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Abstract: Abelmoschus manihot (L.) Medic has been used for many years in Chinese traditional
medicine. In this study, supercritical CO2 plus a modifier was utilized to extract flavonoids from
the flowers of Abelmoschus manihot (L.) Medic. The effects of temperature (40 ˝C–60 ˝C), pressure
(10–30 MPa) and different concentrations of ethanol as modifier (60%–90%, ethanol:water, v/v)
on major flavonol content and the antioxidant activity of the extracts were studied by response
surface methodology (RSM) using a Box-Behnken design. The flavonol content was calculated as the
sum of the concentrations of seven major flavonoids, namely rutin, hyperin, isoquercetin, hibifolin,
myricetin, quercetin-31-O-glucoside and quercetin, which were simultaneously determined by a
HPLC method. The antioxidant activity was evaluated by a 2,2-diphenyl-1-picrylhydarzyl (DPPH)
free radical-scavenging assay. The results showed that three factors and their interactions could be
well fitted to second-order polynomial models (p < 0.05). At the optimal extraction conditions for
flavonol content (20 MPa, 52 ˝C, and 85% ethanol content), the yield of flavonoids was 41.96 mg/g and
the IC50 value was 0.288 mg/mL, respectively, suggesting the extract has high antioxidant activity.
Furthermore, the anti-adipogenic activity of the extract on the 3T3-L1 cell line was investigated.
The results indicated that it can downregulate PPARγ and C/EBPα expression at mRNA. In summary,
in this study, we have established a cost-effective method for the extraction of flavonoids from the
flowers of Abelmoschus manihot (L.) Medic using supercritical fluid extraction and the extracts exhibited
potent antioxidant and anti-adipogenic effects, suggesting a possible therapeutic approach for the
prevention and treatment of obesity.

Keywords: Abelmoschus manihot (L.) Medic; flavonoid; modified supercritical CO2; antioxidant
activity; anti-adipogenic activity

1. Introduction

Abelmoschus manihot (L.) Medic is widely used in China. The flowers are an important herbal
medicine for the treatment of chronic renal disease [1,2], diabetic nephropathy [3], oral ulcers [4]
and burns. In recent years, the structure of its seven main flavonoids were identified as follows:
rutin, hyperin, isoquercetin, hibifolin, myricetin, quercetin-31-O-glucoside and quercetin [5]. Their
structures are shown in Figure 1. At present, the standard of quality for Abelmoschus manihot in the
China Pharmacopoeia (2015 Edition) is a content of hyperin of no less than 0.5% [6]. However, hyperin
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is not present in sufficient quantities to determine the flavonol content in the flowers of Abelmoschus
manihot. In this study, the major flavonol content, measured as the sum of the contents of seven major
pharmacological flavonoids by simultaneous HPLC determination was used as the detection index to
explore the extraction process of flavonoids from the flowers of Abelmoschus manihot.
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Figure 1. The structures of the seven flavonoids.

Compound R1 R2 R3 R4

Rutin rhaÑgal (β-1,6) H H H
Hyperin gal H H H

Isoquercetin glc H H H
Hibifolin H H O-glc H
Myricetin H H H OH

Quercetin-31-O-glucoside H glc H H
Quercetin H H H H

Several techniques for the extraction of flavonoid components from herbal medicines have been
studied, such as reflux extraction [7], microwave-assisted extraction [8], and ultrasound extraction [9].
With the renewed attention to the environment, an excellent extractive technique should be efficient,
clean and environmentally friendly. In this regard, supercritical CO2 extraction is a perfect green
technique owing to the facts it is fast, cheap and toxic solvent-free [10]. However, supercritical CO2

extraction is only suitable in non-polar compounds. When it is used to extract polar compounds such
as flavonoids, a polar solvent is required as a modifier in the supercritical CO2. There are no reports
using supercritical fluid extraction (SFE) for flavonoids from the flowers of A. manihot.

