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Abstract: A sensitive and reliable method was developed and validated for the determination
of unsaturated bile alcohols in sea lamprey tissues using liquid-liquid extraction and ultra-high
performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The liver, kidney,
and intestine samples were extracted with acetonitrile and defatted by n-hexane. Gradient UHPLC
separation was performed using an Acquity BEH C18 column with a mobile phase of water and
methanol containing 20 mM triethylamine. Multiple reaction monitoring modes of precursor-product
ion transitions for each analyte was used. This method displayed good linearity, with correlation
coefficients greater than 0.99, and was validated. Precision and accuracy (RSD %) were in the range
of 0.31%–5.28%, while mean recoveries were between 84.3%–96.3%. With this technique, sea lamprey
tissue samples were analyzed for unsaturated bile alcohol analytes. This method is practical and
particularly suitable for widespread putative pheromone residue analysis.
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1. Introduction

Sulfated bile salts function as chemical cues that mediate reproduction in sea lamprey,
Petromyzon marinus [1,2]. Compound 7α, 12α, 24-trihydroxy-5α-cholan-3-one-24-sulfate (3kPZS) is
the most abundant bile salt released by sexually-mature male sea lampreys that attracts ovulated
females [1–4]. Analysis of water conditioned with mature male sea lampreys indicated the presence
of four additional oxidized, unsaturated compounds [5]. Four unsaturated sulfated bile alcohols
(BAs) have been tentatively identified as 7,24-dihydroxy-3,12-diketo-1,4-cholene-24-sulfate (1),
7,24-dihydroxy-3,12-diketo-4-cholene-24-sulfate (2), 7,12,24-trihydroxy-3-keto-4-cholene-24-sulfate (3),
and 7,12,24-trihydroxy-3-keto-1-cholene-24-sulfate (4) (Figure 1) [5]. Among these compounds,
7,12,24-trihydroxy-3-keto-1-cholene-24-sulfate (4) has been demonstrated as a pheromone that attracts
ovulated female sea lampreys to spawning nests [5]. To further investigate the physiological mechanism
and potential pheromonal functions of these analogs in behavioral experiments, a simple, specific,
rapid, and sensitive quantitative method is needed.

The analytical methods for measuring sulfated bile salts are of broad interest for chemists [6–11].
A variety of quantitative methods have been reported for sulfated bile acid/salt analysis in biological
fluids, such as urine [6,8–11], bile [10], plasma [10], and stool [7], using gas chromatography (GC) or
HPLC in combination with MS. Of these analytical methods, HPLC-MS is more technically advanced.
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It allows for bile acid profiling without tedious sample purification. Previously reported methods
focused on the analysis of 3-sulfated bile salts, which are predominant in humans as detoxification
metabolites [12,13]. The lack of direct methods for simultaneous and comprehensive quantification of
specific bile salts with C-24 sulfation had led us to develop a LC-MS/MS method to determine and
quantify 3kPZS [3], PZS [4], and DkPES [14] to facilitate sea lamprey research. In further investigation
of the physiological function of BAs, numerous oxidative and unsaturated BAs have been identified
and examined. However, quantitative analytical measurements for highly oxidative and unsaturated
BAs are rare. Here we extend our efforts to quantify the oxidized, unsaturated BAs (Figure 1) using
UHPLC-MS/MS in sea lamprey tissues. This method was validated and applied to routine analysis in
sea lamprey biological research.
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triethylamine (TEA) in water (solvent A) and 20 mM TEA in methanol (solvent B). The gradient with 
TEA has been widely used for the quantification of sulfated BAs in biological fluids, such as plasma, 
and other tissues [3,4]. The primary impediment for baseline separation and well-shaped peaks of 
bile alcohol/acid was due to the hydroxyl groups on the steroid backbone and the anionic groups 
located at the end of the side chain. Previous studies used ammonium acetate and formic acid as 
additives to the mobile phase to prevent the tailing and distortion of peaks in the chromatogram [18–21]. 
In this study, four targeted sulfated bile acids displayed sufficient resolution with TEA buffer (20 mM) in 
mobile phase, which had also been applied in our previous report [3]. 

