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Abstract: π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered
at the molecular level in order to tune the optical, electrochemical and solid-state morphology
characteristics, and thus to address requirements for the efficient solid state device implementation.
The synthetic accessibility of monomers and polymers required for the device is getting increasing
attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining
importance, bearing clear advantages over traditional carbon-carbon forming methodologies.
Although their use in the final polymerization step is already established, there is a need for improving
synthetic accessibility to implement them also in the monomer synthesis. In this review, we discuss
recent examples highlighting this useful strategy.

Keywords: π-conjugated monomers; π-conjugated polymers; Direct Arylation; organic photovoltaics;
palladium catalysts

1. Introduction

Since the discovery of highly conducting polyacetylene by Shirakawa et al. [1] in 1977, conjugated
π-extended organic systems based on aromatic and heteroaromatic compounds have been receiving
increasing attention as promising materials for the development of the new generation of organic
electronic and optoelectronic materials [2]. The huge potential offered by organic synthesis for the
flexible construction of conjugated π-extended compounds, coupled with the unraveling of molecular
design concepts, have led to a large number of all-organic electronic and optoelectronic devices such
as field-effect transistors (FET) [3], light-emitting diodes (LED) [4], photovoltaics [5] and optical
communication devices [6].

Organic Photovoltaic devices (OPV) with bulk-heterojunction architecture (BHJ) have attracted
global attention for their unique features, which include tunable photoelectronic properties of the
active layer, low cost, light weight, flexibility, and large area production with roll-to-roll printing
techniques [7]. Recent progress in this area afforded in 2016 a record high power-conversion efficiency
(PCE) of 11.5% [8,9]. From an industrial point of view, the ultimate legitimation and large scale
commercialization OPV-BHJ devices will need PCE over the critical threshold of 10%, printability
on a large area of the mixture donor polymers/acceptor fullerenes, as well as efficient and scalable
syntheses of the donor polymers [10].

A large number of conjugated polymers alternating π-electron donor and π-electron acceptor
units (D–A polymers) have been proposed in the literature [11], most of which were obtained via
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the well-known Suzuki and Stille cross-coupling polymerizations, and make use of organoboron
and tin derivatives, respectively [12,13]. In both cases, as the polymerization mechanism is through
polycondensation, thorough purification of the monomers is mandatory in order to ensure high purity,
which in turn is essential for assuring stoichiometric equivalence of the reactive functional groups to
be able to achieve high conversion and high degrees of polymerizations. There are numerous benefits
in the use of these polymerization procedures: standardized protocols, tolerance of many functional
groups, commercial availability of common organoboron and tin derivatives. Their popularity is
therefore still high in lab-scale productions. However, in the perspective of industrialization and
large-scale production, the use of these methodologies may be limited by the use of biphasic solvents
or the need to protect sensitive groups in case of the Suzuki procedures, involving organoborons, and
by the production of toxic byproducts in the case of the Stille polymerization procedures.

In recent years, direct hetero arylation polycondensation (DHAP) of non-preactivated arenes with
aryl halides or pseudohalides has attracted much attention and worldwide interest as an alternative
to Stille and Suzuki reactions [14]. From industrial point of view, DHAP protocols bear indisputable
advantages: synthetic simplicity, requiring cheap, readily available catalysts, and atom economy, since
the preactivation of the donor component (Figure 1) using (hetero)aryl organometallic intermediates
is not required. These indisputable advantages have prompted the exploitation of DHA reactions
as protocols for polymerizations, and several successful examples have already been reported in
the literature.
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A recent, thorough analysis of the published strategies for the synthesis of OPV-BHJ conjugated
polymers has introduced the “synthetic accessibility” parameter, useful for their direct comparison,
in the light of their potential scalability and commercialization. This parameter clearly suggests
that the synthesis of the monomers themselves is a key element for the scalability of the resultant
donor polymer [15]. “Synthetic accessibility” takes into consideration: (a) the number of synthetic
steps; (b) the cost of the materials; (c) yields; (d) the number of steps of purification that require
column chromatography; (e) the inherent safety of reagents. The use of DHA reactions for the
construction of the monomer themselves could lead to important benefits on all parameters that define
“synthetic accessibility”.

