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Abstract: Although cultivated for over 7000 years, mainly for production of cotton fibre, the cotton
plant has not been fully explored for potential uses of its other parts. Despite cotton containing
many important chemical compounds, limited understanding of its phytochemical composition
still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash,
this review focuses on phytochemicals associated with different parts of cotton plants and their
biological activities. Three major classes of compounds and some primary metabolites have been
previously identified in the plant. Among these compounds, most terpenoids and their derivatives
(51), fatty acids (four), and phenolics (six), were found in the leaves, bolls, stalks, and stems.
Biological activities, such as anti-microbial and anti-inflammatory activities, are associated with
some of these phytochemicals. For example, 3-bisabolol, a sesquiterpenoid enriched in the flowers
of cotton plants, may have anti-inflammatory product application. Considering the abundance of
biologically active compounds in the cotton plant, there is scope to develop a novel process within
the current cotton fibre production system to separate these valuable phytochemicals, developing
them into potentially high-value products. This scenario may present the cotton processing industry
with an innovative pathway towards a waste-to-profit solution.
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1. Introduction

Cotton (Gossypium) is naturally a perennial plant that is now commercially cultivated as an annual
plant in many parts of the world [1]. The cotton bud is the most utilized part of the plant and is the
starting raw material for a wide range of products, such as textiles, edible oil, paper, livestock feed,
and medicinal products, to name a few [2-7]. Cotton fibre has many positive characteristics (comfort,
colour retention, absorbency, strength) [2] and, hence, global cultivation has increased to an estimated
production of over 23 million tonnes in 20132014 [8]. This increase in cotton production has resulted
in tonnes of waste remaining after harvesting and processing (ginning), which has contributed to
a growing challenge of its disposal [9,10].

Non-cotton fibre biomass residues generated from cotton production and processing includes
cotton gin trash (CGT), post-harvest field thrash (PHT), and crushed seeds from which oil has been
extracted. Post-harvest trash (PHT) are the remaining parts of the plant left on the field, while
CGT is centralised at gins and is comprised mainly of sticks, burrs (calyx), leaves, and soil [9,11].
These by-products of the cotton industry, although underutilized, are being used as soil composts and
cottonseed meal nutritional supplements for livestock feed [10,12-14]. Other methods of utilization
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of cotton industry by-products have been explored, particularly as a low-cost biomass feedstock for
commercial bioenergy /biofuel applications [15-17], mostly from CGT.

The entire cotton plant has the potential to be a source of valuable compounds, such as
terpenes, phenolics, fatty acids, lipids, carbohydrates, and proteins [18-23]. These compounds, which
are distributed in seeds, bolls, calyx, leaves, stalks, stems, and roots of the plant [20,23-25] play
functional biological roles in humans and animals [21,26-29]. Gossypol, a poly-phenolic with potential
contraceptive effects [30] and trans-caryophyllene, a terpenoid having anti-inflammatory and cytotoxic
properties [31,32], are examples of compounds present in cotton with potential beneficial impact on
humans and animals. Thus, by-products generated by the cotton industry (CGT, PHT, and crushed
seeds) may represent a potential source of valuable extractives due to the distribution of chemical
compounds throughout the whole cotton plant.

Agricultural products and by-products other than cotton are being exploited for generation
of energy and materials [33], serving as a means of recycling and reducing organic wastes in the
environment. Biomass from soybean, rice, and sugar cane are examples of agricultural by-products
currently utilized for these purposes [34-37]. Valuable chemical extractives may also occur in some of
this agricultural biomass [38], although these potential resources have not been fully exploited.

The multitude of potentially valuable chemicals that could be derived from cotton production
by-products has gained little attention. Hence, exploiting the full potential of cotton waste will be
beneficial to both the cotton industry and the local environment. A more detailed investigation is
necessary to provide answers to such questions as: what is the nature of the extractives present in
these by-products; how do the chemical profiles vary between cotton species and/or varieties and
what potential uses do the waste products have as a source of high value compounds. To provide
answers to some of these questions, this review begins with an overview of cotton production, the
source of industry wastes, and its current utility. This review continues with a further discussion of
current knowledge of chemical extractives present in the cotton plant and the distribution of these
compounds within the plant highlighting their potential phytochemical properties which may be of
value to both the pharmaceutical and agricultural sector.

2. Cotton

Cotton, the Gossypium genus in the tribe Gossypiae, in the family Malvaceae, can be generally
divided into two types: cultivated and wild cotton. Of 50 known species, only four (4) are cultivated,
with the remaining 46 growing wild in the tropics and sub-tropics [39,40]. The four common cultivated
cotton species are G. hirsutum, G. herbaceum, G. barbadense, and G. arboreum. These species vary in
terms of fibre quality [41] defined by length, maturity, strength, and micronaire (cell wall thickness)
of the fibre. The differences in fibre quality, yield, and adaptation to certain climatic conditions, has
contributed to the preference of some cotton species over others [39]. All four cultivated cotton species
are used for other purposes, including food production and medicinal application [21,42—-44].

G. hirsutum, sometimes referred to as “upland, American or Mexican cotton”, is the most
commonly cultivated of all cotton species [41]. G. hirsutum, is widely grown in its transgenic form
because of its high yield and adaptability to different environmental conditions [45], although high
temperatures can result in sterility and boll shedding [46,47]. The other species are predominant in
parts of Asia and Africa and are seldom cultivated outside these regions [48,49], due to their inability
to adapt to different climatic conditions [46] and poor yields [45,49]. G. hirsutum has been manipulated
to improve yield and there has been some effort made toward enhancing the other cultivated species
using transgenic approaches [50,51].

2.1. Transgenic Cotton

Fungal infection, pests, weed infestation and unfavourable environmental conditions are some
of the challenges which result in poor yields [52-57]. These challenges prompted transgenic
manipulation of cotton plants, to equip them with the ability to withstand unfavourable conditions
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and promote higher yields [58-60]. Bt cotton carries transgenes derived from the soil dwelling bacteria
Bacillus thuringiensis, hence the name Bt cotton. Bt cotton cultivars carry the CrylAc gene making
it resistant to the tobacco bud worm [61], or a combination of CrylAc and Cry2Ab gene, making it
resistant to a wider range of cotton pests [62]. A new type of Bt cotton, which is yet to be introduced
in the market, contains CrylAc, Cry2Ab, and Vip3A genes, with the last gene promoting increased
resistance to more challenging pests such as lepidopteran insects [63,64]. Roundup Ready cotton,
another transgenic type, contains a gene that confers resistance to glyphosate herbicide, enabling weed
control without destroying the cotton.

