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Abstract: Fluorinated polyurethanes with a glass transition temperature as low as ´139 ˝C and a
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1. Introduction

Reactions of aromatic and aliphatic diisocyanates are extensively employed in the synthesis
of valuable polymeric materials, viz. polyurethanes (PUs). The preparation of polymers is often
assisted by catalysts such as tertiary amines, organotin compounds, etc. [1]. Depending on the starting
compounds, plastics or rubberlike products are afforded.

The fluorine incorporation into the polymer backbone or its side chains is the basis for well known
methods that lead to great changes in the surface properties [2]. PU is one material that would benefit
from the characteristic properties intrinsic to fluorinated polymers. The effect of fluorine-containing
PUs on their properties has been described [3–7]. Fluorocarbon chains were incorporated into PUs via
fluorine-containing isocyanates [8], chain extenders [3–7] or soft segments [9–11]. The surface and bulk
structure of the synthesized PUs were studied. Ge at al. [12] synthesized FPUs starting from fluorinated
polyether glycol prepared by radical grafting of hexafluoropropylene onto polytetramethylene glycol
(PTMG-g-HFP) as a soft segment, 1,6-hexamethylene diisocyanate or toluene diiscyanate as a hard
segment and 1,4-butanodiol as a chain extender. They studied their mechanical properties and thermal
stability in comparison with those of corresponding hydrogenated PUs along with chemical resistance
of FPU films through spot tests with different solvents.

It was also shown that introduction of fluorinated fragments to a macromolecule in addition
to high hydro- and oleophobic properties considerably contribute towards achievement by the
prepared polymers good low temperature parameters in a few cases [13]. 1,4-Butanediol, 2,2,3,3,4,4,5,5-
octafluoro-1,6-hexandiol, etc., are often utilized as macromolecule chain extenders [14–18]. Thus, in a
number of cases, the glass transition temperature of polymers can be dramatically reduced by the
insertion of fluorinated fragments to the macromolecule [19,20].

In this research we endeavored to synthesize new poly- and oligourethanes containing
fluoropolyether components of different structure both in the backbone and in the side polymer
chain. Aromatic and cycloaliphatic diisocyanates were used as hard segments of FPUs. A synthetic
route to such FPUs is given in Scheme 1.
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Scheme 1. FPUs synthesis pathway. 

2. Results and Discussion 

Polyaddition of diisocyanates to fluorinated alcohols was performed both in solution 
(dimethylformamide (DMFA) or perfluorobenzene) and in mass (melt) at temperatures varying from 
25 °С to 190 °С. Ethylene glycol was utilized as a chain extender in a number of tests. The synthetic 
conditions are specified in Table 1. 

Analyzing the course of the synthesis of FPUs from aromatic and cycloaliphatic diisocyanates, we 
established that the polyaddition reaction proceeded quite smoothly without a catalyst both in solvents 
and in the melt. From technological and environmental points of view, the bulk process applied in this 
research could have the certain advantage against the process in solution. Meanwhile, a number of 
researchers explained a need for a catalyst by low basicity of fluorinated diols. Apparently, reactivity 
of fluorinated diols in such reactions does not merely rely on their basicity. 

Figure 1 shows DSC data for fluoropolyurethane 5, which evidence that the prepared low molecular 
weight polymer has a partially crystalline structure. DSC curve shows temperature interval from  
−30 °С to 115 °С corresponding to melting procedure with maximum at 40 °С. Phase regularity of 
polymer chains is likely to be related to interactions between neighboring macromolecules containing 
urethane groups. 

Figure 2 illustrates DSC data for rubberlike high molecular weight FPU 7 obtained from diol 1d 
and diisocyanate 2с in melt. The glass transition temperature of FPU 7 is −139 °С. An insignificant 
share of the crystalline phase with the melting point −22 °С was observed herein. It can be concluded 
that FPU 7 is characterized by a relatively weak intermolecular interaction between C=O and N-H 
groups of macromolecules. This FPU dissolved only in С6F6, did not dissolve in DMFA and, to some 
extent, dissolved in acetone. 
 

Scheme 1. FPUs synthesis pathway.

