Next Article in Journal
Glycyrrhetinic Acid Liposomes Containing Mannose-Diester Lauric Diacid-Cholesterol Conjugate Synthesized by Lipase-Catalytic Acylation for Liver-Specific Delivery
Next Article in Special Issue
Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents
Previous Article in Journal
Synthesis of 2,4-Diaminopyrimidine Core-Based Derivatives and Biological Evaluation of Their Anti-Tubercular Activities
Previous Article in Special Issue
Deep Eutectic Solvents as Convenient Media for Synthesis of Novel Coumarinyl Schiff Bases and Their QSAR Studies
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Molecules 2017, 22(10), 1604; doi:10.3390/molecules22101604

Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1

1
Department of Food and Life Science, Pukyong National University, Busan 48513, Korea
2
Department of Chemistry, Pukyong National University, Busan 48513, Korea
3
Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea
These two authors contributed equally to this work.
*
Authors to whom correspondence should be addressed.
Received: 22 August 2017 / Revised: 21 September 2017 / Accepted: 21 September 2017 / Published: 24 September 2017
(This article belongs to the Special Issue Versatile Coumarins)
View Full-Text   |   Download PDF [2215 KB, uploaded 24 September 2017]   |  

Abstract

Coumarins, which have low toxicity, are present in some natural foods, and are used in various herbal remedies, have attracted interest in recent years because of their potential medicinal properties. In this study, we report the isolation of two natural coumarins, namely umbelliferone (1) and 6-formyl umbelliferone (2), from Angelica decursiva, and the synthesis of 8-formyl umbelliferone (3) from 1. We investigated the anti-Alzheimer disease (anti-AD) potential of these coumarins by assessing their ability to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Among these coumarins, 2 exhibited poor inhibitory activity against AChE and BChE, and modest activity against BACE1. Structure–activity relationship analysis showed that 2 has an aldehyde group at the C-6 position, and exhibited strong anti-AD activity, whereas the presence or absence of an aldehyde group at the C-8 position reduced the anti-AD activity of 3 and 1, respectively. In addition, 2 exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. A kinetic study revealed that 2 and 3 non-competitively inhibited BACE1. To confirm enzyme inhibition, we predicted the 3D structures of AChE and BACE1, and used AutoDock 4.2 to simulate binding of coumarins to these enzymes. The blind docking studies demonstrated that these molecules could interact with both the catalytic active sites and peripheral anionic sites of AChE and BACE1. Together, our results indicate that 2 has an interesting inhibitory activity in vitro, and can be used in further studies to develop therapeutic modalities for the treatment of AD. View Full-Text
Keywords: Angelica decursiva; 6-formyl umbelliferone; coumarins; BACE1; cholinesterases; molecular docking Angelica decursiva; 6-formyl umbelliferone; coumarins; BACE1; cholinesterases; molecular docking
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ali, M.Y.; Seong, S.H.; Reddy, M.R.; Seo, S.Y.; Choi, J.S.; Jung, H.A. Kinetics and Molecular Docking Studies of 6-Formyl Umbelliferone Isolated from Angelica decursiva as an Inhibitor of Cholinesterase and BACE1. Molecules 2017, 22, 1604.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top