There have been other attempts to move favourable genes between species to enhance tolerance
under unfavourable environmental conditions. For example, a heat shock protein gene GHSP26,
thought to be responsible for drought tolerance in G. arboretum, has been transferred to G. hirsutum,
thereby enhancing its ability to withstand drought [65].

3. Cotton Industry and Processing

When fully matured, cotton bolls are picked and transported for processing, leaving the remaining
plant as field trash. During the refining process or ginning of the harvested cotton, impurities are
removed from the cotton fibres and are recovered as a processing by-product (CGT). Moreover, cotton
seed is also processed to recover cotton seed oils and cotton seed meals. Cotton production generates
three categories of waste products: (i) field trash (stems, flowers, leaves, and stalks); (ii) CGT (leaves,
fibre, flowers, immature seeds, sticks and soil) [9] and cotton seed meal (from which oil has been
extracted) (Figure 1).

mature cotton boll

harvested wmmmm PHT

l

ginning

I
l l l
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CIGT cottol seed
l l l fibre & other I I
uses
landfill  compost livestock cottonseed cottonseed
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Figure 1. Flowchart of cotton processing from field to cotton gin products.

3.1. Cotton Waste

Cotton by-products have provided producers with additional value, mainly in the form of
livestock feed supplements and soil amendments [6,66]. Despite its abundance, field trash is generally
viewed as having little value-added potential and is, therefore, not a resource that is utilised in standard
farming practices. Field trash is currently slashed and left in the field where it provides some benefits
through improving soil carbon and reducing soil erosion. The high cost associated with harvesting
field trash for other uses is considered a major economic hurdle.

Cotton seeds constitute 55% of the total ginned cotton by weight, whereas cotton fibre and
CGT make up about 35%—-40% and 10% respectively [67]. Although historically viewed as a waste
by-product of cotton processing, cotton seed is now considered a high value co-product and
an important part of the cotton processing value chain. Cotton seed is fractionated into high value
oils and high protein meals, both with applications in food and feed industries. In contrast, CGT is
considered a lower value waste with little value adding potential and the management of CGT is
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regarded as a financial burden to most ginning operations. CGT is generally disposed of in one of
four ways: as solid waste (landfilling), composting and land application, incineration and, to a lesser
extent, fed to livestock as a supplement [9,10]. Moreover, disposal options are tightly regulated by
local environmental laws which add further restrictions.

CGT has a reasonable nutritional profile composed of dry matter (90%), crude protein (12%), total
digestible nutrients (47%), calcium (11%), sodium (121 ppm), and iron (963 ppm) [66], and has been
proven to contribute to the wellbeing of livestock [6,12]. Despite this, its use has been discouraged (and
banned altogether in some countries) owing to the presence of residual chemicals which are used during
cultivation [68]. This has resulted in CGT being widely used as fertilizer supplements [69,70] and
composts to maintain/conserve soil moisture and composition that improve crop production [71,72].

Waste generated from cotton harvesting and cotton ginning mills are used as replacement
components for inorganic-based filler materials and additives, for the production of thermoplastic
composites poly(lactic acid) (PLA) and low-density polyethylene (LDPE) [73]. By-products from the
cotton industry have also been processed to produce fulvic acid and silica [74]. Cotton trash has been
investigated in numerous studies as a renewable feedstock in bioethanol production [15,16,75,76].
CGT is well suited as a biofuel feedstock because its composition has the attribute of high
polysaccharide content (up to 50%) for effective and scalable conversion to biofuels.

A promising, yet less well documented use of CGT is in the manufacturing of biologically active
compounds. There are a variety of chemical compounds which occur naturally in cotton plants with
wide ranging activities. Given that such compounds are present in the cotton plant, it is plausible that
the remaining trash also contains a proportion of biologically active molecules. These compounds and
their uses are examined and discussed in the following sections of this review.

4. Chemical Compounds in Cotton

Different compounds present in cotton play important roles during metabolism or interaction
with the environment. Naturally-occurring compounds in cotton include terpenes, phenols, proteins,
carbohydrates, fatty acids, and lipids [19] (Table 1). As with most plants, the distribution of these
compounds vary between different parts of the cotton plant with some compounds concentrated in
specific parts of the plant [77] (Figure 2). The distribution of these chemical compounds is related to
their different properties and functionality in the plant. The various compounds found in cotton plant
will be discussed, highlighting the chemistry, as well as their distribution within the plant.

Flower: a-2',3,3",4,4'acid, 6-
\ / hep ra_hydro)rychalc one, 11,14-eicosadienoic,
ﬁ limonene, 3,3'4',3,7 pentahydroxyflavone

Leaf: cellulose, camphene, limonene, myrcene,
a-pinene, B-pinene, sabinene, copaene,
farnesene, humulene, f-amyrin, f-sitosterol,
9,12,15-octadecatrienoicacid; (Z,Z,Z)-form,
hexadecanoic acid

Boll & seed: 11,14-eicosadienoic acid, glycerol 1-
alkanoates, bikojicacid, limonene, cellulose,
gossypurpurin, quercetin 3-glycosides, kaempferol
3-glycosides, 3,4',5,7-tetrahydroxy-8-methoxyflavone,
hexadecanoic acid, octadecanoic acid, bergamotene,
legumin, vicilin, tetradecanoic acid

\ Stem/Stalk: cellulose, terpene derivatives,
11,14-eicosadienoicacid, 2,3,9-trihydroxy-
1,3,5,7,9-cadinapentaen-14-al; 3-Me ether, -

sitosterol, gossypol

Root: strigol, gossypol; (+)-form, 6-Me ether,
goss_vpol; (x)-form, 6-Me ether, 11,14-eicosadienoic
acid

Figure 2. Distribution of common secondary metabolites in cotton plant.
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Table 1. Chemical compounds isolated from cotton (Gossypium).

