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Abstract:



Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.
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1. Introduction


Saturated cyclic amines are prominent bioactive motifs in many medicinal compounds and natural products (Figure 1 and Figure 2). They are also attractive building blocks employed to construct other molecules of medicinal or biological interest [1]. A large number of such building blocks have also been used in polymers [2], copolymers [3], dyestuffs [4], reaction media [5], bases and chiral ligands, etc. [6,7,8]. Further, a large number of pharmacologically active natural and synthetic cyclic amines are in regular clinical use (Figure 3) [9]. They have been utilized as antibiotics, anticancer, analgesics, antidepressants, anti-HIV, anti-HCV agents, etc. [10,11]. A variety of cyclic amine-containing compounds also find applications as insecticides, pesticides, rodenticides and herbicides [12,13,14,15,16].


Figure 1. Saturated cyclic amines containing one-nitrogen atom.
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Figure 2. Naturally compounds containing saturated cyclic amines.
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Figure 3. Clinical drugs containing saturated cyclic amine.
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A broad scope of applications of the aforementioned saturated cyclic amines has revolutionized the synthetic methodologies used to access such compounds. A number of efficient synthetic methods have been developed over the past decades [17,18,19]. In recent years, quite a many environmentally benign methods have also been developed for the synthesis of saturated cyclic amines. This review aims to highlight the green synthetic methodologies including one-pot, multi-component, solvent-free, microwave-assisted and synthesis in aqueous media for single-nitrogen containing saturated cyclic amines.




2. Green Methods for Synthesis of Aziridines


Bieber et al. presented a one-pot method for the synthesis of N-tosylaziridines from 2-amino-alcohols [20]. This one-pot transformation involves the tosylation and cyclization steps (Scheme 1). It was observed that highly substituted amino alcohols produce the corresponding aziridines in high yields in acetonitrile in the presence of K2CO3. High yields of less hindered aziridines were obtained from the corresponding alcohols when the reactions were performed in H2O/DCM using KOH (Scheme 2).



Lohray and his research group used 1,2-cyclic sulfates for the one-pot synthesis of aminoalcohols and homochiral N-substituted aziridines (Scheme 3). Cyclic sulfates react with primary amines to furnish β-aminosulfates which are converted to aziridines under basic conditions [21].



Hayashi and his co-workers adopted a one-pot procedure to produce chiral aziridines with excellent enantio- and diastereoselectivities (Scheme 4). The sequential reactions include the desulfonylative generation of the N-tosylated imine from chloroacetaldehyde, an asymmetric Mannich reaction mediated by diarylprolinol silyl ether, reduction and finally aziridine formation [22].



Using a one-pot synthesis strategy, a series of (1R,2S)- and (1S,2R)-norephedrine and (1S,2S)-pseudonorephedrine were converted into diastereomerically and enantiomerically enriched N-sulfonylaziridines (Scheme 5). The reaction involves the N-sulfonylation of the Ephedra alkaloid followed by O-sulfonylation with methanesulfonyl chloride [23]. The bis(sulfonyl) Ephedra derivatives afforded the corresponding N-sulfonylaziridines when they were treated with sodium hydroxide or hydrazine.



Yadav et al. described a one-pot process for the synthesis of functionalized aziridines by the reaction of imines with phenacyl bromide derivatives. This high yielding stereoselective reaction is catalyzed by the tertiary amine DABCO (Scheme 6) [24].



Olugbeminiyi and his co-workers presented a one-pot methodology that affords chiral N-alkyl terminal aziridines with more than 90% ee (Scheme 7). During this three step reaction, aldehydes initially undergo an enantioselective α-chlorination then reductive amination with primary amines and finally SN2 displacement results in the formation of the N-alkyl terminal aziridines (Scheme 8) [25].



A convenient method for the synthesis of N-β-hydroxyethylaziridines was presented by Kim and his co-workers. N-β-Hydroxyethylaziridines are known as important biological intermediates. They found that various epoxides undergo regioselective ring reactions with ethyleneimines. Under basic conditions, the ethyleneimine is generated in-situ from β-chloroethylamine in an aqueous environment (Scheme 9) [26].