2. Results and Discussion

Polyaddition of diisocyanates to fluorinated alcohols was performed both in solution
(dimethylformamide (DMFA) or perfluorobenzene) and in mass (melt) at temperatures varying from
25 ˝C to 190 ˝C. Ethylene glycol was utilized as a chain extender in a number of tests. The synthetic
conditions are specified in Table 1.

Analyzing the course of the synthesis of FPUs from aromatic and cycloaliphatic diisocyanates, we
established that the polyaddition reaction proceeded quite smoothly without a catalyst both in solvents
and in the melt. From technological and environmental points of view, the bulk process applied in this
research could have the certain advantage against the process in solution. Meanwhile, a number of
researchers explained a need for a catalyst by low basicity of fluorinated diols. Apparently, reactivity
of fluorinated diols in such reactions does not merely rely on their basicity.

Figure 1 shows DSC data for fluoropolyurethane 5, which evidence that the prepared low
molecular weight polymer has a partially crystalline structure. DSC curve shows temperature interval
from ´30 ˝C to 115 ˝C corresponding to melting procedure with maximum at 40 ˝C. Phase regularity of
polymer chains is likely to be related to interactions between neighboring macromolecules containing
urethane groups.

Figure 2 illustrates DSC data for rubberlike high molecular weight FPU 7 obtained from diol 1d
and diisocyanate 2c in melt. The glass transition temperature of FPU 7 is ´139 ˝C. An insignificant
share of the crystalline phase with the melting point ´22 ˝C was observed herein. It can be concluded
that FPU 7 is characterized by a relatively weak intermolecular interaction between C=O and N-H
groups of macromolecules. This FPU dissolved only in C6F6, did not dissolve in DMFA and, to some
extent, dissolved in acetone.
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Table 1. Fluoropolyurethane synthesis conditions and some parameters of the prepared polymers.

No. Initial Mixture Composition Reaction Conditions Polymer1s Appearance Contact Angle
by Water (˝) Parameters of the Polymers

1
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Table 1. Fluoropolyurethane synthesis conditions and some parameters of the prepared polymers. 

No. Initial Mixture Composition Reaction 
Conditions 

Polymer′s
Appearance 

Contact Angle
by Water (°) 

Parameters of the Polymers 

1 

HOCH2CFOCF2CFO(CF2)6OCFCF2OCFCH2OH

CF3 CF3 CF3 CF3
CH3

NCO

NCO

60 °C–150 °C  
17 h in nitrogen flow 

DMFA  

Solid elastic 
light-brown 

101 (η) = 0.006 dL/g in DMFA 

2 

HOCH2CFOCF2CFO(CF2)6OCFCF2OCFCH2OH

CF3 CF3 CF3 CF3
CH3

NCO

NCO

190 °C 17 h  
in nitrogen flow,  

in melt 

Solid elastic 
light-brown 

101 
Mp = 20 °C; (ƞ) = 0.01 dL/g in 

DMFA Т5% decomp. = 261 °C 

3 

HOCH2CFOCF2CFO(CF2)6OCFCF2OCFCH2OH

CF3 CF3 CF3 CF3

CH2

OCN NCO

190 °C 15 h  
in nitrogen flow,  

in melt 

Solid yellowish 
brown 

110 Т5% decomp. = 323 °C 

4 

HOCH2(CF2O)28(CF2CF2O)7CH2OH 
CF3O(CF2O)28(CF2CF2O)7CH2OH

CH2

OCN NCO

190 °C 9 h  
in nitrogen flow,  

in melt 

Colorless 
transparent 

113 
Т5% decomp. = 247 °C  
Тg = −143.6 °C  

(η) = 0.13 dL/g in С6F6 

60 ˝C–150 ˝C 17 h in nitrogen
flow DMFA Solid elastic light-brown 101 (η) = 0.006 dL/g in DMFA

2
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in melt 
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5 