In this review, we will highlight recent examples of the use of DHA reactions for the construction
of π-extended monomers, in order to establish a link between the current use of this relatively recent
synthetic methodology, and the development of scalable monomers for OPV-BHJ low-cost donor
polymers. We refer the reader to section 5 for a list of abbreviations used throughout the text. We will
not deal with the synthesis via DHA of π-extended compounds used for the fabrication of small
molecule solar cells or dye-sensitized solar cells (DSSCs). We refer the reader to a review on the
subject [16], and related recent examples [17–19].

2. Discussion

The crucial step in the synthesis of the π-extended monomers is the formation of the carbon
framework, which is generally achieved utilizing reactions carried out between an intermediate
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organometallic species and its electrophilic partners. The synthesis of the organometallic species
generally leads to an increment of the number of steps. A typical example of this strategy
is the α-lithiation of N,N-diethyl-3-carboxythiophene for the reaction with itself to give the
dithienobenzodithiophene (DTBDT) framework [20] (Scheme 1a). Cross-coupling methodologies, such
as Stille and Suzuki protocols, may use commercial available organotin and organoboron species for
the achievement of target molecules (Scheme 1b) [21,22]. The formation of inorganic or organometallic
byproducts with intrinsic toxicity, especially for the trialkyltin derivatives used in the Stille protocols,
require mandatorily the use of column chromatography as the purification method. Furthermore,
similarly to Grignard or organolithium compounds, when the halide-intermediate and organotin or
organoboron species are not commercially available, further synthetic steps are required.
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Scheme 1. Typically crucial step in the synthesis of monomers: (a) α-lithiation for the synthesis of 
DTBDT (dithienobenzodithiophene); (b) Stille and Suzuki protocols; (c) transition-metal catalyzed 
methodologies. DMF: N,N-dimethylformamide; NDT: naphto[2,1-b:3,4-b′]dithiophene. DCM: 
dichloromethane. THF: tetrahydrofuran.  

Transition-metal catalyzed methodologies that do not make use of organometallic reagents 
such as Cu-[23] or Fe-catalyzed [24] oxidative couplings have shown potential in the construction of 
the carbon frameworks of high-efficiency monomers (Scheme 1c). 

When compared to the previously mentioned examples, DHA reactions are attracting 
increasing attention as a Pd-catalyzed cross-coupling methodology since no pre-activation of the 
starting materials with organometallic reagents is required; they are regioselective, efficient and 
column chromatography purifications can be avoided. Despite the fact that Stille and Suzuki 
protocols require a lower loading of the catalyst (2–10 mol % vs. 5–20 mol % in the case of DHA), 

Scheme 1. Typically crucial step in the synthesis of monomers: (a) α-lithiation for the synthesis of
DTBDT (dithienobenzodithiophene); (b) Stille and Suzuki protocols; (c) transition-metal catalyzed
methodologies. DMF: N,N-dimethylformamide; NDT: naphto[2,1-b:3,4-b′]dithiophene. DCM:
dichloromethane. THF: tetrahydrofuran.

Transition-metal catalyzed methodologies that do not make use of organometallic reagents such
as Cu-[23] or Fe-catalyzed [24] oxidative couplings have shown potential in the construction of the
carbon frameworks of high-efficiency monomers (Scheme 1c).

When compared to the previously mentioned examples, DHA reactions are attracting increasing
attention as a Pd-catalyzed cross-coupling methodology since no pre-activation of the starting materials
with organometallic reagents is required; they are regioselective, efficient and column chromatography
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purifications can be avoided. Despite the fact that Stille and Suzuki protocols require a lower loading
of the catalyst (2–10 mol % vs. 5–20 mol % in the case of DHA), DHA reactions improve synthetic
accessibility of the final monomers reducing the number of synthetic steps, the cost of the materials
and avoiding the formation of toxic byproducts.