Aziridines with a range of substituents were synthesized from the corresponding olefins in aqueous media. The iodine-catalyzed reaction requires quaternary ammonium salt in catalytic amounts to furnish good yield of highly pure product with simple work-up (Scheme 10) [27].



Kiyokawa and his research fellows presented that styrene derivatives do react with N-tosyliminophenyliodinane to furnish N-tosyl aziridines in good yields. This metal-free catalytic transformation is promoted by a combination of tetrabutylammonium iodide (TBAI) and I2 (Scheme 11).



During this reaction, both an extremely efficient catalyst TBAI3 and a real aziridination reagent called N,N-diiodotosylamide are produced in situ [28].



Imines react stereoselectively with ethyl diazoacetate in a montmorillonite K-10 solid acid catalyzed reaction to produce cis-aziridines in high yields (Scheme 12). This highly selective reaction accomplishes in short time under solvent-free conditions at room temperature furnishing the product in good yield [29].




3. Green Synthesis of Azetidines


Quinodoze and his colleagues demonstrated an easily practicable method to access enantiomerically pure N-aryl-2-cyanoazetidines with a range of substituents in high yield. This three-step transformation of β-amino alcohol proceeds through Cu-catalyzed N-arylation, N-cyanomethylation of aniline and mesylation followed by base induced ring closure (Scheme 13 and Scheme 14). The azetidine product with desired substitution pattern and diastereoselectivity signifies the versatility of this highly efficient reaction [30].



Kem et al. presented a robust one-pot procedure for the synthesis of α-carbonylated N-sulfonylazetidines. In the presence of potassium carbonate, the reaction involves the nucleophilic addition mediated ring contraction reactions of α-bromo N-sulfonylpyrrolidinones. They managed to synthesize variously substituted azitidine derivatives using nucleophiles like anilines, phenols and alcohols (Scheme 15) [31].



A general and efficient one-pot procedure has been presented by Malik et al. for the synthesis of 1-arenesulfonylazetidines. During this microwave-assisted reaction, the 1-arenesulfonylaziridines reacts with dimethylsulfoxonium methylide on a solid support of alumina to generate high yields of the product (Scheme 16) [32].



An efficient, simple and one-pot cyclocondenation of primary amines and alkyl dihalides in an alkaline aqueous medium results in the formation of nitrogen-containing heterocycles. This microwave-assisted reaction is complete in just about 20 min (Scheme 17) [33].



Under very mild conditions, the carbodiimides, sulfonyl azides and terminal alkynes react to generate high yields of functionalized 2-(sulfonylimino)-4-(alkylimino)azetidine derivatives. This multi-component reaction is catalyzed by Cu (Scheme 18) [34].



Hillier and his colleague accomplished the synthesis of 1,3-disubstituted azetidines through an undemanding method. During this reaction, the bistriflate of a 2-substituted-1,3-propanediol helps to achieve alkylation of primary amines leading to the formation of disubstituted azitidines [35]. The scope of this procedure has been well established using a variety of amines and 2-substituted-1,3-propanediols (Scheme 19).



A variety of 3-substituted azetidine-2,4-diones were synthesized when aromatic aldehydes underwent a tandem cyclization with ethyl cyanoacetate. This Sn(II)-catalyzed reaction proceeds through Knoevenagel condensation, hydration and the C-N cyclization to furnished good to excellent yields of the product (Scheme 20). This atomically economic reaction showed a broad substrate scope [36].



A facile, two-step and one-pot procedure provides an easy access to a range of chiral azetidine-piperidines by the reaction of chiral amines and piperidine chloroaldehyde [37]. Interestingly, the product retain the chirality of starting amine (Scheme 21).



Franck et al. described a straightforward and regioselective procedure for the synthesis of azetidines or pyrrolidines in good to excellent yields (Scheme 22). In this reaction the homoallylic amines undergo selenocyclization in respect of substitutions on double bond [38].



Burkett and his colleagues presented a simple and facile microwave-assisted methodology for the accelerated synthesis of highly pure azetidines in aqueous media [39]. The reaction proceeds via the cyclization of 3-(ammonio)propyl sulfates derived from the cyclic sulfate of 1,3-propanediol and primary amines (Scheme 23).