C3F7OCF

CF3

CF2OCF

CF3

C

O

N
CH2CH2OH

CH2CH2OH

OCN NCO

CH2

Room temp.,  
at stirring, in 
nitrogen flow  
1.05:1 DMFA 

Brittle yellowish 
mass 

111 

Mp = 95−98 °C 
Т5% decomp. = 247 °C 

МW = 9667 
Мn = 6062 

D = 1.59–1.60 

6 

C3F7OCF

CF3

CF2OCF

CF3

C

O

N
CH2CH2OH

CH2CH2OH

OCN NCO

CH2

Room temp.,  
at stirring,  

in nitrogen flow, 
1:1.1 DMFA 

Brittle 
yellowish-

brown mass 
114 Mp = 94–96 °C 

7 

HOCH2(CF2O)28(CF2CF2O)7CH2OH 
CF3O(CF2O)28(CF2CF2O)7CH2OH 

OCN NCO

until 190 °C  
in nitrogen flow  
50 h, 1:1, in melt 

Homogenous 
thick colorless 

transparent 
mass 

102 

(η) = 0.14 dl/g  
Тg = −139 °C 
Mp = − 22 °C 

(contains cryst. 
polym. segments) 
Т5% decomp. = 300 °C 

8 

HOCH2[(CF2O)4(CF2CF2O)]3,46CH2OH +

+ +

OCN NCO

+

CF3O[(CF2O)4(CF2CF2O)]3,46CH2OH
until 190 °C  

in nitrogen flow  
16 h, 1:1, in melt 

Homogenous 
elastic 

opalescent mass 
104 

(η) = 0.103 dl/g Tg = −132 °C  
Mp = −12°C  

(contains cryst.  
polym. segments)  
Т5% decomp. = 290 °C 

Room temp., at stirring, in
nitrogen flow 1.05:1 DMFA Brittle yellowish mass 111

Mp = 95´98 ˝C
T5% decomp. = 247 ˝C

MW = 9667
Mn = 6062

D = 1.59–1.60
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in nitrogen flow, 
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brown mass 
114 Mp = 94–96 °C 
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CF3O(CF2O)28(CF2CF2O)7CH2OH 

OCN NCO

until 190 °C  
in nitrogen flow  
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Homogenous 
thick colorless 

transparent 
mass 
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(η) = 0.14 dl/g  
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polym. segments) 
Т5% decomp. = 300 °C 
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HOCH2[(CF2O)4(CF2CF2O)]3,46CH2OH +

+ +

OCN NCO

+

CF3O[(CF2O)4(CF2CF2O)]3,46CH2OH
until 190 °C  

in nitrogen flow  
16 h, 1:1, in melt 

Homogenous 
elastic 

opalescent mass 
104 

(η) = 0.103 dl/g Tg = −132 °C  
Mp = −12°C  

(contains cryst.  
polym. segments)  
Т5% decomp. = 290 °C 

Room temp., at stirring, in
nitrogen flow, 1:1.1 DMFA Brittle yellowish-brown mass 114 Mp = 94–96 ˝C

7
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9 

HOCH2[(CF2O)4(CF2CF2O)]3,46CH2OH +

CF3CH2[(CF2O)4(CF2CF2O)]3,46CH2OH+ +

OCN NCO

+

  
+ HOCH2CH2OH 

60 °C  
in nitrogen flow,  
at stirring 10 h  

1:3:2 С6F6 

Homogenous 
white viscous 
elastic mass 

103 Tg = −132 °C 

10 

HOCH2[(CF2O)4(CF2CF2O)]3,46CH2OH +
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in nitrogen flow,  
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60 ˝C in nitrogen flow, at
stirring 10 h 1:3:2 C6F6

Homogenous white
viscous elastic mass 103 Tg = ´132 ˝C
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Summarizing DSC and TGA data for the selected FPUs synthesized in this research (Table 1),
it might be concluded that the temperature interval of FPUs performance (´139 ˝C to 247–330 ˝C)
is much broader than that of analogous hydrogenated PUs which is normally within ´60 to
160 ˝C depending on the structure of glycols and diisocyanates used as starting materials.
Thus, the decomposition onset temperature of PUs prepared from alkylendiisocianates and
alkylenglycols is around 250 ˝C, of PUs from aromatic diisocyanate-alkylene glycol 200 ˝C, and from
alkylenediisocyanate-aromatic glycols 180 ˝C [21–23]. Glass transition temperature (Tg) of these PUs
were found to be approximately ´60 ˝C.