In the human body free radical oxidation is related to human aging and many diseases, so people
are increasingly concerned about antioxidant levels. The antioxidant properties of flavonoids have
been studied [11], but less attention has been paid to the extracts obtained with SFE, especially
from A. manihot. Meanwhile, methods for antioxidant activity evaluation are receiving more and
more attention, and the generally used methods are the Ferric Reducing Antioxidant Power (FRAP),
2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Trolox Equivalent Antioxidant Capacity
(TEAC) and 2,2-diphenyl-1-picrylhydarzyl (DPPH) ones [12]. Compared with the other methods, the
DPPH method is a sensitive, rapid and accurate assay for evaluating the activity of antioxidants [13].

Obesity as a key risk factor for ill-health cannot be ignored, because it can cause type II diabetes,
hypertension, coronary heart disease, and cancer [14]. Obesity is characterized by an excessive
accumulation of fat cells in the human body [15]. It can be regulated by the differentiation of adipocytes
and inhibition adipogensis from preadipocytes to adipocytes [16]. Adipocyte differentiation is a highly
regulated process, in which many kinds of transcription factors, signaling pathways and miRNA are
required [15]. Among the various types of transcription factors, peroxisome proliferator-activated
receptor-γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) play an important role in
adipocyte differentiation [17], which can upregulate the expression of enzymes and functional proteins
which are related to lipid accumulation and lipid metabolism.
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In this study, we investigated: (i) the effects of SFE extraction parameters including pressure,
temperature and ethanol concentration in the yield of major flavonol and antioxidant activity using
a response surface methodology based on a Box-Behnken experimental design; (ii) the relationship
between the flavonol content and antioxidant activity under the optimum condition; (iii) the effects of
extracts on PPARγ and C/EBPα expression at mRNA using the 3T3-L1 cell line.

2. Results

2.1. Single Factor Level Experiments

Before the experimental design experiments were performed, rational ranges for the variables of
the model were selected by single-factor experiments (see Supplementary Materials, Figures S1–S3).
For this it was considered that the extraction yield is mainly influenced by factors such as extraction
temperature, pressure, modifier content and time. The effect of extraction time on the major flavonol
yield is shown in Figure 2. As seen in the figure, it is possible to recover >95% of the major flavonoids
within 2 h at a temperature of 50 ˝C, pressure of 20 MPa and with an ethanol content of 80%. Therefore,
extraction time was not taken as a variable and a value of 2 h was used. The ranges of the other factors
like temperature, pressure and ethanol content were determined and then the effects of the variables
together and their interactions were evaluated in the subsequent Box-Behnken experimental design.
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Figure 2. The effect of extraction time on the major flavonol yield.

2.2. Analysis of Response Surfaces

Response surface optimization has advantages compared to traditional single variable
optimization. It saves time, raw material and can evaluate the interactions of the different variables.
The quadratic model from the Box-Behnken design can be used to generate a response surface image
for the main interactions among extraction pressure (X1), temperature (X2) and ethanol content (X3).
The statistical analysis of the quadratic models based on ANOVA is shown in Tables 1 and 2. The results
indicated that the proposed models were significant with p-value < 0.0001 and 0.0012, the coefficient
of determination (R2) were 0.9892 and 0.9456, and the adjusted coefficients of determination (Adj.
R2) were 0.9753 and 0.8756, respectively. Meanwhile, the lack of fit were not significant (p > 0.05).
The models were reasonable to predict major flavonol yield and antioxidant activity.

Equation (1) implies that increasing the pressure (X1), temperature (X2) and ethanol content (X3)
can increase the major flavonol content (Y1). The interaction term X2X3 had a positive effect while
X1X2 and X1X3 had a negative effect on the major flavonol content (Y1). Equation (2) implies that
temperature (X2), ethanol content (X3) and the interaction term X1X3 have a synergistic effect on the
antioxidant activity, yet pressure (X1) and interaction term X1X2, X2X3 did the opposite.
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Table 1. ANOVA for the fitted quadratic polynomial model for major flavonol content.