Under solvent free conditions, the terminal alkynes, carbodiimides and sulfonyl azides reacts efficiently to generate N-Sulfonylazetidin-2-imines [40]. This one-pot three component reaction is catalyzed by an eco-friendly copper(I) oxide catalyst without the support of any ligand or base. The azetidin-2-ylidene derivatives have also been successfully prepared when 1,2-diamine were used as nucleophiles (Scheme 24).




4. Green Synthesis of Pyrrolidines


Xu and his co-workers came up with a simple, efficient and one-pot procedure for the synthesis of cyclic amines. The reaction proceeds with the chlorination of amino alcohols and subsequently results in the formation of cyclic amines (Scheme 25). Here, the chlorination step obviates the use of common N-protection/O-activation/cyclization/deprotection steps required for such transformations. The scope of the reaction has been well-explored and the mechanistic aspects were studied in detail [41].



Jain and his colleagues reported a simple one-pot three-component reaction for an easy access to dispiropyrrolidine-bisoxindole derivatives. The reaction involves the cycloaddition trappings of azomethine ylides produced in situ through decarboxylative condensation of isatin with sarcosine (Scheme 26). This environmentally benign, operationally simple, highly regio- and stereoselective reaction completes in short time in ionic liquid solvent without the requirement of any catalyst [42].



Zhang et al. presented a one-pot highly enantioselective methodology for the synthesis of cyclic amines including pyrrolidine, piperidine and azocane via intramolecular reductive amination of N-Boc-protected aminoketones (Scheme 27) [43].



Abdulrahman et al. also reported the synthesis of dispirooxindolo-pyrrolidines in good yields with high regioselectivities. The one-pot three component 1,3-dipolar cycloaddition methodology involves the reaction between in situ generated azomethine ylides from L-phenylalanine with substituted isatin with unusual (E)-2-oxoindolino-3-ylidene acetophenone dipolarophiles (Scheme 28). The reaction is run in recyclable ionic liquids [44].



Ugarriza et al. presented an excellent methodology for the synthesis of C3-unsubstituted pyrrolidines with about 80% enantiomeric control and complete diastereomeric control. The in situ formed acyclic azomethine ylides react with acrolein through [3 + 2]-cycloadditions to furnish high yields of the product (Scheme 29). The reaction was catalyzed by easily available chiral amines like L-proline [45].



Varma and his research colleagues developed a one-pot methodology for a convenient synthesis of 2-hydroxy pyrrolidines under mild reaction conditions [46]. In the presence of CeCl3·7H2O as catalyst, different 2-aminothiazoles or thiadiazoles and 2,3-dihydrofuran reacts to furnish 2-hydroxy- pyrrolidines (Scheme 30).



Cui and his research team reported a one-pot methodology for enantioselective synthesis of chiral 2-aryl pyrrolidines and piperidines. Under neutral reaction conditions, rhodium hydroxide complex in the presence of chiral bicyclo[3.3.0]octadiene ligands catalyzes arylation of aliphatic N-tosylaldimines (Scheme 31). This high yielding method has been adopted for enantioselective synthesis of chiral 2-aryl pyrrolidines and piperidines [47].



In 2002, Gandon and Szymoniak reported an excellent procedure to access bifunctional nitrogen-heterocycles such as 1-azaspirocyclic γ-lactams, azetidines and pyrrolidines [48]. Imines react with EtMgCl under Zr-catalyzed reaction conditions to furnish C,N-dimagnesiated compounds which could be trapped with electrophiles leading to aforementioned N-heterocycles (Scheme 32).



In 2006, de Figueiredo and his colleagues described an efficient method for the synthesis of functionalized p-methoxyphenyl-protected 4-, 5- and 6-membered N-heterocycles (Scheme 33). This strategy involves the activation of hydroxyl group of amino alcohol without the use of toxic reagents. The scope of the reaction has been well-established by its ability to tolerate various functional groups [49].