Direct arylation has been efficiently applied to the coupling of a number of different arene and
heteroarene systems [25]. In particular, the activation of thiophene C–H bonds is the most studied due
to importance of this heterocycle for the rational design of π-extended monomers for organic electronics.
The catalytic cycle for Pd-catalyzed direct arylation involving thiophene rings is illustrated in Figure 2
and consists of three steps: oxidative addition, C–H bond activation and reductive elimination.
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states for C–H bond activation.

The mechanism by which C–H activation occurs has been widely studied and base-assisted
concerted metalation-deprotonation (CMD) is believed to be the pathway followed by thiophene-based
compounds because of its small activation energy [26].

We will divide literature approaches into two categories: (1) intermolecular DHA and
(2) intramolecular DHA.

2.1. Intermolecular DHA

An important class of high performance dyes, 2,1,3-benzothiadiazole (BT) and its derivatives,
have in recent years been widely explored for optoelectronic applications because of their unique
electrical and optical properties, as well as their exceptional stability. BT derivatives are generally
synthesized through Stille or Suzuki coupling reactions using different organometallic reagent and
4,7-dibromo-2,1.3-benzothiadiazole (DBrBT) 2. It is not thus surprising that much of the literature on
DHA reactions is focused on the synthesis of BT derivatives.

M. Horie et al. [27] reported an interesting DHA reaction between DBrBT 2 (Scheme 2) and
alkylated 4H-cyclopenta[1,2-b:5,4-b′]dithiophene (CPDT) 1 for the construction of a monomeric unit
to be incorporated in several polymers with high hole mobility and PCE around 5%–6% such as
PCPDTBT or PBDTCPDTBT [28,29].

The synthesis of oligomeric monomer 3, shown in Scheme 2, was achieved with a 40% yield
using Pd(OAc)2 as catalyst (25 mol %) in presence of K2CO3 as base, PivOH as additive and
N,N-dimethylformamide (DMF). The same author reported the synthesis of 3 via Suzuki coupling (60%
yield) using Pd(PPh3)4 as catalyst system (30 mol %), commercial 2,1,3-Benzothiadiazole-4,7-bis(pinacol
boronate ester) 5 and mono-brominated CPDT 6, which had to be prepared via bromination reaction
with N-bromosuccinimide (NBS) carried out on compound 1. The synthesis of 3 could be achieved



Molecules 2017, 22, 21 5 of 15

with Stille protocol [30] using 5 mol % of Pd(PPh3)4 but, in analogy with the Suzuki protocol, the
synthesis of starting material 7 was needed. The procedure in Scheme 2 highlights a greater synthetic
sustainability of DHA compared to Suzuki and Stille reactions in terms of reduction of synthetic steps,
reaction time, E-factor (with reduction of wastes) and cost of reactions in spite of a yield decrease.
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Scheme 2. DHA reaction between 4H-cyclopenta[1,2-b:5,4-b′]dithiophene (CPDT) and
2,1,3-benzothiadiazole (BT) compounds and their selected polymers. DMAc: N,N-dimethylacetamide.

Wang et al. [31] reported the synthesis of a series of 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole
(DTBT) monomers 11 (DTBT), 12 (4,7-bis(4-hexylthiophen-2-yl)-2,1,3-benzothiadiazole, DHTBT)
and 13 (4,7-bis(3,4-ethylenedioxythiophene-2-yl)-2,1,3-benzothiadiazole, DEDOTBT) with a
Pd2(dba)3-catalyzed DHA protocol using commercially-available 2, 8, 9 and 10 (Scheme 3). DTBTs are
one of the most important building blocks in conjugated polymers for high-performance optoelectronic
devices; the highest PCE achieved to date in a OPV-BHJ cell (11.5%) was obtained from a polymer
(PBTff4T-2OD in Scheme 3) having DTBT unit as the acceptor of the D-A scaffold [8].