Source Sum of Squares Degrees of Feedom F P R2 R2 (Adj)

Model 163.93 9 71.18 <0.0001 0.9892 0.9753
X1 1.74 1 6.80 0.0351
X2 17.79 1 69.52 <0.0001
X3 58.54 1 228.74 <0.0001

X1 X2 0.28 1 1.10 0.3296
X1 X3 0.17 1 0.67 0.4390
X2 X3 1.38 1 5.39 0.0532
X1

2 37.20 1 145.38 <0.0001
X2

2 36.21 1 141.49 <0.0001
X3

2 3.53 1 13.77 0.0075
Residual 1.79 7

Lack of fit 1.32 3 3.70 0.1191
Pure error 0.47 4
Cor total 165.73 16

Table 2. ANOVA for the fitted quadratic polynomial model for IC50 value of antioxidant activity.

Source Sum of Squares Degrees of Feedom F P R2 R2 (Adj)

Model 0.04 9 13.51 0.0012 0.9456 0.8756
X1 0.0090 1 27.22 0.0012
X2 <0.0001 1 0.024 0.8806
X3 0.017 1 53.02 0.0002

X1 X2 0.0011 1 3.03 0.1120
X1 X3 0.0037 1 11.28 0.0121
X2 X3 0.0005 1 1.60 0.2458
X1

2 0.0011 1 3.27 0.1136
X2

2 0.0027 1 8.30 0.0236
X3

2 0.0037 1 11.11 0.0125
Residual 0.0023 7

Lack of fit 0.0014 3 2.03 0.2517
Pure error 0.0009 4
Cor total 0.042 16

The response surface Equations (1) and (2) are obtained to predict Y1 and Y2, respectively:

Y1 = 40.35 + 0.47X1 + 1.49X2 + 2.71X3 ´ 0.27X1X2 ´ 0.21X1X3 + 0.59X2X3 (1)
´ 2.97X1

2´2.93X2
2 ´ 0.91X3

2

Y2 = 0.30 + 0.034X1 ´ 0.001X2 ´ 0.047X3 + 0.016X1X2 ´ 0.031X1X3 + 0.011 X2X3 (2)
+ 0.016X1

2+ 0.025X2
2 + 0.030X3

2

Correlation graphs showed that a high correlation existed between the experimental and predicted
values. Figure 3 indicates the good fit of both models as illustrated by the fact each point is close to
the corresponding regression line. Based on Equations (1) and (2), the optimal extraction conditions
were 19.81 MPa, 52.47 ˝C and 84.92% ethanol solution with a maximum yield of 41.96 mg/g major
flavonoids; and 10.15 MPa, 49.86 ˝C and 85.29% ethanol solution gave the minimum IC50 value of
0.281 mg/mL.
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Figure 3. Correlation graph between the predicted and experimental yield values. (a) The correlation
graph of major flavonol content; (b) The correlation graph of antioxidant activity.

2.3. Effect of Extraction Parameters

3D response surface plots can be used to illustrate the interaction effect between any two variables
while the other one is held at a constant optimum level. The relationships between the dependent
variables (the flavonol content and IC50 value) and three factors (pressure, temperature and ethanol
content) are shown in Figures 4 and 5.
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Figure 5. Response surface and contour plots of antioxidant activity showing (a) the effect of pressure
and temperature at constant 75% ethanol concentration; (b) the effect of pressure and ethanol content
at constant temperature 50 ˝C; (c) the effect of temperature and ethanol content at constant pressure
20 Mpa.