Compounds Molecular Molecular References
Formula Weight (g/mol)
Terpenes
Monoterpenes Ci0Hye 136.24
Camphene [21]
Limonene [21,23]
Myrcene [23]
Ocimene [21,23]
a-pinene [23]
-pinene [23]
Sabinene [21,23]
a-Thujene [21]
Sesquiterpenes Cis5Hpg 204.35
a-Bergamotene [78]
Bisabolene [78]
1(10),4-Cadinadiene; (63,7)-form [79,80]
Caryophyllene [78]
Copaene [81]
Guaiadiene: (48,5«,7f)-form [81]
Farnesene [78]
Humulene [81,82]
Terpene derivatives
o and B-Amyrin C3oH500 426.72 [83]
Bisabolol C15H2(,O 222.37 [82,84]
1,3,5,10-Bisabolatetraen-7-ol C15H20 218.34 [82]
Bisabolene oxide Cy15H40 220.35 [85]
1(10),4-Cadinadien-2-ol; (2¢,63,7p)-form C15H40 220.35 [86]
1,3,5,7 9-Cadinapentaene-3,9-diol Cy15H180, 230.31 [86]
1,3,5,7,9-Cadinapentaene-3,9-diol; 3-Me ether C16H2007 244.33 [86]
1,3,5,9-Cadinatetraene; 7oH-form, 3-Hydroxy Cy5Hp00 216.32 [87]
1,3,5-Cadinatriene-3,9-diol; (7«,9,10cx)-form, 9-Ketone C15H00, 232.32 [88]
1,3,5-Cadinatriene-3,9-diol; (7f,10c)-form, 9-Ketone C15Hp00, 232.32 [88]
1,3,5-Cadinatriene-3,9,10-triol;
(78,9B,10«)-form, 9-O-p-D-Glucopyranoside C21H5,0s 41248 [89]
3(15),6-Caryophylladien-12-ol; (6E)-form Cy15H40 220.35 [90]
3(15),6-Caryophylladien-12-ol;
(6E)-form, 6,73-Epoxide, Ac C17H2603 278.39 [90]
Caryophyllene oxide C15H40 220.35 [82]
3,10-Dihydroxy-1,3,5,7-cadinatetraen-9-one Cy15H1803 246.31 [91]
8,9-Dihydroxy-2,5-dioxo-1(6),3,7,9-cadinatetraen-14-al C15H1405 274.27 [91]
2,14-Epoxy-1,3,5,7,9-cadinapentaene-8,9-diol C15H1603 244.29 [92]
2,14-Epoxy-1,3,5,7,9-cadinapentaene-8,9,12-triol;
15—Hyd€0x;’, 9-O-(6-O-su1fo-[I;-D-glucopyranoside) CanH60155 51850 93]
Heliocide Hy Cy5H3005 410.51 [93,94]
Heliocide Hy; 7-Me ether Cy6H3,05 424.54 [95]
Heliocide Hy Cy5H3905 410.51 [93]
Heliocide H,; 3-Me ether Cy6H3,05 424.54 [95]
Heliocide Hs Cy5H3005 410.51 [93]
Heliocide Hj; 3-Me ether Cy6H3,05 424.54 [95]
Heliocide Hy Cy5H3005 410.51 [93]
Heliocide Hy; 3-Me ether CyeH3,05 424.54 [95]
{-Sitosterol CyoH500 414.71 [83]
Strigol C19H2 O 346.38 [96,97]
2,3,8,9-Tetrahydroxy-1,3,5,7,9-cadinapentaen-14-al; 3-Me ether C16H1505 290.32 [98]
2,3,9-Trihydroxy-1,3,5,7,9-cadinapentaen-14-al; 3-Me ether C16H1804 274.32 [99]
2,8,9-Trihydroxy-1,3,5,7,9-cadinapentaen-14-al C15H1604 260.29 [100]
2,8,9-Trihydroxy-1,3,5,7,9-cadinapentaen-14-al; 8-Deoxy C15H1603 244.29 [100]
2,8,9-Trihydroxy-1,3,5,7,9-cadinapentaen-14-al; 8-Me ether C16H1804 274.32 [100]
3,8,9-Trihydroxy-2,5-dioxo-1(6),3,7,9-cadinatetraen-14-al; 3-Me ether C16H1604 304.30 [101]
Phytol C20H4()O 296.54 [18]
Phenols
Phenolic acids
Benzoic acid Cy7HgO, 122.12 [22]
Chlorogenic acid C16H1809 354.31 [22]
Ferrulic acid C10H1004 194.18 [22]
Gallic acid C7HgOs5 170.12 [22]

Gentisic acid C7HgOy 154.12 [22]
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Table 1. Cont.