Carson and his colleagues presented an excellent one-pot three-component procedure for the synthesis of substituted pyrrolidines [50]. During this reaction, the condensation of anilines or primary amines with aldehydes generates aldimines in situ which subsequently react with 1,1-cyclopropandiesters to afford pyrrolidines (Scheme 34). This high yielding-reaction is catalyzed by Yb(OTf)3.



Nayak and her research group described an operationally simple, eco-friendly and novel one-pot three component reaction for the synthesis of spirooxidindole-pyrrolidine/piperidine fused nitrochromanes in good to excellent yields (Scheme 35). The less demanding reaction procedure involves the cycloaddition of isatin-based azomethine ylide and substituted nitrochromenes in nontoxic solvent in shorter time [51].



Trost and his colleagues described that aminopropargyl alcohols undergo domino redox isomerization/cyclization to furnish nitrogen heterocycles [52]. In this ruthenium-catalyzed, atom-economical single step reaction a variety of functional groups were tolerated, establishing the broad scope of reaction (Scheme 36).



Methylenecyclopropanes react with sulfonamides through a gold(I)-catalyzed domino ring-opening ring-closing hydroamination process to afford pyrrolidine derivatives in excellent yield (Scheme 37) [53].



Multisubstituted pyrrolidines were made accessible with high diastereoselectivity by the tandem ring-opening-cyclization reaction of imines with cyclopropanes (Scheme 38). Kang and his research team used 5 mol% of scandium triflate as catalyst for the reaction [54].



Nguyen and Nicewicz presented a metal-free procedure for the synthesis of nitrogen-containing heterocyles with complete regiocontrol. The reaction involves a direct anti-Markonikov hydroamination of unsaturated amines (Scheme 39). In the presence of 9-mesityl-10-methylacridinium tetrafluoroborate as catalyst, the substrate amines are irradiated with visible light and thiophenol manages to donate H-atom [55].



Enones and unsaturated carbamates undergo a tandem cross-metathesis intramolecular aza-Michael reaction to generate β-amino carbonyl compounds (Scheme 40). The reaction is efficiently promoted by a combination of BF3·OEt2 and Hoveyda-Grubbs catalyst. In this reaction, a dramatic acceleration is observed under microwave irradiation with inversion of stereoselectivity in the addition step [56].



A highly endo-selective asymmetric 1,3-dipolar cycloaddition reaction of methyl N-benzylideneglycinate as source of azomethine ylides with (E)-acyclic α-enones is catalyzed by a silver(I)/ThioClickFerrophos complex to give highly functionalized endo-4-acyl pyrrolidines in good yields with high enantioselectivities (Scheme 41) [57].




5. Green Synthesis of Piperidines


Bansal et al. developed one-pot multicomponent reaction to access highly functionalized piperidines in moderate to good yields (Scheme 42). The reaction involves the condensation of amines, aldehydes and β-ketoesters catalyzed by a recyclable, nontoxic, and eco-friendly sodium lauryl sulfate. As an advantage, the reaction completes in water at room temperature and requires simple workup to furnish highly substituted piperidines [58].



The abovementioned reaction (Scheme 42) had also been studied by Khan et al. for the highly functionalized piperidine as well for fully substituted piperidines (Scheme 43). The described one-pot multicomponent procedure offered a green approach due to atom economy, mild conditions and good yields [59].



In 2010, Guérinot et al. represented an eco-friendly methodology for the synthesis cis-2,6-tetrahydropyrans and substituted cis-2,6-piperidines in good to excellent yields (Scheme 44). In this highly diastereoselective iron catalyzed reaction, the most stable cis-isomers are easy to isolate and purify [60].



LaLonde and his co-workers described phosphinegold(I)-bis-p-nitrobenzoate complex catalyzed intramolecular hydroamination of alkenes to access vinyl pyrrolidines and piperidines (Scheme 45). This atom-economical and enantioselective reaction results in high ee [61].



Métro and his research colleagues presented a high-yielding microwave-assisted reaction for the enantioselective synthesis of piperidines (Scheme 46) [62].