The DHA reaction showed lower efficiencies (compounds 11, 12 and 13 were obtained with yields
of 67%, 76% and 43%, respectively) when compared with the efficiencies of Stille and Suzuki protocols
(yield 80%–90%) [32,33], due to the inevitable formation of byproducts.
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Scheme 3. Synthesis of 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (DTBT) and its high-efficiency
polymerspoly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-2,2′;5′,2′′;5′′,
2′′′-quaterthiophen-5,5′′′-diyl)] (PffBT4T-2OD) and poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-
di(2-octyldodecyl)-3′3′′-difluoro-2,2′;5′,2′′;5′′,2′′′-quaterthiophen-5,5′′′-diyl)] (PDTff4T-2OD). ODMB:
o-dimethoxybenzene.

The authors reported, even in optimized conditions, the formation of insoluble and partially
insoluble purple byproducts (oligomers and polymers) when 2 was reacted with 8 and 10.
The formation of these higher molecular weight byproducts was explained with a greater reaction rate
of the product 11 and intermediate TBrBT (4-thiophene-7-bromo-2,1.3-benzothiadiazole, Figure 3a,
blue bonds) towards aryl bromide species with respect to the reaction rate involving bare thiophene 8.
Increasing the Brønsted acidity of the remaining α–H on the thiophene ring of 11 and intermediate
TBrBT compared to bare thiophene 8 (Figure 3a, red bonds) is likely the cause of the formation
of oligomers and polymers. The reaction between 2 with symmetric 10 to form 13 was also
affected by formation of a high molecular weight byproducts in analogy to the precedent case,
while the reaction of 2 with asymmetric 9 proceeded to form 12 in good yields, with a suppressed
formation of byproducts (Figure 3b). The authors ascribe this to the different reactivity of the 2- and
5-position C–H bonds on 9. In fact, the C5–H bond on 9 (Figure 3b, blue bonds) is more reactive
toward DHA reactions than the C2–H bond on 9 and the C5–H bond on HTBrBT intermediate
(4-(3-hexylthiophene)-7-bromo-2,1.3-benzothiadiazole, Figure 3b, red bonds).
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These examples showed an important limitation of the use of intermolecular DHA protocols
when symmetric compounds (such as 1, 8 and 10) are used. In such cases, both α–H position on
thiophene rings are equally reactive toward DHA reaction, and intermediates with a more reactive
α–H than its precursor are formed, with the consequent formation of oligomeric byproducts. When
the α–H are unsymmetrically reactive towards the DHA reaction, an intermediate with a less reactive
α–H than its precursor may be formed, with improvement in the yield of reaction. In general, the
intermolecular DHA reaction works well if the intermediate species have a less reactive α–H than
its precursor, otherwise the intermolecular DHA reaction will show a decrement of yield due to the
formation of oligomers.