Compounds Molecular Molecular References
Formula Weight (g/mol)
P-coumaric acid CyoHgO3 164.16 [22]
4-hydroxybenzoic acid CyHgO3 138.12 [22]
3,4-Dihydroxybenzoic acid CyHgOy 154.12 [22]
Syringic acid CoH19Os 198.17 [22]
Phenolic acid analogs
Gossypol; (£)-form, 6-Me ether C31H3,04 532.59 [102]
Gossypol; (+)-form, 6,6'-di-Me ether C3,H3404 546.62 [102]
Gossypol; (+)-form C3pH300g 518.56 [83]
Gossypurpurin CeoHs6N2013 1013.11 [103]
Gossyrubilone CyoHo5NO4 343.42 [95]
Flavonoids
o-2',3,3' 4,4’ 6-Heptahydroxychalcone; 2’-O-D-Glucopyranoside C1oHpO13 482.40 [104]
3,3',4' 5,7,8-Hexahydroxyflavone; 3-O-B-D-Glucopyranoside Cy1HpO13 480.38 [19]
Gossypetin 7-glucoside Cy1Hp0013 480.38 [19]
3,3’ 4’ 5,7,8-Hexahydroxyflavone; 8-O-«-L-Rhamnopyranoside Cy1Hp0012 464.38 [105]
Kaempferol 3-glycosides; Monoglycosides, 3-O-x-D-Glucopyranoside Cy1Hy0011 448.38 [19]
3,3’ 4 5,7-Pentahydroxyflavan; (25,3R)-form C15H1404 290.27 [106]
3,3’ 4’ 5,7-Pentahydroxyflavone; 3'-O-B-d-Glucopyranoside Cy1Hp0O012 464.38 [105]
3,4/ ,5,7,8-Pentahydroxyflavone C15H;1007 302.24 [107]
Quercetin 3-glycosides; Disaccharides,
3-O0-[ ﬁ—D—Galactopyraigsyl—(l —6)-B-D-glucopyranoside] CorHaOry 626.52 [105]
Quercetin 3-glycosides; Tetra- and higher saccharides,
3-O-[x-D-Apiofuranosyl-(1—>5)-p-D-apiofuranosyl- C37Hy6004 874.76 [108]
(1—=2)-[o-L-thamnopyranosyl-(1—6)]-B-D-glucopyranoside]
3,3,5,7-Tetrahydroxy-4'-methoxyflavone C16H1207 316.27 [19]
3,4/ 5,7-Tetrahydroxy-8-methoxyflavone;
3-O-(5-D-Glucopyrangside, g-O-oc—L-rha};nnopyranoside CasHz2016 624.55 [109]
Other Phenols
Scopoletin C19oHgOy 192.17 [110]
Fatty acids and Lipids
11,14-Eicosadienoic acid CyoH3607 308.50 [24]
Hexadecanoic acid C16H3,0, 256.43 [24]
9-Hexadecanoic acid; (Z)-form C16H3007 254.41
Octadecanoic acid C18H3607 284.48 [24]
9-Octadecenoic acid; (Z)-form C18H340; 282.47 [24]
9,12-Octadecadienoic acid; (Z,Z)-form C18H3,0, 280.45 [18]
9,12,15-Octadecatrienoic acid; (Z,Z,Z)-form C18H300, 278.43 [18]
Tetradecanoic acid (myristic acid) C14Hp07 228.37 [24]
Triacontanoic acid C39HgpO2 452.80 [111]
Carbohydrates
Cellulose CgH19O0s5 162.14 [25]
Cyanidin 3-glycosides; Disaccharides, CagHeO1s 581.51 [112]

3-O-[B-D-Xylopyranosyl-(1—4)-3-D-glucopyranoside]
6-O-«-D-Galactopyranosyl-D-glucose C1oH», 011 342.30 [113,114]
Glycerol 1-alkanoates; Glycerol 1-(22-hydroxydocosanoate),

22/-0-(3,4-Dihydroxycinnamoyl) Ca4H560s 59281 [115,116]
Raffinose C15H3046 504.44 [117,118]
Proteins
3-Phosphoglycerate phosphatase [119]
Vicilin A and B [20]
Legumin Aand B [20]
Hydrocarbons
1H-Indole-3-carboxaldehyde C1oH7NO 145.16 [120,121]
1-Methyl-2-propylbenzene CioH14 134.22 [122]
Octatriacontane CssHyg 535.03 [123]
Alcohols
Dotriacontanol C3oHgO 466.88 [18]
1-Tetratriacontanol C34H70O 494.93 [18]
Triacontanol C3oHgO 438.81 [18]

4.1. Terpenes

Like most plants, the cotton plant is susceptible to insect, herbivore, and pathogen attack.
In a bid to ward off these predators, compounds are produced by the plant as a defence mechanism.
Terpenes are an important class of defence compounds synthesized in the cotton plant and are also the
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largest group of plant defence compounds [124,125]. They are major constituents of essential oils found
in most plants and, as such, have been applied in the food, chemical, and cosmetic industry [126].
Terpenes are composed of units of a five-carbon compound, isoprene (Figure 3), linked together in
a head to tail fashion [127], forming long chains or rings. They are classified into seven classes by
the number of isoprene units they contain and include hemiterpenes, monoterpenes, sesquiterpenes,
diterpenes, triterpenes, tetraterpenes, and polyterpenes [125,127-129]. Generally, hemiterpenes do
not occur as free compounds but are bound to other non-terpene compounds [126], while terpenes
modified by oxidation or a re-arrangement of the carbon skeleton are referred to as terpenoids.

A

Isoprene

Figure 3. Chemical structure of isoprene (building block of terpenes).

According to Pare and Tumlinson [130] and Rose and Tumlinson [131], terpenes in cotton can
be divided into two groups. The first are constitutive compounds that are present in the storage
compartments of the cotton plant and are released immediately after insect feeding or damage.
Some of these terpenes include a-pinene, $-pinene, limonene, caryophyllene, x-humulene, and
myrcene. The second group of terpenes are referred to as inducible compounds which are synthesized
de novo several hours after exposure to pests and herbivores and include 3-ocimene, x-farnesene,
p-farnesene, and linalool. Some of these terpenes occur in their enantiomeric forms in the plant with
a reported occurrence of the negative forms e.g., -a-farnesene, -3-farnesene and -3-ocimene [131,132].
Monoterpenes, sesquiterpenes, triterpenes, and terpene derivatives mostly occur in the cotton plant,
with monoterpenes, sesquiterpenes, and their derivatives being the most common [133]. The total
concentration of terpenes in cotton plant is unclear, although accumulation of terpenes in cotton plant
parts varies with up to 15.5 mg terpenoids reportedly accrued per fresh weight of cotton leaves [124];
2.81 mg and 2.49 mg per foliage weight reported for monoterpenes and sesquiterpenes, respectively.

4.1.1. Terpene Biosynthesis

Terpenes are synthesized via the acetate/mevalonate pathway [133] and mevalonate independent
pathway [127,128]. The non-mevalonate pathway is also referred to as the deoxyxylulose phosphate
(DXP) pathway or the methyl erythritol phosphate (MEP) pathway. Although terpene synthesis begins
with photosynthesis, most studies identify the combination of three acetyl CoA molecules as the
starting point of terpene or terpenoid biosynthesis via the acetate/mevalonate pathway [134].