Maegawa and his fellows presented an excellent methodology for mild and complete hydrogenation of various carbon and heteroatomic compounds including furans, biphenyls, pyridines, alkylbenzenes, etc. [63]. The same reaction has been adopted for the synthesis of piperidines in good to excellent yield in aqueous media (Scheme 47).




6. Green Synthesis of Azepanes


Valle and his colleague reported a one-pot synthesis of polyhydroxylated aminoazepanes using Ph3P in aqueous solvent. In the reaction, the D-glucitol was initially converted into 1,6-diazido derivatives which subsequently got converted into the product (Scheme 48) [64].



Calder et al. presented a one-pot multi-reaction strategy for the synthesis of hydroxylated 3-aminoazepanes (Scheme 49) [65].



Wishka and his colleagues presented a successful method for the synthesis of (2S,5S)-5-substituted-azepane-2-carboxylate derivatives starting from known hydroxyl ketone (Scheme 50) [66].



Zhang and his co-workers described the alkylation of amines with alcohol for the synthesis of cyclic amines (Scheme 51). This microwave assisted iridium catalyzed reaction recognized as a green reaction because of its features like atom-economy, solvent-free and base-free conditions [67].



Further, the green and facile methods including one-pot, domino and microwave assisted reactions for the synthesis of azopane has already been described in Scheme 28, Scheme 30, Scheme 34, Scheme 39 and Scheme 43.




7. Green Synthesis of Azocanes


Sacher and his fellow developed following atom economical methodology for the construction of the azocane ring (Scheme 52) [68].



The green synthesis of azocanes has also been described in Scheme 27 and Scheme 31.




8. Conclusions


In conclusion, the presence of saturated cyclic amines in a number of naturally occurring bioactive molecules and in synthetic drugs has indicated their various potential roles in the past few decades. Further, vast arrays of applications in various scientific disciplines have triggered the development of new methods for their facile synthesis. This manuscript has highlighted some eco-friendly and facile synthetic routes for the synthesis of unsubstituted, fully substituted and functionalized aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes.
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Scheme 1. One-pot synthesis of N-tosylaziridine. 






Scheme 1. One-pot synthesis of N-tosylaziridine.
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Scheme 2. Transformation of aminoalcohols to N-tosylaziridines. 
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Scheme 3. One-pot synthesis of aziridines from cyclic sulfates. 






Scheme 3. One-pot synthesis of aziridines from cyclic sulfates.
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Scheme 4. Synthesis of chiral N-tosylated aziridines. 
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Scheme 5. Synthesis of N-sulfonylaziridines. 
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Scheme 6. Synthesis of functionalized aziridines. 
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Scheme 7. Synthesis of N-alkyl terminal aziridines. 
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Scheme 8. Organocatalytic approach to chiral N-alkyl terminal aziridines. 
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Scheme 9. Synthesis of N-β-hydroxyethylaziridines. 
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Scheme 10. Synthesis of substituted aziridines from olefins. 
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Scheme 11. Synthesis of N-tosyl aziridines from styrene. 






Scheme 11. Synthesis of N-tosyl aziridines from styrene.
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Scheme 12. Synthesis of cis-aziridines from imines. 
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Scheme 13. Synthesis of N-aryl-2-cyanoazetidines. 
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Scheme 14. Sequential transformation of β-amino alcohols. 






Scheme 14. Sequential transformation of β-amino alcohols.



[image: Molecules 22 01691 sch014]







[image: Molecules 22 01691 sch015 550]





Scheme 15. Synthesis of α-carbonylated N-sulfonylazetidines. 
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Scheme 16. Synthesis of 1-arenesulfonylazetidines. 
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Scheme 17. Microwave-assisted synthesis of cyclic amines. 
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Scheme 18. Synthesis of functionalized 2-(sulfonylimino)-4-(alkylimino)azetidines. 






Scheme 18. Synthesis of functionalized 2-(sulfonylimino)-4-(alkylimino)azetidines.
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Scheme 19. Synthesis of disubstituted azitidines. 
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Scheme 20. Synthesis of 3-substituted azetidine-2,4-diones. 






Scheme 20. Synthesis of 3-substituted azetidine-2,4-diones.
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Scheme 21. Synthesis of chiral azetidine-piperidines. 