Bile acid compounds are commonly detected using ESI in the negative-ion mode because of the 
carboxylate group in their molecular structure [21–23]. ESI-MS/MS using low-energy CID has been 
used in the quantification of BAs in biological fluids [24], human serum [24–26], human urine [27], 

OSO3NH4

OH

H H

O

H

O

OSO3NH4

OH

H H

O

H

O

OSO3NH4

OH

H H

OH

H

O

OSO3NH4

OH

H H

OH

H

O

1 2

3 4

Figure 1. Structures of sulfated BAs analyzed in this study. Compound 1, 12-keto-1,4-diene 3kPZS;
compound 2, 12-keto-4-ene 3kPZS; compound 3, 4-ene 3kPZS, and compound 4, 1-ene 3kPZS.

2. Results and Discussion

2.1. Method Development

In order to achieve a good chromatographic separation of all four sulfated BAs analytes with
short runtime and low backpressure, three analytical columns were compared, namely, Acquity™
UPLC BEH (Waters Corporation, Milford, MA, USA) C18 column (50 mm × 2.1 mm, 1.7 µm particle
size), BEH C18 column C18 (100 mm × 2.1 mm, 1.7 µm particle size), and HSS T3 C18 column,
(15 mm × 2.1 mm, 1.8 µm particle size). As expected, the BEH C18 column showed improved peak
resolution since it incorporates trifunctional ligand binding chemistries on 1.7 µm BEH particles and
utilizes new endcapping processes resulting in increased stability over a wide pH range [15], lower
resistance to mass transfer, and ultimately higher resolution [16,17]. The separation performance on
BEH (100 mm and 50 mm) columns have been evaluated. All analytes were resolved most rapidly
using a 50 mm column (data not shown). Therefore, the BEH C18 column (50 mm × 2.1 mm, 1.7 µm
particle size) was selected for use in the following work.

The separation of sulfated BAs (1–4) were achieved by a gradient consisting of 20 mM
triethylamine (TEA) in water (solvent A) and 20 mM TEA in methanol (solvent B). The gradient
with TEA has been widely used for the quantification of sulfated BAs in biological fluids, such as
plasma, and other tissues [3,4]. The primary impediment for baseline separation and well-shaped
peaks of bile alcohol/acid was due to the hydroxyl groups on the steroid backbone and the anionic
groups located at the end of the side chain. Previous studies used ammonium acetate and formic acid as
additives to the mobile phase to prevent the tailing and distortion of peaks in the chromatogram [18–21].
In this study, four targeted sulfated bile acids displayed sufficient resolution with TEA buffer (20 mM)
in mobile phase, which had also been applied in our previous report [3].

Bile acid compounds are commonly detected using ESI in the negative-ion mode because of
the carboxylate group in their molecular structure [21–23]. ESI-MS/MS using low-energy CID
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has been used in the quantification of BAs in biological fluids [24], human serum [24–26], human
urine [27], and rat serum [28]. Multiple reaction monitoring (MRM) mode with specific detection of
precursor/product ion pairs pinpoints and accurately measures each analyte (Table 1). In addition,
ESI-MS/MS on negative-ion mode at low collision-energy performed on sulfated bile alcohol results
in common fragment ion at m/z 96 (HSO4

−), which was usually used for determination of sulfated
BAs [24,26]. Therefore, it was critical to obtain sufficient separation of the four target analytes
through chromatography since they would generate similar fragmentation (Table 1) and, consequently,
nondistinguishable in mass spectrometry even with MRM mode. Separation of the four sulfated bile
alcohol standards was completed in a single run of 7 min (Figure 2) including column equilibration.
The gradient was shown in the Experimental section. The 7 min run time including column equilibrium
is an improvement for bio-sample analysis compared to 12 min in the bile acid quantification method
developed for lake char feces [19].
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Figure 2. Chromatograms of (A) [2H5]-3kPZS, with transition 476 > 97; (B) 1-ene 3kPZS with transition
469 > 97; (C) 4-ene 3kPZS with transition 469 > 97; (D) 12-keto-4-ene 3kPZS with transition 467 > 97;
(E) 12-keto-1,4-diene 3kPZS with transition 465 > 97; and (F) four targeted sulfated BAs; by LC-MS/MS.
Analyte standards: 100 ng/mL each, internal standard 10 ng/mL.

Table 1. Optimized UHPLC-MS/MS parameters for each analyte.