The mevalonate and non-mevalonate pathway result in the formation of isopentenyl
pyrophosphate (IPP) and dimethyl allyl pyrophosphate (DMAPP) which forms isoprene catalysed
by isoprene synthase. Monoterpenes are synthesized in the plastids of plant cells from geranyl
pyrophosphate (GPP) (Figure 4) which is formed from the combination of DMAPP and IPP catalysed
by isoprenyl diphosphate synthases [135]. Sesquiterpenes (Figure 4) are synthesized in the cytosol from
farnesyl pyrophosphate (FPP), which is formed from one molecule of GPP and IPP joined in a head
to tail combination. The activity of sesquiterpene synthase enzymes converts FPP to sesquiterpenes
via ionization reactions [136]. Other terpenes, diterpenes, and triterpenes are synthesized from FPP
via the formation of geranyl geranyl diphosphate (GGDP) and squalene, respectively (Figure 4).
Both pathways of terpene biosynthesis can, thus, be summarised into a four step process: (1) synthesis
of IPP and isomerization to DMAPP; (2) addition of more IPP compounds; (3) terpene backbone
formation by terpene synthase activity; and (4) enzymatic modification to induce specific functions of
the terpenes [129].
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mevalonate pathway non-mevalonate pathway

YA

OH OH \ OH OH %
OFOFOH*’ OPOPOH*’

0O O 0 O isoprene
isopentenyl pyrophosphate dimethyallyl pyrophosphate
DMAPP/»
— — QH QH
OH OH rp —p-O-P-
)W\w,‘,,‘, ( - \— OI‘:"OI‘:"OH
o Iﬁ o Iﬁ OH O O
o O
farnesyl pyrophosphate
geranyl pyrophosphate

O

limonene (monoterpene)
bisabolene (sesquiterpene)

\\\\OH

retinol (diterpene)

squalene (triterpene)

Figure 4. Biosynthesis of terpenes from isopentenyl pyrophosphate, a product of the mevalonate and
non-mevalonate pathway.

4.1.2. Monoterpenes (C10)

The monoterpenes (CjgHj¢) are a class of terpenes that consist of two isoprene units and
can be linear (acyclic), monocyclic (containing one ring), or bicyclic (containing two rings) [137].
There are over 1000 monoterpenes known to occur in nature and examples of common monoterpenes
in plants include myrcene (acyclic), limonene (monocyclic), and pinene (bicyclic) (Figure 5) [137].
Together with the sesquiterpenes, monoterpenes are major constituents of essential oils extracted
from various plant materials [138]. Biochemical modifications of monoterpenes such as oxidation,
hydroxylation and rearrangement of atoms result in the formation of monoterpenoids such as geraniol
and linalool [135,139]. In the cotton plant, there are some acyclic monoterpenes which belong to the
group of constitutive compounds, such as x-pinene, 3-pinene, and limonene amongst others, as well as
herbivore-induced monoterpenes [130,132]. Although monoterpenes found in cotton are distributed in
different parts of the plant, including leaves, seeds, flowers, stems, and roots, they are predominantly
concentrated within the leaves and flowers (Figure 2) [23,124,140,141].
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| > < >

CH2 )wv/
|

myrcene a-pinene [-pinene limonene ocimene

Figure 5. Chemical structures of some monoterpenes in plants, including cotton.

4.1.3. Sesquiterpenes (C5)

Sesquiterpenes (C15Hp4) are composed of three isoprene units either in acyclic or cyclic form
and occur in most plants. Sesquiterpenes are not limited to higher plants; they have been discovered
in micro-organisms, such as bacteria, fungi, and marine organisms [135]. The sesquiterpenes occur
in many cotton species and have been extracted from the leaves, flowers, seeds, and bolls of cotton
plants [21,142]. Bell [19] reported the total concentration of some sesquiterpenes in essential oil
extracted from whole cotton plants up to 26.12% and 30.1% for G. hirsutum and G. barbadense
respectively. The sesquiterpenes, a-bergamotene, caryophyllene, bisabolene, farnesene, humulene and
copanene are some of the sesquiterpenes commonly associated with cotton (Figure 6), while oxidized
forms such as bisabolol, bisabolene oxide, caryophyllene oxide, and other sesquiterpenoids also occur
in the cotton plant [19] (Figure 7).

H
=
JonaaltS
) I
bisabolene caryophyllene farnesene

Figure 6. Chemical structures of some sesquiterpenes in cotton.

‘o

bisabolol caryophyllene oxide bisabolene oxide

Figure 7. Some sesquiterpenoids isolated from cotton.

4.1.4. Triterpenes (Czp)

There are no reports of diterpenes, tetraterpenes, and polyterpenes in cotton plants, however,
two triterpene derivatives, 3-sitosterol and 3-amyrin montanate (Figure 8), were reported to occur in
cotton leaves by Shakhidoyatov et al. [18]. Triterpenes are generally made of six (6) isoprene units and
contain 30 carbon atoms with a molecular formula of CzoHys.

HO }
HO
beta-amyrin beta-sitosterol

Figure 8. Triterpene derivatives in cotton.
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4.2. Phenols

Phenolic compounds are secondary metabolites found in most plants and normally comprise
of one or more hydroxyl groups directly attached to one or more aromatic hydrocarbons [143].
Phenols occur in many lower and higher plants, medicinal plants/herbs, and dietary herbs [144], and
their distribution is mainly governed by the physiological roles they play within the plant [143,145].

There are up to nine (9) groups of compounds classified as phenols, including phenolic
acids, phenolic acid analogs, flavonoids, tannins, stilbenes, curcuminoids, coumarins, lignans, and
quinones [144,146]. Despite the wide occurrence of phenols in higher plants, only phenolic acids,
phenolic acid analogs, flavonoids, tannins, and coumarins have been reported to occur in cotton
seeds (41 ppm), bracts (22.6 ppm), leaves (21.6 ppm), and roots [19]. Phenolic compounds are
synthesized within the chloroplast of plant cells through a series of reactions which are preceded by the
synthesis of aromatic amino acids tyrosine and phenylalanine via the shikimate-chorismate pathway.
This pathway involves reactions between phosphoenol pyruvate (a by-product of glycolysis) and
erythrose 4-phosphate (a by-product of the oxidative pentose phosphate pathway). These two aromatic
amino acids, regarded as the major precursors in the synthesis of phenolic compounds, undergo a series
of reactions via the phenylpropanoid pathway resulting in different classes of phenolic compounds
(Figure 9). Several other key enzymes are implicated in the synthesis of phenols from one class
to another.