Scheme 21. Synthesis of chiral azetidine-piperidines.
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Scheme 22. Regioselective procedure for the synthesis of azetidines or pyrrolidines. 
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Scheme 23. Microwave-assisted synthesis of azetidines in aqueous media. 
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Scheme 24. Synthesis of N-Sulfonylazetidin-2-imines. 
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Scheme 25. One-pot synthesis of cyclic amines. 
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Scheme 26. One-pot synthesis of dispiropyrrolidine-bisoxindole derivatives. 






Scheme 26. One-pot synthesis of dispiropyrrolidine-bisoxindole derivatives.
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Scheme 27. Synthesis of cyclic amines from N-Boc protected amino ketones. 
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Scheme 28. One-pot synthesis of dispirooxindolo-pyrrolidines. 






Scheme 28. One-pot synthesis of dispirooxindolo-pyrrolidines.
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Scheme 29. Synthesis of substituted-pyrrolidines. 
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Scheme 30. One-pot synthesis of 2-hydroxypyrrolidines. 






Scheme 30. One-pot synthesis of 2-hydroxypyrrolidines.



[image: Molecules 22 01691 sch030]







[image: Molecules 22 01691 sch031 550]





Scheme 31. Synthesis of chiral 2-aryl pyrrolidines and piperidines. 






Scheme 31. Synthesis of chiral 2-aryl pyrrolidines and piperidines.
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Scheme 32. Synthesis of bifunctional cyclic amines. 
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Scheme 33. Synthesis of functionalized p-methoxyphenyl-protected 4-, 5- and 6-membered N-heterocycles. 






Scheme 33. Synthesis of functionalized p-methoxyphenyl-protected 4-, 5- and 6-membered N-heterocycles.



[image: Molecules 22 01691 sch033]







[image: Molecules 22 01691 sch034 550]





Scheme 34. Synthesis of substituted pyrrolidines. 






Scheme 34. Synthesis of substituted pyrrolidines.
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Scheme 35. Synthesis of spirooxidindole-pyrrolidine/piperidine fused nitrochromanes. 
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Scheme 36. Domino synthesis of cyclic amines. 
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Scheme 37. Gold(I)-catalyzed synthesis of pyrrolidine derivatives. 






Scheme 37. Gold(I)-catalyzed synthesis of pyrrolidine derivatives.



[image: Molecules 22 01691 sch037]







[image: Molecules 22 01691 sch038 550]





Scheme 38. Synthesis of multisubstituted pyrrolidines by tandom reaction. 






Scheme 38. Synthesis of multisubstituted pyrrolidines by tandom reaction.



[image: Molecules 22 01691 sch038]







[image: Molecules 22 01691 sch039 550]





Scheme 39. Metal-free synthesis of nitrogen-containing heterocyles. 
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Scheme 40. Microwave assisted synthesis of pyrrolidines. 






Scheme 40. Microwave assisted synthesis of pyrrolidines.
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Scheme 41. Synthesis of highly functionalized endo-4-acyl pyrrolidines. 
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Scheme 42. One-pot multicomponent synthesis of highly functionalized piperidines. 
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Scheme 43. Synthesis of highly functionalized and fully substituted piperidines. 
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Scheme 44. Synthesis of substituted cis-2,6-piperidines. 
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Scheme 45. Synthesis of vinyl piperidines. 
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Scheme 46. Microwave-assisted enantioselective synthesis of piperidines. 
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Scheme 47. Synthesis of piperidines in aquous media. 
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[image: Molecules 22 01691 sch047]







[image: Molecules 22 01691 sch048 550]





Scheme 48. Synthesis of polyhydroxylated azopanes. 
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Scheme 49. Synthesis of hydroxylated 3-aminoazepanes. 
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Scheme 50. Synthesis of (2S,5S)-5-substituted-azepane-2-carboxylate derivatives. 
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Scheme 51. Microwave assisted iridium catalyzed synthesis of cyclic amines. 






Scheme 51. Microwave assisted iridium catalyzed synthesis of cyclic amines.
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Scheme 52. Atom economical synthesis of azocane. 
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