The interaction effect between pressure and temperature (X1X2) on each dependent variable
is shown in Figures 4a and 5a, while ethanol content (X3) is kept at a middle value of 75%. It was
observed that higher major flavonol yield (>40 mg/g) was attained when the pressure was set between
18 MPa to 25 MPa and temperature was between 48 ˝C to 57 ˝C. Further increases in pressure and
temperature actually lowered the yield. Increased solubility with pressure is due to an increase in
the density of CO2, and decreased solubility with pressure due to decreased solvation capacity [18].
The solubility influenced by temperature is also balanced by two opposing factors: solute vapor
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pressure and solvent density [19,20]. For the DPPH radical-scavenging activity of the extracts, a lower
value of IC50 (<0.300 mg/mL) occurred at pressures below 18 MPa and temperatures above 45 ˝C.
However, temperature had no significant effect on both dependent variables (p > 0.05).

The effects of the combination of pressure and ethanol content are shown in Figures 4b and 5b.
Higher major flavonol content (>40.0 mg/g) were obtained at pressures between 18 MPa and 23 MPa
and ethanol concentrations above 80% (Figure 4b). A high concentration range of ethanol/water can
increase flavonol content due to a similar polar solvent dissolving a similar polar solute. However,
higher ethanol concentration (>90%) would decrease the extraction rate with the increase of fat soluble
substances. Lower IC50 values (<0.300 mg/mL) of extracts were obtained when the pressure was less
than 20 MPa and ethanol concentration was from 75% to 85%. The interaction between pressure and
ethanol content was significant (p < 0.05) for both models.

When considering the effects of temperature and ethanol content on the flavonol content, higher
yields were obtained at higher temperature and higher ethanol content (Figure 4c). As ethanol content
increased further, the yield decreased due to repulsive solute-solvent interactions. For the DPPH
radical-scavenging activity of the extracts, smaller values of IC50 (<0.300 mg/mL) were attained when
the ethanol content was set above 78% and the temperature below 55 ˝C (Figure 5c).

2.4. The Relationship Between Major Flavonol Content and IC50 Value

A negative correlation (r = ´0.611) between the major flavonol content and IC50 value of extracts
is shown in Figure 6. It meant that the extracts with higher flavonoids content usually had smaller
IC50 values (higher antioxidant activity).
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2.5. Comparison Between Major Flavonol Content and IC50 Value of Extracts with Two Methods

In order to validate the optimal supercritical extraction conditions, a verification experiment
was carried out. The predictive values are compared with experimental ones which were obtained
with the predicted optimized conditions yielding the highest flavonol content, and integral values
of the parameters were taken as follows: 20 MPa, 53 ˝C, and 85% ethanol content. Experimental
values were no significantly different from the predicted values within the 95% confidence interval
(Table 3). Furthermore, in comparison with Soxhlet extraction, there is also no significant difference
between two extraction methods (Table 3). Considering the shorter extraction time, less organic solvent
consumption and lower environmental pollution, SFE is an efficient technique for the exhaustive
extraction of the flowers of A. manihot.
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Table 3. Comparison of the dependent variables obtained by SFE and Soxhlet extraction.

Values Dependent Variables *
Method

SFE Soxhlet

Predicted value
Y1 (mg/g) 41.96 -

Y2 (mg/mL) 0.288 -

Experimental value Y1 (mg/g) 41.58 ˘ 1.16 40.69 ˘ 2.07
Y2 (mg/mL) 0.287 ˘ 0.008 0.281 ˘ 0.009

* mean ˘ SD, n = 3.

2.6. Effect of Different Concentrations of Extracts on the Anti-Adipogenic Activity

To evaluate the inhibitory mechanism of extracts (obtained under the optimum conditions) during
the adipocyte-differentiation period, the expression of PPARγ and C/EBPα as transcription factors
were examined at 2, 4 and 8 days. The results showed that the expression of both genes remained
at a low level in the early stage (2 days) of the differentiation period (Figure 7a). As the process
went on, PPARγ expression levels gradually increased in a time-dependent manner. On day 8, the
different dosage groups and the pioglitazone group levels were significantly lower than those of the
normal groups. It was noted that 100 µg/mL dosage group had a notable difference compared with
pioglitazone group. The inhibitory expression of C/EBPα reached a peak in the 8th day (Figure 7b).
The highest value was 38.33% in 100 µg/mL dosage which showed a remarkable decrease compared to
the pioglitazone group. These findings verified the inhibitory action of extracts on the differentiation
of 3T3-L1 preadipocytes.Molecules 2016, 21, 810 7 of 13 
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represented as mean ˘ SD. n = 3. * p < 0.05, ** p < 0.01, compared with control. 4 p < 0.05, 44 p < 0.01,
compared with pioglitazone.
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3. Discussion