These considerations have further confirmation in the work of Leclerc et al. [34] on intermolecular
DHA between 2 and commercial thiazole 14 to give monomers 15 and 16, respectively, with the
thiazole unit linked with its C2 position and C5 position with high regioselectivity (Scheme 4a).
The thiazole unit has non-equivalent C2–H and C5–H positions that can be each activated towards
DHA using different reaction conditions. The asymmetric reactivity of the two α–H positions can
promote the formation, using the conditions for the synthesis of 15 but using only one equivalent of
thiazole 14, of compound 17, possessing a less reactive α–H than precursor 14 toward DHA reaction
conditions and avoiding oligomerization. The authors obtained the highly regioselective C2–C2
product 15 (15:16 ratio 99:1, 79% yield) using an apolar solvent (toluene) and Herrmann’s catalyst
with the less bulky added ligand tris(o-methoxyphenyl)phosphine, whereas the use a polar solvent
(N,N-dimethylacetamide, DMAc) and Pd-Herrmann catalyst with the bulkier ligand JohnPhos led to
highly regioselective C5–C5 products 16 (15:16 ratio 1:99, 75% yield). In both cases the authors did not
observe any oligomerization, indicating good regiocontrol in the DHA reaction. The author reported
the synthesis of C2–C5 monomer 18 starting from isolated compound 17.
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You et al. [35] obtained monomer 20 (62% yield) and 21 (77% yield), with electron-poor arene
units (2,1,3-benzothiadiazole, BT unit and 1,2,3-benzotriazole, BTZ unit), using Pd(OH)2 as the catalyst
(10 mol %) in DMAc, while for monomer 22 (72% yield), which present an electron-rich F unit,
Pd(OPiv)2 (10 mol %) was used as the catalyst in DMF (Scheme 4b).
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2.2. Intramolecular DHA

Intramolecular DHA reactions have been used for the construction of novel monomer frameworks
due to their reliability and the possibility of standardization of the process. The protocols developed
for these reactions are generally conducted without the use of expensive phosphines and using
Pd(OAc)2 as the catalyst, since it has stable catalytic working conditions even without the use of an
inert atmosphere. The presence of the nucleophilic and electrophilic moieties in the same molecule,
placed at the right distance and with the right orientation, is essential for an efficient DHA reaction
but introduces the problem of the synthesis of the precursor. For this reason, the DHA intramolecular
methodology is advantageous only in cases in which the precursor is obtained with simple reactions
and in a few steps.

Fagnou et al. [36] reported an interesting carbazole synthesis using a mild and scalable
intramolecular oxidative DHA reaction shown in Scheme 5. Carbazole monomers 25 have received
much interest in the optoelectronic field due to highest occupied molecular orbital (HOMO) energy
levels very close to the ideal for OPV applications. Carbazole scaffold 24 was obtained in 95% yield
and without formation of byproducts, starting from diphenylamine 23 in presence of Pd(OAc)2 as the
catalyst (3 mol %), K2CO3 as base (10 mol %) and PivOH as co-solvent to form 24 in air (O2 acts as the
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oxidant). The synthetic route developed provides the use of precursor 23, scalable high efficiency, mild
reaction conditions, and it avoids flash-chromatography purification.
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Scheme 5. Intramolecular DHA reaction for the synthesis of carbazole monomers.

Yu et al. [37] reported an interesting synthesis of 2-pyridone dithiophene (PDT) monomers
using Pd(OAc)2-catalyzed intramolecular DHA reaction as the key step (Scheme 6a). The authors
achieved the PDT synthesis in five steps via alkylation of Boc-protected 3-aminothiophene 26 (89%
yield) followed by deprotection of the resulting alkylated amine 27 with trifluoroacetic acid (TFA).
The deprotected amine 28 was directly reacted with thiophene 29 to afford precyclized intermediate 30
in 58% yield after three steps.
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(TPTI) monomers. TFA: trifluoroacetic acid. (a) intramolecular DHA reaction for PDT monomer;
(b) intramolecular DHA reaction for TPTI monomer.
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This compound was finally cyclized through an intramolecular DHA, that makes use of Pd(OAc)2

(10 mol %) as a catalyst and pivalic acid (30 mol %) as an additive, to give the PDT framework in
excellent yields (90%, compound 31). It was then brominated, using NBS, to obtain monomer 32.