Glycolysis I.Jl> Phosphoenol pyruvate + Erythrose 4-phosphate <:| Pentose phospahte pathway

Shikimate-chorismate pathway

Tyrqsine Phenylalanine
phenylalanine : ammonia lyase

trans-cinnamic acid

P-Coumaric acid (Phenolic acid)

chalcone synthase

Coumarin Caffeic acid Chalcones
¢ Phenolic acid

Lignans Ferulic acid i chalcone-flavone

isomerase .

Isoflavones Dihydroflavanol Flavonoids
X ! . Flavanone
Sinapic acid|
. Flavanone
oxidase Flavonol
synthase
Flavone Anthocyanins Flavonol

Figure 9. The generalised biosynthetic pathway of phenolic compounds.

4.2.1. Flavonoids

Flavonoids are the most abundant class of phenolic compounds. Huang, Cai and Zhang [144]
reported that over 4000 flavonoids occur in nature while Cheynier [143] suggested that the number
is closer to 8000. Flavonoids derive their name from the latin word “flavus” which means “yellow”,
because of the prevalent yellow colour and are largely responsible for the colours of flowers, leaves,
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barks, fruits, and seeds of most plant species [134]. Flavonoids have a basic skeletal structure of
phenyl benzopyrone (C6-C3-C6) comprised of two aromatic rings linked by three carbon atoms.
Flavonoids occur as free compounds e.g., quercetin (Figure 10) or as glycosides combined with
different sugars [144] e.g., kaempferol 3-glycosides, and quercetin 3-glycosides.

OH

OH
m e g
OH

OH O

Figure 10. Quercetin, a flavonoid with the basic skeletal structure of flavonoids.

There are several different classes of flavonoids such as the flavones, flavonols, isoflavones,
aurones, anthocyanins, biflavonoids, flavanols, and flavanones [134,147] (Figure 11). These flavonoids
differ slightly in their chemical structures. The flavonols possess hydroxyl side groups, which
distinguishes them from the flavones. Isoflavones differ from flavones by the location of the phenyl
group, whereas the anthocyanins differ from other flavonoids by possessing a positive charge.
Biflavonoids have a general formula of (C6-C3-C6), and aurones possess a chalcone-like group instead
of the six-membered ring typical of flavonoids. Several of these flavonoids have been identified in
cotton including flavones, and flavonols which mostly occur as glycosides located in flowers, leaves,
and seeds [19]. The most common flavonoids in cotton are glycosides of kaempferol, quercetin, and
herbacetin (Figure 12). Flavonoid glycosides are water- and ethanol-soluble, while free flavonoids are
only soluble in organic solvents [134].

o e o 1
| I

OH
(0] (0]
flavone flavanol flavonol

o
O :
o C
C

0]

aurone isoflavone flavanone
R
9
+
LT
_—
R R
R
OH O
anthocyanin biflavonoid

Figure 11. Base structures of the different classes of flavonoids.
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HO OH
OH

kaempferol 3-glycosides; quercetin 3-glycosides; disaccharides, 3-O-[beta-D-
monoglycosides, 3-O-D-glucopyranoside galactopyranosyl-(1-6)-beta-D-glucopyranoside]

Figure 12. Chemical structures of some flavonoids in cotton.

4.2.2. Phenolic Acids and Analogs

Phenolic acids and their analogs are another group of phenolics that occur in cotton.
The hydroxybenzoic acids (HDBA), gallic acid (Figure 13), p-hydroxybenzoic acid, protocatechiuc
acid, and others listed in Table 1 are common secondary metabolites in cotton, as well as being the
predominant phenolic acids in nature. The hydroxycinnamic acids (HDCA) are hydroxyl derivatives
of cinnamic acids with a basic C6-C3 structure. Some HDCA identified in cotton plants include
chlorogenic acid, ferulic acid (Figure 13), and p-coumaric acid which are precursors in the biosynthetic
pathway to other phenolic compounds such as the lignins, coumarins, and flavonoids [144].

HO

o) ? i
H
HO OH 3CO =~ OH
OH
HO OH
gallic acid benzoic acid ferulic acid

Figure 13. Chemical structures of some phenolic acids present in cotton.

Most phenolic acids have a bitter taste and presumably contribute to the bitter taste of cottonseed
products [19]. Gossypol, gossypurpurin, gossyrubilone, and other phenolic acid analogs [30,144]
presented in Figure 14 are common secondary compounds isolated from cotton seeds and it is believed
they occur in other parts of the cotton plant.

G a

OH O
gossypol gossyrubllone

Figure 14. Chemical structures of some phenolic acid analogs present in cotton.

4.2.3. Tannins and Coumarins

Tannins are a large class of poly phenolic water-soluble compounds which have molecular
weights in the range of 5004000 g/mol. Plant tannins are divided into two classes, the hydrolysable
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tannins which derive their base unit from gallic acid, and condensed tannins, which arise from
proanthocyanidins (condensed flavonols), as well as flavonoid and non-hydrolyzable tannins [144].
Condensed tannins are normally found in combination with alkaloids, polysaccharides, or proteins.
These are the class of tannins reported to occur in cotton [148] and act as pesticides, protecting the
cotton plant against predators [19]. The coumarins are another group of phenolic acids isolated from
cotton. Scopoletin, a coumarin derivative and its glycoside, scopolin presented in Figure 15 have been
identified in cotton plant tissue confirming the report that coumarins occur in the free form and as
glycosides in cotton, as well as other plants [144].

HsC-O

HO

OH O

scopoletin scopolin

Figure 15. Chemical structures of scopoletin and its glycoside scopolin.

4.3. Fatty Acids, Carbohydrates and Proteins

Fatty acids are carboxylic acids with long aliphatic chains that are synthesized in the cytosol of
plant cells from malonyl-CoA, which in turn is derived from acetyl-CoA. Palmitic acid (Figure 16)
is a base fatty acid from which other fatty acids are formed by 2-carbon increments or reduction.
The synthesis of palmitic acid (Figure 17) from the precursor malonyl-CoA follows a five step repeating
cycle of acylation, condensation, reduction, dehydration, and reduction, which is catalyzed by the fatty
acid synthase complex [149,150].