The measurement of contact angles on the water-wetted surface of the prepared FPUs was
performed as follows. The attained FPU melts were applied to glass plates that were then heated to
90 ˝C in a desiccator until evaporation of the solvents. Transparent or semitransparent films were
prepared. Contact angles of their surface wetting with water were determined. The contact angles
achieved 100˝´117˝ (Table 1), which was indicative of rather high hydrophobicity of the coatings.

Syntheses of all other tabulated FPUs were performed in the conditions summarized in Table 1.
At rather low temperatures FPUs were synthesized in solution. At high temperatures, the polyaddition
process was conducted in the melt. Initial mixture composition includes aromatic diisocyanates
(rows 1–6) and cycloaliphatic ones (rows 7–12). Depending on the starting materials and reaction
conditions used, the oligomers and polymers obtained exhibit different properties. Some of them
(like polymer 5, Figure 1) possess crystal segments of polymer chain, others are rubberlike amorphous
materials (7–12 samples). Regardless the difference in structure and properties, all of them were shown to
possess pronounced hydrophobic properties (surface wetting contact angles found were higher than 100˝).

3. Materials and Methods

Diisocyanates 2a–c were commercial products (manufacturer Bayer Material Science) pre-dried in
vacuo at 100´150 ˝C: 2a M = 174.2, bp = 251 ˝C; 2b M = 250.25, bp = 152´154 ˝C (3 Torr); 2c M = 262.35,
bp = 358 ˝C.

Fluorinated alcohols 1a–d incorporating fluoropolyether units were used as hydroxymethylene
derivatives: 1a M = 902, bp = 146´150 ˝C (0.01 Torr), 1b M = 595, bp = 210 ˝C (0.01 Torr), 1c M = 2442,
and 1d M = 1418. Bp of the products was above 200 ˝C (0.01 Torr). They were prepared according
to the procedure reported in [24] and represent fluoropolyether glycols or fluoropolyether amides
containing hydroxymethylated terminal groups (1a–b) or a mixture of fluoropolyether glycols with
alcohols of similar structure (1c–d) with ratio 7:1. Molecular weights and compositions of the prepared
fluoropolyether diols and alcohols were found from 19F-NMR and 1H-NMR data. 1H-NMR and
19F-NMR were using a Bruker AM 300 SF at 300 MHz (1H), 282,40 MHz (19F). 1H-NMR chemical shifts
were referenced to the residual proton signal from CDCl3 served as an internal standard. 19F-NMR
spectra (solutions in C6F6, ´163 ppm) served as an inside standard. Multiplicities are reported as
singlet (s), doublet (d), triplet (t) and some combinations of these, multiplet (m).

The molecular weight characteristics of the polymers were determined using the gel permeation
chromatography (GPC) method in DMFA at 35 ˝C on a Knauer liquid chromatograph equipped with a
refractometer RI-2300 and three columns (Waters Styrogel HT-2, HT-4, and HT-6E). The elution rate
1 mL/min. The calibration was done using the polystyrene standard (PL Polymer Laboratories) in the
range from 1250 to 1030000 Da.

The glass transition temperature was determined by the differential scanning calorimetry (DSC)
on a DSC-822e instrument (Mettler Toledo, Switzerland) using ~10 mg samples at the heating rate
10 ˝C/min. IR spectra were registered on a Specord IR-75 spectrometer.

TGA data were determined on the instrument Derivatograph-C (MOM, Hungary) in air and
argon flow using ~15 mg samples at the heating rate 10 ˝C/min.

Inherent viscosity was determined using an Ubbelohde viscometer in DMFA or C6F6.
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3.1. Synthesis of Fluorinated Alcohol 1b

Pre-distilled diethanolamine (3.32 g, 0.032 mol), bp = 122–125 ˝C (3 Torr) was placed in a round
bottomed flask fitted with a stirrer, thermometer and drop funnel and then 16.2 g (0.032 mol) methyl
ester of the hexafluoropropylene oxide trimer was added dropwise from the funnel. The reaction
mixture was stirred for 2 h at 65 ˝C until homogeneity. In the IR spectrum of the products, a signal in
the region of 1780 cm´1 disappeared (C=O in ester) and a signal in the region of 1740 cm´1 emerged
(C=O in amide). 1H-NMR, (CDCl3) δ: 4.38 (2H, s, OH); 2.26 (4H, t, O=C-CH2CH2); 3.18 (t, 4H, CH2OH);
19F-NMR, (C6F6) δ: ´80.0 to ´88.0 (m, 13F CF2O + CF3); ´126.0 to ´127.4 (s, 1F OCF(CF3)C); ´132.0
(m, 2F CF3CF2CF2); ´147.0 (m, 1F CF2CF(CF3)C=O).