The same authors reported the synthesis of thieno pyrido thieno isoquinoline dione (TPTI)
framework using a similar synthetic route (Scheme 6b) [38]. In this case the precyclized precursor
34 was obtained in a 52% yield by acylation reaction between 28 and compound 33, while the
intramolecular DHA of compound 34 was performed with Pd(PPh3)4 as a catalyst (4 mol %), and
KOAc as a base in DMAc under diluted conditions (2 mM) to give the compound 35 in excellent yields
(87%), which was then efficiently stannylated to obtain the polymerizable monomer. An easy and
efficient synthesis of precyclized intermediate is fundamental to obtaining scalable monomers via
DHA reactions. The synthetic design of monomers proposed by Yu take account of this aspect, in fact
the synthesis of compounds 27 (81% yield), 28, 30 (65% yield) and 34 (58% yield) make use of simple,
cheap, scalable reactions.

An easier synthetic design was proposed by Kim et al. [39] in the synthetic route shown in
Scheme 7 for the synthesis of the novel class of acceptor monomers thiophene-phenylene-thiophene
fused bilactam (TPTBL) 40.
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Scheme 7. Synthesis of thiophene-phenylene-thiophene fused bilactam (TPTBL) monomer.

Starting from p-phenylenediamine 36 with 2-bromothiophene acid chloride 29 in NMP at
temperature of −5 ◦C, bisamide 37 was obtained in 87% yield. The N-alkylation of bisamide 37 (70%
yield) in the presence of NaH and alkyl iodide in DMF, followed by ring-closing Pd(OAc)2-catalyzed
DHA reaction provides the desired thiophene-phenylene-thiophene fused bislactams TPTBL 39 in
good yields (69%). Bromination reaction lead quantitatively to the TPTBL-polymerizable monomer 40.
The author incorporated intramolecular DHA reactions in a synthetic rational design that makes use
of cheap reagents, reactions achieved in good or high yields, and a minimal number of synthetic steps.

We have reported [40] the synthesis of conjugated π-extended dyes having push-pull architecture
in which isatin, a naturally-occurring dye, is fused with a thiophene ring in four steps. The modification
of natural pigments and dyes for the construction of π-conjugated compounds for electronic
applications is increasingly popular, since natural dyes are often inexpensive and with optimal optical
properties [41]. The synthesis of dyes 51 and 52 illustrated in Scheme 8, as in previous cases, adopts an
intramolecular direct hetero-arylation (DHA) cyclization as the key step, in order to ensure potential
for industrial scalability. NMR and X-ray studies demonstrate the crosstalk occurring between the
fused, coplanar and conjugated moieties, making these novel dyes with a donor-acceptor character.
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Scheme 8. Synthesis of isatin-based dyes with push-pull architecture. PTSA: p-toluenesulfonic acid.

N-alkylation of bromoisatin derivatives 41 and 42 with 3-bromothiophene, conducted with NaH
in DMF, followed by protection of C3 keto-carbonyl group with ethylene glycol in toluene on 43 and
44, has led to spiro-dioxolane precyclized compounds 45 and 46 in high yields. Ring closing DHA
reaction was carried out in the presence of Pd(OAc)2 as catalyst, an excess of potassium acetate as a
base and in moderate dilution conditions to give spiro-dioxolane cyclized compounds 49 and 50 which
were deprotected in quantitative yields in acidic conditions to obtain final dyes 51 and 52.

A series of fully π-conjugated fused imidazole monomers bearing octyl chain or
siloxane-terminated decyl chains as the solubilizing groups at the 2-position of the imidazole core
were synthesized very recently by Masu et al. [42] utilizing the microwave-assisted intramolecular
DHA (Scheme 9a). Few π-conjugated polymers composed of imidazole units in the main chain have
been reported in literature to date [43–45]. The conjugated imidazole-based backbone proposed
from Masu is particularly interesting because both the reactivity and basicity of imidazole unit are
utilized to control the electronic and ordering structures of the polymers. In fact, the reactivity of the
C5-H imidazole bond to give regioselective DHA with aryl halides or pseudohalides was used for
construction of fully π-conjugated monomers 59a–b, 60a–b and 64a–b; while the intrinsic basicity of
the nitrogen atoms was used for post-protonation of the polymers, changing the pH of the solution,
to modify the electronic, optical and ordering structure properties of the polymers.