HSCo O

OH

Figure 16. Palmitic acid, a base fatty acid from which other fatty acids are formed.

(0] (0] (0] (0] (0] O

-O S—CoA -O S—ACP H3C S—ACP
NADPH + H*
NADP*
NADPH + H*
H

-~

X
H3C S—ACP H3C
phospholipids
palmitate palmitic acid ———  other fatty acids

triglycerides

Figure 17. Fatty acid biosynthetic pathway in plants.
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Saturated fatty acids which occur in the cotton plant include myristic acid (tetradecanoic acid),
melissic acid (triacontanoic acid), palmitic acid (hexadecanoic acid), stearic acid (octadecanoic acid),
and palmitoleic acid (9-hexadecanoic acid) [18,19,151]. Unsaturated fatty acids identified in cotton
include eicosadienoic acid, linoleic acid (octadecadienoic acid), linolenic (octadecatrienoic acid), and
elaidic acid (octadecenoic acid) [18,19]. Most fatty acids identified in cotton are free fatty acids (not
linked to any molecules) and play functional roles as a source of energy for plant growth [19].

Cotton, like all plants, is comprised of cellulose and hemicelluloses, proportions of which vary
between different parts of the plant. Cotton fibre itself is comprised mainly of cellulose at levels greater
than 94% by weight [25]. Raffinose is a unique minor sugar found in cotton plants predominantly in
the seed [117,118].

Alkali and water soluble proteins are also found in cotton [152], including water soluble globular
proteins vicilin and legumin (Table 1) present in the seeds of cotton [20]. Proline-rich protein H6 is
involved in the development of the cell wall structure of cotton fibre [153,154].

4.4. Variation in Cotton Chemical Composition

4.4.1. Genotypes and Varieties

Cotton plants can be categorised as glanded and glandless cotton. Glanded cotton contains
pigment glands distributed in tissues and organs of the cotton plant which are rich in gossypol
and terpenoid aldehydes [155]. Glandless cotton was developed from the wild-type glanded cotton
by McMichael [156] in order to tackle the challenge of gossypol extraction from cottonseed and
cotton seed oil [157]. Since then, different varieties of glandless and glanded cotton have been
developed, but the absence of pigment glands has made glandless cotton susceptible to infection and
pest infestation [155,158]. Glanded cotton contains more proteins, fatty acids, sugars, and terpenoids in
comparison with glandless cotton [159], with very little variation between varieties within each group
when cultivated under the same environmental conditions [151,160], although Dowd et al. [151] found
variation in fatty acid composition was influenced more by genotype than environmental factors, with
up to 62.4% of palmitoleic acid content being controlled by genotype and only 5.4% of the variation in
linoleic acid induced by environment.

4.4.2. Non-Transgenic and Cotton Transgenic Cotton Differences

Cultivation of transgenic Bt cotton has been widely practised [161,162] which has led to interest
in the possibility of induced alterations in the chemical composition, as well as nutritional value of Bt
cotton. Yan, et al. [163] reported that all chemical compounds present in non-transgenic cotton were
also present in transgenic cotton and indicated that Bt cotton contained higher concentration of some
monoterpenes e.g., alpha and beta pinene and lesser concentrations of myrcene and ocimene when
compared to non-transgenic cotton. It has been suggested that the increased production of pinene in Bt
cotton can be attributed to the activity of genes which cause the plant to repel insects/pests [164-166].
Nutritional evaluation of Bt cotton relative to non-transgenic cotton by Mohanta, et al. [167] revealed
slight variations in concentration of proteins and carbohydrates in both types of cotton. Overall,
these findings suggest transgenic cotton differs slightly from non-transgenic cotton by the general
composition of proximate constituents (moisture content, crude fat, and total ash), fibres, minerals,
and secondary metabolites.

5. Pharmacological Properties of Compounds in Cotton

Several studies have emphasized the importance of plants to the pharmaceutical and medical
industry [168-170]. Cotton is described as a medicinal plant because of the chemical compounds that
have been isolated from it [21,83]. A number of compounds found in cotton play pharmacological roles
in nature (Table 2) including anti-microbial, anti-inflammatory, cytotoxic, anti-cancer, and contraceptive
roles in both humans and animals. Monoterpenes such as myrcene, pinene, camphene, limonene, and
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sabinene isolated from cotton possess anti- microbial, anti-inflammatory, anti-cancer, anti-oxidant, and
gastro-protective properties [28,171,172].

5.1. Anti-Microbial Properties

In vitro and in vivo studies with compounds derived from cotton have found they elicit
various effects in most experimental cells and animals. Monoterpenes such as pinene present in
the leaves of cotton possess anti-microbial activity against fungi and bacteria. Concentrations as
low as 5 ng/mL and 117 pg/mL were reported to have anti-microbial activity towards bacteria
and fungi, respectively [173,174]. Only positive enantiomers of the compound induced this effect.
The phenolic acid 4-hydroxybenzoic acid which has anti-microbial properties against gram positive
and gram-negative bacteria at ICsq value of 160 ng/mL [175] is another compound present in the leaves
of cotton. The degree of anti-microbial activity of these compounds varies across micro-organisms.
This was observed in fungal toxicity assays with 4-hydroxybenzoic acid on Ganoderma boninense at
concentrations as low as 0.5-2.5 pug/mL [176].