3.2. Synthesis of Fluoropolyurethanes

3.2.1. Synthesis of Fluoropolyurethane 5

Diol 1b (1.88 g, 0.032 mol) in 10 mL DMFA was placed in a four-neck flask fitted with a stirrer,
drop funnel, thermometer, and dry nitrogen feeder and then 0.76 g (0.03 mol) of diisocyanate 2b
was added. The process was conducted with intensive stirring in the dry nitrogen flow during 10 h.
After DMFA evaporation, in the waterjet pump vacuum was prepared a solid, brittle and transparent
mass Mw = 9667; Mn = 6062, D = 1.59–1.60 (Figure 1), mp = 95–98 ˝C (Figure 2), T5% decomp. = 247 ˝C.

The IR spectrum, (KBr), cm´1, ν: 3338 (NH), 3032 (ArH), 2923 (CH), 1719 (C=O), 1601 (C-C arom.),
1541 (NH), 1226, 1046 (CF). 1H-NMR, (CDCl3) δ: 6.04 (8H-arom. s.); 3.83´3.74 (4H, t, CH2); 2H
(Ar-CH2 Ar, s,). 19F-NMR, (C6F6,) δ,: ´80.0 to ´88.0 (13F, m, CF2O+CF3); ´126.0 to ´127.4 (1F, s,
OCF(CF3)C=O); ´132.0 (2F, m, CF3CF2 CF2); ´147.0 (1F, s, OCF2CF(CF3)O).

3.2.2. Synthesis of Fluoropolyurethane 7

Diol 1c (2.46 g, 0.001 mol) pre-heated at 110 ˝C (18 Torr) during 2 h was placed in a four-neck flask
fitted with a stirrer, drop funnel, thermometer, and dry nitrogen feeder and then 0.27 g (0.001 mol)
of diisocyanate 2c was added. The process was conducted with intensive stirring in the dry nitrogen
flow, gradually increasing the temperature from 25 ˝C to 190 ˝C, during 50 h. A homogeneous, thick,
colorless and transparent mass was prepared. The reaction completion was monitored against the
absence of the free NCO group absorption band in the region of 2270 cm´1, Tg = ´139 ˝C (Figure 2),
T5% decomp. = 300 ˝C. Maximum decomposition rate was « 450 ˝C (Figure 3).

The IR spectrum of fluoropolyurethane 7, (KBr), cm´1, ν: 3337 (NH); 3032 (CH arom.), 2923 (CH);
1719 (C=O, uretane); 1534 (NH); 1226, 1046 (C-F). 1H-NMR (CDCl3,) δ: 1.32 (8H, m, CH2-CH2);
1.70 (8H, t, CH2-N); 4.47 (4H d, RFCH2O); 5.55 (2H s, NH). 19F NMR (C6F6,) δ: ´52.16 (3F, s, CF3O);
´52.76 to ´54.71 (2F, s, (CF2O)n); ´88.0 to ´89.7 (4F, d, (CF2CF2O)n).

4. Conclusions

Novel FPUs possessing promising performance properties have been synthesized starting
from fluorinated diols as soft segments and both aromatic and cycloaliphatic diisocyanates as hard
segments. Values of their glass transition temperature and the beginning temperature of thermal
decomposition achieve ´139 ˝C and 247–330 ˝C, correspondingly, showing their performance in quite
wide temperature intervals in comparison to non-fluorinated analogs. According to literature data,
the temperature interval of hydrogenated PUs performance is predominately in the range from ´60 ˝C
to 160 ˝C.

Contact angles of surface wetting with water for FPUs obtained reach 100–117˝, providing
evidence of quite favorable hydrophobic properties of fluorinated polyurethanes. Potentially, novel
fluorinated polyurethanes can be used for production of materials exploited under extreme conditions
and in compositions of complex organic and hybrid molecular systems [25,26].
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