Compounds [M − H]− m/z MRM m/z CV (V) CE (eV) RT (min) LR R2 LOD (ng/g) LOQ (ng/g)

1 465.2 465.2 > 96.7 49 40 0.89 0.1–1000 0.9918 0.10 0.33
2 467.3 467.3 > 96.7 23 40 1.08 0.1–1000 0.9924 0.10 0.33
3 469.3 469.3 > 96.7 36 40 2.90 0.2–1000 0.9973 0.20 0.66
4 469.3 469.3 > 96.7 23 40 3.16 0.2–1000 0.9952 0.20 0.66

[2H5]-3kPZS 476.3 476.3 > 96.7 100 23 3.05 0.5–1000 0.9986 0.30 0.99

m/z corresponds to [M − H]−, MRM, multiple reaction monitoring; CV, cone voltage; CE, collision energy;
RT, retention time. RTs were derived from Figure 2. LR, linear range; R2, correlation coefficient; LOD, limit of
detection; LOQ, limit of quantitation.
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2.2. Calibration and Method Validation

The calibration curves were linear in the range from 0.1 to 1000 ng/mL for 12-keto-1,4-diene 3kPZS
and 12-keto-4-ene 3kPZS, and 0.2–1000 ng/mL for 4-ene 3kPZS and 1-ene 3kPZS. The correlation
coefficients for the standard calibration curves for these four analytes were higher than 0.992, indicating
method linearity (Table 1).

To ensure method reliability and reproducibility for BA analysis, intra- and inter-day accuracy
and precision were determined using three QC concentrations distributed throughout the calibration
range for each analyte in tissue homogenate matrix. Intra- and inter-day precision and accuracy data
are summarized in Table 2. For precision of BAs, intra-day variation (n = 6) ranged from 0.31% to
4.03%, and inter-day from 1.52% to 5.28%. Intra-day accuracy (n = 6) ranged from 95.5% to 99.3%,
and inter-day from 95.7% to 101.1%. The precision and accuracy for all analytes are greater than
85% and, therefore, are within the interval set by the FDA concerning the validation of bioanalytical
methods. The limit of detection for each compound was determined at the lowest concentration
showing a signal to noise ratio (S/N) higher or equal to three and ranged from 0.1 to 0.2 ng/mL
(Table 1). Furthermore, the stability of stock solutions under storage conditions and the stability of
extracted biological samples in the autosampler were tested. These analytes were stable for at least
14 days in –20 ◦C freezer, and 96 hrs in 4 ◦C autosampler (data not shown).

Table 2. Intra-day and inter-day accuracy and precision of this LC/MS/MS method.

Analyte NC (ng/g)

Intra-Day (n = 6) Inter-Day (n = 6)

MC (Mean ±
SD, ng/mL)

Accuracy
(DEV %)

Precision
(RSD %)

MC (Mean ±
SD, ng/mL)

Accuracy
(DEV %)

Precision
(RSD %)

1
2.5 2.4 ± 0.03 96.9 1.24 2.4 ± 0.11 95.2 4.80
25 24.1 ± 0.50 96.5 2.07 24.1 ± 1.22 96.4 5.05
250 248.2 ± 1.18 99.3 0.48 245.8 ± 5.84 98.3 2.38

2
2.5 2.4 ± 0.03 95.5 1.22 2.5 ± 0.10 101.1 4.29
25 24.1 ± 0.72 96.3 2.99 25.0 ± 1.03 100.1 4.12
250 243.6 ± 5.10 97.4 2.09 247.3 ± 3.77 98.9 1.52

3
2.5 2.4 ± 0.05 97.1 1.96 2.4 ± 0.04 95.7 1.81
25 24.1 ± 0.89 96.4 3.70 25.2 ± 1.06 100.8 4.21
250 248.3 ± 2.03 99.3 0.82 247.3 ± 4.25 98.9 1.72

4
2.5 2.41 ± 0.04 96.3 1.67 2.4 ± 0.04 97.03 1.87
25 24.6 ± 0.99 98.3 4.03 25.2 ± 0.93 100.6 3.69
250 247.5 ± 0.76 99.0 0.31 250.3 ± 13.21 100.1 5.28

Note: NC, nominal concentration; MC, measured concentration; SD, standard deviation, DEV, deviation; RSD,
relative standard deviation in percentage.

LOQ was defined as the lowest concentration showing a signal with S/N ≥ 10. This concentration
also satisfied the following conditions: a coefficient of variation below 20% and accuracy between
80% and 120% (n = 6). For these analytes, LOQ ranged from 0.33 ng/mL to 0.66 ng/mL. Compared to
similar sulfated bile acid quantitative analysis, this method exhibits lower LOD and LOQ, and higher
accuracy and precision [29,30].