5.2. Anti-Inflammatory and Anti-Oxidant Properties

Chemical compounds, such as trans-caryophyllene, caryophyllene oxide, a-humulene, and
f-amyrin, are compounds which exert different anti-inflammatory properties. o-Humulene and
trans-caryophyllene are reported to prevent chemical-induced paw oedema in rats with 50 mg/kg
of both compounds inducing the same anti-inflammatory effects as 0.5 mg/kg of dexamethasone
(a steroid anti-inflammatory medication) [32]. At doses of 12 mg/kg and 25 mg/kg body weight
of experimental mice, caryophyllene oxide induced anti-inflammatory and analgesic properties
almost equivalent to that of an aspirin at a dose of 100 mg/kg body weight of the experimental
animals [177]. In humans, studies using peripheral blood mononuclear cells (PMBCs), 1, 2, and
5 ug/mL of B-amyrin promoted the secretion of IL-6 cytokine [178] which is actively involved in
pro-inflammatory and anti-inflammatory immune responses. Anti-oxidant properties of 3-amyrin and
farnesene from “in vitro” studies using human blood cells showed that doses as low as 1 pug/mL [178]
and 100 pg/mL [179], respectively, induced anti-oxidant activities in a time-dependent manner.

Table 2. Biological activities of different compounds present in cotton.

Compounds Biological Activity References

Terpenes

camphene Aromatic properties, antioxidants effects [21]

limonene Flax./c.)urmg propertles: gastro—protechve effects, anti-cancer and [28,142]
anti-inflammatory activity

— An'filgesm ef.fects,' aptl—m1crob1al activity, anti-inflammatory activity, [171,172]
anti-catabolic activity

o and B-pinene Gastro-protective effects, anti- microbial and ant-inflammatory effects [28,174,180]

sabinene Anti-microbial activity, anti-oxidant activity [21]

a-thujene Pungent activity [21]

caryophyllene Ant-mﬂa.lmmatory ef.fects, ant1-rx}1crob1al activity, regulation of cellular lipid [27,32,181,182]
metabolism, flavouring properties

farnesene Anti-oxidant effects [179]

humulene Anti-inflammatory properties, aromatic properties and cytotoxic activity [29,32]

bisabolol Ar(?ma.tlc pxjopertles, afltl—{nﬂ:a.mmatory effects, anti-carcinogenic activity, [28,183,184]
anti-microbial and anti-oxidative properties

. Cytotoxic activity, phytogrowth inhibition, analgesic and

caryophyllene oxide anti-inflammatory activity [177] [26,185]

3,10-dihydroxy-1,3,5,7- . .

cadinatotraen-9-one Phytoalexin, antifungal agent [92,186]

B-sitosterol Antimicrobial activity, anti-hypercholesteraemic and [18,28]

anti-inflammatory activity

strigol Germination stimulant [96,187,188]
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Compounds Biological Activity References
igzizétﬁfssgzijfif/le ether Phytoalexin 9]
cadmapentaencibar bdeory Antfungalacivity 2
Phenols
chlorogenic acid Anti-oxidant and anti-mutagenic activity [144]
gallic acid Antioxidant activity, cytotoxic activity [189,190]
hydrogpensicadd by wed g presnaty o iy e
gossypol; (+)-form Contraceptive and hypokalemic activity [30,192,193]
?2’:;;11;')5_ }Z—F;ntahydroxyﬂavan; Cytotoxic and phytotoxic activity [194,195]
g}?é%g?ggi:?;}iiﬁ;{g:vone; Enzyme inhibitor, cytotoxic, anti-oxidant activity [196]
scopoletin Anti-spasmodic and anti-inflammatory activity [19]
Fatty acids
11,14-eicosadienoic acid Hormonal activity [18]
hexadecanoic acid Anti-microbial and anti-inflammatory activity [197]
octadecanoic acid Pharmaceutical excipient, surfactant and softening activity [198]
9-octadecenoic acid; (Z)-form Insecticidal, anti-bacterial and fungicidal activity [199-201]
tetradecanoic acid Defoaming agent, flavour adjuvant used in food processing [202]
Carbohydrates
cellulose Capsule and tablet diluent [203]
Proteins
3-phosphoglycerate phosphatase ~ Enzyme activity [119]
vicilin Anti-hypertensive activity [204]

5.3. Cytotoxic and Contraceptive Properties

Cytotoxic activities associated with compounds isolated from cotton are mostly reported in
relation to cancer cell lines. «-Bisabolol, a common compound present in cotton possesses the
ability to induce apoptosis in malignant carcinoma cell lines without affecting the viability of healthy
cells [184]. A dose of 2 uM of a-bisabolol is reported to be effective against cancer cell lines, but
an increase in dosage from 50 to 250 uM can induce cytotoxicity in normal cells. Another sesquiterpene,
caryophyllene oxide, also exhibits cytotoxic properties against cancer cell lines with a minimum dose
of 3.125 uM resulting in reduction in viabilities of the target cells, with this effect more pronounced
as the dosage increased [185]. Gossypol is a major compound present in cottonseed oil and other
parts of the cotton plant and has been found to have contraceptive properties in mammals. In human
males, a concentration of 0.3 mg/kg of body weight can induce azoospermia in a time-dependent
manner, whereas in male rats, a concentration of 30 mg/kg will induce the equivalent effect [192].
The contraceptive property of gossypol is not restricted to males alone as a study by Randel, Chase,
and Wyse [193] indicated that this compound, if administered at a dose of 40 mg/kg body weight of
female mammals, induces abnormal oestrous cycles and reduced pregnancy rates.

6. Conclusions

In this review, it has been shown that the whole cotton plant is a reservoir of a wide variety of
compounds which have a range of biological functions and exploitable applications. The distribution
of compounds in the cotton plant provides knowledge of the chemical content of cotton waste derived
from harvesting and cotton ginning operations. Potentially valuable chemical compounds with
application in food manufacturing, perfumery, and pharmaceutical industries are found in components
of these cotton processing by-products (burr, leaves, crushed seeds, sticks, roots, and flowers of the
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cotton plant). Gossypol, which is known to have contraceptive properties is not only concentrated in the
seeds of cotton, but occurs in the roots and possibly in other parts of the plant. Phenolic compounds
and terpenes present in the cotton burr stem, leaves, flowers, stalks, and roots have insecticidal,
herbicidal, and phytotoxic properties that could be exploited. This review has highlighted that
cotton waste products can be sources of biologically valuable compounds. Special consideration
should be given to CGT as a low cost resource because it is centrally stockpiled and collocated with
existing infrastructure. Therefore, investigating the occurrence of these chemical compounds in cotton
by-products can contribute to recycling and value adding of waste generated from cotton ginning.
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