavone, flavonols, and isoflavones. Specifically, the
compounds that had increases in content included the following: coumarins, such as glycyrol and
licopyranocoumarin; chalcones, such as licoriceglycoside B, licochalcone A, neolicuroside, isoliquiritin,
isoliquiritigenin, and neoisoliquiritin; flavanones, such as naringenin, catechin, liquiritin apioside,
liquiritigenin, and glabridin; flavones, such as topazolin, trihydroxyflavone, uralene, kaempferol, and
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luteolin; isoflavones, such as genistein, gancaonin G, formononetin, licoisoflavone B, licoricone, and
ononin; and flavonols, such as isoquercitrin, neouralenol, and rutin. Specifically, compounds that had
decreases in content included the coumarins, such as isoglycyrol; chalcones, such as licochalcone A;
flavanones, such as uraleni and liquiriti; flavonols, such as quercitrin, quercetin, and uralenol; and
isoflavones, such as semilicoisoflavone B and licoisoflavone A.

Molecules 2017, 22, 1742 9 of 12 

 

compounds that had decreases in content included the coumarins, such as isoglycyrol; chalcones, 
such as licochalcone A; flavanones, such as uraleni and liquiriti; flavonols, such as quercitrin, 
quercetin, and uralenol; and isoflavones, such as semilicoisoflavone B and licoisoflavone A. 

 

Figure 6. Visualization of secondary metabolite dynamics in a biochemical pathway map. (A) represents 
the pathway map of flavonoids; while (B) represents the result of triterpenoids. Dark green circles 
represent unmeasured components, green circles represent decreased components, and yellow circles 
represent increased components. 

In the biosynthetic pathway of triterpenoids, glycyrrhetinic acid and licoricesaponin E2 decreased, 
while licoricesaponin A3, glycyrrhizin, isoglycyrrhizin, licoricesaponin G2, licoricesaponin B2, 
licoricesaponin J2, oleanolic acid, and ursolic acid increased. In general, our results showed that 
most secondary metabolites in licorice increased under ABA stress. This provided a comprehensive 
dynamic pattern of secondary metabolites, which is helpful for us to understand the way they 
accumulate. 

Glycyrrhizin is one of the most important secondary metabolites in licorice. They are generally 
accumulated during certain periods of development and are sensitive to changes under external 
stresses. Recently, our research group found one unique GuUGAT, which was able to catalyze the 
continuous two-step glucuronidation of glycyrrhetinic acid to directly yield glycyrrhizin. Thus, the 
complete pathway of glycyrrhizin biosynthesis was determined [14]. In our study, the content of 
glycyrrhetinic acid in licorice decreased, but the content of glycyrrhizin increased. This change may 
result from differences in the expression of key genes and enzymes, which lead to changes in the 

Figure 6. Visualization of secondary metabolite dynamics in a biochemical pathway map.
(A) represents the pathway map of flavonoids; while (B) represents the result of triterpenoids.
Dark green circles represent unmeasured components, green circles represent decreased components,
and yellow circles represent increased components.

In the biosynthetic pathway of triterpenoids, glycyrrhetinic acid and licoricesaponin E2 decreased,
while licoricesaponin A3, glycyrrhizin, isoglycyrrhizin, licoricesaponin G2, licoricesaponin B2,
licoricesaponin J2, oleanolic acid, and ursolic acid increased. In general, our results showed that most
secondary metabolites in licorice increased under ABA stress. This provided a comprehensive dynamic
pattern of secondary metabolites, which is helpful for us to understand the way they accumulate.

Glycyrrhizin is one of the most important secondary metabolites in licorice. They are generally
accumulated during certain periods of development and are sensitive to changes under external
stresses. Recently, our research group found one unique GuUGAT, which was able to catalyze the
continuous two-step glucuronidation of glycyrrhetinic acid to directly yield glycyrrhizin. Thus, the
complete pathway of glycyrrhizin biosynthesis was determined [14]. In our study, the content of



Molecules 2017, 22, 1742 10 of 12

glycyrrhetinic acid in licorice decreased, but the content of glycyrrhizin increased. This change may
result from differences in the expression of key genes and enzymes, which lead to changes in the
accumulation rates of secondary metabolites. Therefore, integrated analysis of the key genes involved
in the pathways may help to further reveal the mechanisms of dynamic changes in the secondary
metabolites from licorice [28–33].

ABA is an important signal transduction molecule in plants and plays an important role in the
regulation of plant resistance. It had been reported that the content of glycyrrhizin in licorice has
an obvious correlation with the content of ABA under drought stress. Those studies indicate that
there are some connections between glycyrrhizin and ABA. Consistently, this study revealed the
dynamic accumulation of glycyrrhizin in licorice under ABA stress, which further confirms this type
of connection [34,35].

It may raise a question: how does ABA connect with glycyrrhizin? We think that it may be related
to the inhibiting effects of internal ABA in its biosynthetic pathway. It had been reported that the
application of exogenous ABA can supplement the endogenous ABA, so that the concentration
of ABA in the leaves is relatively increased [9]. ABA and glycyrrhizin result from the same
2-C-methyl-Derythritol-4-phosphate (MEP) and mevalonate (MVA) pathways, but their pathways are
separated in the node of isopentenyl pyrophosphate (IPP). Therefore, the reason that ABA is able to
induce glycyrrhizin may be that the exogenous ABA interferes with the biosynthesis of internal ABA,
thus allowing more IPPs to flow into biosynthetic pathway of glycyrrhizin.

4. Conclusions

There is hormone-specific comprehensive reprogramming of secondary metabolites in
the economically important licorice under different types of stress. For the first time, the
dynamic accumulation of secondary metabolites in licorice under ABA stress was analyzed by
UHPLC-LTQ-Orbitrap-MS. The complicated metabolic pattern was related to two hormone-specific
planting districts from ABA-treated group and control group for licorice. The targeted results showed
that the components of flavonoids and triterpenoids were different in ABA-treated group, with different
accumulation patterns of different compounds. The main potential compounds that accumulate in
licorice under ABA stress were determined in our research. The data can provide a reference for the
directional breeding of licorice. This study includes a better approach to exhibiting the association
between the accumulation of secondary metabolites and specific hormones in licorice, which is useful
for identifying potential biologically relevant compounds.
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