2.3. Matrix Effects

The results of the quantitative matrix effect tests (n = 5) are shown in Table 3. Matrix effect is the
only factor that was taken into account since the analytes were added to the matrix after extraction
and compared to the same amount of analytes in pure solvents. The matrix effects ranged from
85.9% ± 1.6% to 99.3% ± 3.2% (Table 3) in liver, from 85.6% ± 1.9% to 98.6% ± 2.3% in kidney, and
from 85.9% ± 1.8% to 95.6% ± 1.9% in intestine at concentrations of 10, 100, and 500 ng/g, whereas the
matrix effect for IS (100 ng/mL) was 90.5% ± 2.2%. Therefore, negligible matrix effects were observed.
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Table 3. Mean extraction recoveries and matrix effect of the analytes in liver, kidney, and intestine
extract (n = 5). Percentage SDs are in parentheses.

Matrix Analyte Mean Extraction Recovery (%) Matrix Effect (%)

Low Medium High Low Medium High

Liver

1 96.3 (2.3) 95.6 (3.1) 92.9 (1.5) 97.3 (4.1) 99.3 (3.2) 96.3 (2.9)
2 92.3 (1.8) 95.2 (2.0) 91.3 (3.2) 90.3 (3.2) 92.3 (2.9) 92.6 (2.1)
3 87.9 (3.1) 89.6 (2.7) 88.6 (3.4) 89.6 (3.5) 87.9 (3.2) 88.6 (2.8)
4 92.3 (2.6) 86.3 (2.5) 84.3 (2.7) 85.9 (1.6) 95.6 (2.7) 89.6 (2.2)

Kidney

1 96.3 (2.5) 95.8 (1.4) 95.6 (3.2) 98.6 (2.3) 96.3 (4.2) 95.8 (4.9)
2 95.3 (2.4) 95.6 (2.5) 94.3 (4.5) 88.9 (3.1) 87.6 (2.2) 89.6 (1.8)
3 86.9 (3.0) 89.6 (1.9) 92.3 (3.1) 87.9 (3.8) 86.9 (2.7) 89.6 (3.6)
4 91.2 (2.0) 89.6 (1.7) 93.2 (2.9) 92.3 (1.1) 85.6 (1.9) 86.9 (1.7)

Intestine

1 96.3 (3.3) 95.3 (2.7) 94.2 (2.5) 95.3 (3.6) 94.3 (2.8) 95.6 (1.9)
2 94.2 (2.9) 95.3 (3.1) 92.3 (2.9) 93.6 (4.0) 92.7 (3.8) 93.5 (2.5)
3 86.3 (3.2) 87.5 (4.1) 89.6 (1.9) 87.9 (3.5) 85.9 (1.8) 89.6 (1.7)
4 92.5 (3.4) 95.6 (2.9) 91.5 (3.2) 95.2 (1.3) 93.2 (2.7) 94.3 (1.6)

2.4. Quantitative Analysis of Sulfated BAs in Tissues

This validated method was applied to measure analytes in tissue samples from the sea lamprey
(Figure 3). The concentrations of each compound in sea lamprey liver, kidney, and intestine are
summarized in Table 4. The concentrations of 12-keto-1,4-diene 3kPZS and 12-keto-4-ene 3kPZS in
liver, kidney, and intestine were undetectable by the developed method. The analytes 4-ene 3kPZS and
1-ene 3kPZS showed trace amounts in liver and intestine extracts. The concentrations of the analytes
4-ene 3kPZS and 1-ene 3kPZS were 0.81 and 0.92 ng/g in liver extract, 0.85 and 0.74 ng/g in intestine
extract, respectively. These results suggest that 12-keto-1,4-diene 3kPZS, 12-keto-4-ene 3kPZS, 4-ene
3kPZS, and 1-ene 3kPZS are minute metabolites in the liver and intestine of sea lamprey.
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Figure 3. Representative chromatograms of a sample extracted from kidney (A); liver (B); and
intestine (C).

Table 4. Concentration of each analyte in sea lamprey liver, kidney, and intestine.

Sample Concentration (ng/g)

1 2 3 4

Kidney N.D N.D N.D N.D
Intestine N.D N.D 0.85 0.74

Liver extract N.D N.D 0.81 0.92
N.D not detected.
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3. Experimental Section

3.1. Chemicals and Reagents

Methanol (Sigma-Aldrich, St. Louis, MO, USA), hexane (Sigma-Aldrich), ethanol (Sigma-Aldrich),
and triethylamine (TEA, Sigma-Aldrich) were HPLC grade. De-ionized water was prepared using a
Milli-Q system (Millipore, Billerica, MA, USA).