Monomers 59a–b and 60a–b were synthesized according to synthetic route of four steps illustrated
in Scheme 9b. N-alkylation of 2-alkyl-1H-imidazole with 1,4-dibromo-2,5-bis(bromomethyl)benzene
53 and 2,6-dibromo-3,7-bis(bromomethyl)naphthalene 54 with NaH in dry tetrahydrofuran (THF) at
room temperature occurred smoothly without the need for chromatographic purifications, and pure
precyclized compounds 55 and 56 were obtained in excellent yields. Intramolecular DHA reaction
was carried out in the presence of Pd(OAc)2 and PPh3 as the catalyst system, an excess of potassium
carbonate as base and DMSO at a temperature of 180 ◦C in MW-assisted conditions for 1.5 h to give
imidazole fused compounds 57 and 58 in moderate yields. They were then brominated with NBS in
CH3CN to obtain final monomers 59 and 60. Bent monomer 64 was obtained following an analogous
synthetic route, illustrated in Scheme 9c, starting from 1,5-dibromo-2,4-bis(bromomethyl)benzene 61.
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owing to the atom economy concept lying behind it. The presented examples augur well for the full 
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microwave-assisted intramolecular DHA (b) intramolecular DHA for the synthesis of monomers 59
and 60 (c) intramolecular DHA for the synthesis of bent monomer 64. NBS: N-bromosuccinimide.

3. Conclusions

We have highlighted examples of the application of DHA methodologies as the key steps in the
synthesis of π-extended monomers, suitable for polymerization to yield macromolecular scaffolds to
be used in the field of OPV BHJ devices. When applicable, the DHA synthetic methodology bears
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substantial advantages over traditional methodologies, even if the yields are marginally reduced,
owing to the atom economy concept lying behind it. The presented examples augur well for the full
development of the field of OPV BHJ, for which the concepts of synthetic accessibility and scalability,
in the context of bringing the technology to the market, will be more and more in demand.
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Abbreviations

BT 2,1,3-Benzothiadiazole
BTI dithieno[3,2-c:2′,3′-e]azepine-4,6-dione
CPDT 4H-cyclopenta[1,2-b:5,4-b′]dithiophene
Cz Carbazole
DBrBT 4,7-dibromo-2,1.3-benzothiadiazole
DEDOTBT 4,7-bis(3,4-ethylenedioxythiophene-2-yl)-2,1,3-benzothiadiazole
DHTBT 4,7-bis(4-hexylthiophen-2-yl)-2,1,3-benzothiadiazole
DMAc N,N-dimethylacetamide
DMF N,N-dimethylformamide
DTBDT Dithienobenzodithiophene
DTBT 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole
EDOT 3,4-ethylenedioxythiophene
F Fluorene
HOMO Highest occupied molecular orbital
HT 3-hexylthiophene
JHONPHOS (2-Biphenyl)di-tert-butylphosphine
LUMO Lowest unoccupied molecular orbital
NDT Naphto[2,1-b:3,4-b′]dithiophene
NMP N-methyl-2-pyrrolidone
ODMB o-dimethylbenzene
P3HT Poly(3-hexylthiophene)
PC61BM [6,6]-phenyl-C61-butyric acid methyl esther
PC71BM phenyl-[C71]-butyric acid methyl esther
PCE Power conversion efficiency
PDT 2-pyridone dithiophene
PivOH 2,2-dimethylpropionic acid (Pivalic acid)
PSC Polymer Solar Cell
T Thiophene
TDPT Thieno[2′,3′,:5,6]pyrido[3,4-g]thieno[2,2-c]isoquinoline-5,11-dione
TFA Trifluoroacetic acid
TPTBL Thiophene-phenylene-thiophene fused bilactam
TTe Thieno[3,4-b]thiophene
Tz Thiazole
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