Next Article in Journal
In Vitro Inhibition of Human UDP-Glucuronosyl-Transferase (UGT) Isoforms by Astaxanthin, β-Cryptoxanthin, Canthaxanthin, Lutein, and Zeaxanthin: Prediction of in Vivo Dietary Supplement-Drug Interactions
Next Article in Special Issue
Cytotoxicity of Triterpenoid Alkaloids from Buxus microphylla against Human Tumor Cell Lines
Previous Article in Journal
Determination of the Absolute Configurations of Chiral Drugs Using Chiroptical Spectroscopy
Previous Article in Special Issue
Structures and Biogenesis of Fallaxosides D4, D5, D6 and D7, Trisulfated Non-Holostane Triterpene Glycosides from the Sea Cucumber Cucumaria fallax
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessReview
Molecules 2016, 21(8), 1047; doi:10.3390/molecules21081047

Plant Resources, 13C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids

1
Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
2
Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Vassilios Roussis
Received: 15 July 2016 / Revised: 1 August 2016 / Accepted: 4 August 2016 / Published: 12 August 2016
(This article belongs to the Special Issue Triterpenes and Triterpenoids 2016)
View Full-Text   |   Download PDF [1844 KB, uploaded 12 August 2016]   |  

Abstract

Dammarane-type triterpenoids (DTT) widely distribute in various medicinal plants. They have generated a great amount of interest in the field of new drug research and development. Generally, DTT are the main bioactive ingredients abundant in Araliaceae plants, such as Panax ginseng, P. japonicas, P. notoginseng, and P. quinquefolium. Aside from Araliaceae, DTT also distribute in other families, including Betulaceae, Cucurbitaceae, Meliaceae, Rhamnaceae, and Scrophulariaceae. Until now, about 136 species belonging to 46 families have been reported to contain DTT. In this article, the genus classifications of plant sources of the botanicals that contain DTT are reviewed, with particular focus on the NMR spectral features and pharmacological activities based on literature reports, which may be benefit for the development of new drugs or food additives. View Full-Text
Keywords: Dammarane-type triterpenoids; plant resources; NMR spectral characteristics; biological activities Dammarane-type triterpenoids; plant resources; NMR spectral characteristics; biological activities
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Ruan, J.; Zheng, C.; Qu, L.; Liu, Y.; Han, L.; Yu, H.; Zhang, Y.; Wang, T. Plant Resources, 13C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids. Molecules 2016, 21, 1047.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top