7,24-dihydroxy-3,12-diketo-1,4-choladiene-24-sulfate (12-keto-1,4-diene 3kPZS), 7,24-dihydroxy-
3,12-diketo-4-cholene-24-sulfate (12-keto-4-ene 3kPZS), 7,12,24-trihydroxy-3-keto-4-cholene-24-sulfate
(4-ene 3kPZS), 7,12,24-trihydroxy-3-keto-1-cholene-24-sulfate (1-ene 3kPZS), and deuterated 3-keto-
petromyzonol sulfate ([2H5]-3kPZS) were custom-synthesized by Bridge Organics Co. (Vicksburg, MI,
USA; Figure 1). The reported purities were above 95%.

3.2. Preparation of Calibration Standards, Quality Control, and Internal Standard Solutions

The four sulfated bile alcohol reference standards (Figure 1) were separately dissolved in methanol
as individual stock solutions (1 mg/mL). Stock solutions were combined and then serially diluted
to produce standard solutions for a calibration curve (0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0,
100.0, 200.0, 500.0, 1000.0, 2000.0, 5000.0 ng/mL for each compound). Quality control (QC) samples
were prepared at three concentration levels as higher, middle, and lower limit of quantification, and
abbreviated as HQC, MQC, and LQC, respectively, based on the dynamic ranges of the analytes
(Table 1). [2H5]-3kPZS was used as the internal standard (IS; Bridge Organics Co. Vicksburg, MI, USA),
and dissolved in methanol to produce a 10 ng/mL IS solution. All stock solutions were sealed and
stored at −20 ◦C until use.

3.3. Quantitative Conditions by UHPLC-MS/MS

The LC-MS/MS system consisted of a Waters ACQUITY H-Class UPLC™ system connected to a
Waters Xevo TQ-S triple quadrupole mass spectrometer (Waters Corp., Milford, MA, USA). The mobile
phase consisted of water (containing 20 mM TEA) as (A) and methanol (containing 20 mM TEA) as
(B). A Waters BEH C18 column (2.1 mm × 50 mm, 1.7 µm particle size) coupled with an Acquity
UPLC™ column in-line filter kit (0.2 µm filter) was used. Separation was achieved using the following
gradient program at a flow rate of 250 µL/min for 7 min at 35 ◦C: 70% A for 1 min, decreased to 20%
A from 1 to 4 min, decreased to 0% A from 4 min to 4.01 min, and then maintained at 0% A from
4.01 to 5.00 min, increased to 70% A from 5.0 to 5.01 min, and stayed at 70% A to 7 min for column
equilibrium. The injection volume was 10 µL. The retention times for analytes 4-ene 3kPZS and 1-ene
3kPZS were determined by individual injection of each analyte. These sulfated BAs were detected
by MRM mode and processed by Masslynx 4.1 software (Waters Corporation, Milford, MA, USA).
The transition for each analyte was listed in Table 1.

The UHPLC effluent was introduced into the mass spectrometer with electrospray ionization
in the negative mode. The ESI-MS/MS parameters were set as follows: capillary voltage, 2.60 kV;
extractor voltage, 5 V; source temperature, 150 ◦C; desolvation temperature, 500 ◦C; desolvation gas
flow, 800 L/h (N2, 99.9% purity). Argon (99.9999% purity) was introduced as the collision gas into the
collision cell at a flow rate of 0.15 mL/min. Data were collected in centroid mode with a scan range of
50–1000 m/z. MRM transitions and related parameters are listed in Table 1. The dwell time established
for each transition was 0.2 s, and interscan delay was set at 20 ms. The internal standard (1.0 µg/mL,
10 µL) was added to each sample. Data acquisition was carried out by Masslynx 4.1 software and
processed by TargetLynx (Waters Corp.).

3.4. Tissue Sample Preparation, Extraction, and Quantification

One gram of homogenized sample was weighed into 15 mL polypropylene tube. The sample
was spiked with the internal standard and incubated for 15 min. Acetonitrile (5 mL) was added to the
sample, vortexed for 1 min, shaken at 300 rpm for 10 min, and followed by centrifugation at 10,000 rpm
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for 10 min. The supernatant was transferred to a clean 15 mL polypropylene tube. Hexane (5 mL) was
added into the extracted supernatant. After being vortexed for 1 min, the mixture was centrifuged
at 10,000 rpm for 10 min. The upper hexane layer was discarded. The lower acetonitrile layer was
concentrated by a freeze dryer, reconstituted in 100 µL of the starting gradient of the mobile phase,
and transferred into an auto sampler vial. Each sample (10 µL) was injected by the autosampler. The
concentration of each sample was measured by plotting the ratio of the peak area to that of the internal
standard against a calibration curve constructed by standard analyte with internal standard. Data
were processed by Masslynx 4.1 software, TargetLynx module.

3.5. Method Validation

The UPLC-MS/MS method was validated for specificity, linearity, limit of detection (LOD), lower
limit of quantification (LLOQ), intra-day and inter-day accuracy and precision, short-term (bench-top
and freeze/thaw) stability, long-term frozen storage stability, matrix effect, and extraction recovery.

Specificity was evaluated by a chromatographic peak area comparison between the blank sample
and the standard sample. The peak area at the expected retention time of each analyte in blank samples
should be less than 20% of the average peak area in the LLOQ samples [31].

Standard solutions were prepared for each batch of sample analysis, as described in Section 3.2.
A calibration curve was constructed by plotting the ratio of the peak area of the measured analyte
to that of the internal standard in the Y-axis versus the theoretical concentration of the analyte in
the X-axis. Linear least squares regression analysis with 1/χ2 weighting was performed, and the
slope, intercept, and correlation coefficient (r2) of the calibration curve were calculated (Masslynx
4.1 software, TargetLynx module).

The LLOQ of the assay was defined as the lowest concentration of the standard curve that could
be quantified (LLOQ, signal-to-noise ratio S/N ≥ 10). The LOD was defined as the amount that
could be detected (LOD, S/N ≥ 3). The LLOQ and LOD of this study have been measured with the
stock solution.

The accuracy and precision of the established method were evaluated by QC samples at low,
medium, and high concentrations in a mixture of liver, kidney, and intestine tissue. Three validation
batches, each containing six replicates of QC samples at low, medium, and high concentration levels
were assayed to assess the precision and accuracy of the method on five consecutive validation days.
Precision of the assay is expressed as a % RSD of the measured concentration in each low, medium,
and high QC samples. Accuracy of the assay is expressed as a percentage of deviation/bias of the
measured concentration from the nominal concentration. The intra-day and inter-day precision and
accuracy should not exceed 15% [31].

The stability of the analytes was determined by storing low, medium, and high QC samples under
various conditions. To evaluate bench-top stability of the analytes, the QC samples were stored at
ambient temperature (23–25 ◦C) for 1, 2, 3, and 4 h. To determine the post-preparative stability during
UPLC-MS/MS analysis, the QC samples were kept at 4 ◦C in the autosampler for 3, 6, 12, and 24 h.
To evaluate long-term stability, the prepared QC samples were kept at −20 ◦C for seven and 14 days.

The extraction recoveries of the analytes at three QC levels were evaluated by determining the
ratios of the peak area of the analytes in the post-extraction spiked samples to that of pre-extraction
spiked samples.

To assess matrix effects in a quantitative manner, six samples were extracted using the procedures
described in Section 3.4. After extraction, three samples were spiked with defined low, medium, and
high amounts of standard stock solutions (10, 100, and 500 ng/ml, respectively), while the remaining
three samples were kept as the blank. Simultaneously, identical amounts of standard stock solutions
and internal standards were pipetted into three clean vials. All samples were then evaporated and
dissolved in the mobile phase solution according to sample preparation and extraction. After correcting
the spiked samples by subtracting endogenous amounts of the respective analyte, quantitative matrix
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effects were assessed by dividing the peak area of spiked samples (with matrix) to the peak area of
samples containing standard solutions (without matrix).

3.6. Data Analysis and Statistics

TargetLynx 4.1 software was used to generate “quantification tables” comprising RT, signal area
values, and concentration for each variable in each sample. Linear relationship calculations between
signal areas and concentrations were acquired by weighted least squares regression. The results were
presented as mean ± standard deviations.

4. Conclusions

In this study, we developed a new UHPLC-MS/MS method for simultaneous quantitative analysis
of four sulfated BAs in biological samples. The method achieved a sensitive, precise, and accurate
determination of metabolite targets in liver, kidney, and intestine of the sea lamprey. This method
will be useful to study the metabolites released by fish, and will support future studies on the role of
sulfated BAs as chemical cues.
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