With the economic development of society and the resulting different lifestyles, obesity has
become one of the most common nutritional imbalance disorders. More and more people suffer from
obesity, and research into natural anti-obesity products has become a hot topic in recent years [21]. For a
long time, SFE technology was mainly used to extract nonpolar substances because supercritical CO2

has low polarity. A certain concentration of co-solvent is necessary to improve the separation efficiency
of flavonoids using supercritical CO2 extraction. SFE is influenced by many extraction parameters,
including pressure, temperature, volume of co-solvent, extraction time, modifier constituent and so
on. Traditional experiment designs change one variable at a time. However it is hard to estimate the
relationship between the variables. In this study, three main influencing factors were screened out by
previous single-factor experiments, then a Box-Behnken experimental design with three variables at
three levels was used, which allows us to determinate the interactions among the factors and improve
the quality of prediction [22]. According to ANOVA, pressure and ethanol content had significant
effects on the major flavonol content and antioxidant activity. It was believed that the solubility
of flavonoids increased at a given concentration range of ethanol/water, which could be explained
by the fact of a similar polar solvent dissolving a similar polar solute. However, excessive ethanol
concentration would decrease extraction rates with the increase of liposoluble components. Pressure
was also in favor of the extraction of flavonoids, but further increases in pressure didn’t improve the
yield due to the repulsive solvent interaction. The optimum experimental conditions predicted by the
mathematical models was pressure 20 MPa, temperature 53 ˝C and ethanol content 85%. The results of
the prediction agree well with the actual values. Furthermore, there is no significant difference between
SFE and Soxhlet extraction methods. It is thus revealed that SFE is an efficient technique for flavonoid
extraction from the flowers of A. manihot. This is the first study to analyze extraction efficiency by the
sum of the contents of seven major pharmacological flavonoids in the flower of Abelmoschus manihot.

It is believed that flavonoids are the primary contributors to the antioxidant activity of the flowers.
However, the experimental results showed the maximum flavonol yield didn’t correspond to the
minimum IC50 value, which means there are some other components contributing the antioxidant
activity (Figure 6). Based on the above analysis, further research to look for new plant-based antioxidant
compounds is warranted.

3T3-L1 is recognized as a model for the study of adipocyte differentiation [23]. After treatment
with the differentiation mixture culture (containing insulin, DEX, IBMX), 3T3-L1 preadipocytes
progress to adipocytes. Two important transcription factors include CCAAT/enhancer binding protein
family (C/EBPs) and peroxisome proliferators-activated receptor family (PPARs) were found in the
differentiation process [23].

It is found that C/EBPs, including C/EBP-α, β and δ, are important transcription factors in
adipocyte differentiation [24]. Research on the tumor suppressor p53 shows that the expression of its
downstream genes can be activated while binding with C/EBPα, thus blocking cell proliferation and
turning to differentiation [25]. C/EBPβ can be bound to the binding sites of many gene promoters
to regulate their expression [26]. C/EBPδ, as a transcriptional activator, takes part in adipocyte
differentiation in the early stage [27]. PPARs control many cellular metabolism. PPARγ, as an
important member of the family, is responsible for cell differentiation and transcription. A study found
that PPARγ-deficient preadipocyte can’t be induced into adipocytes with any factor’s stimulation [28].
When PPARγ the plasmid was transfected into 3T3-L1 preadipocytes, the cells can spontaneously
differentiate into adipocytes [29]. It indicates that PPARγ is a necessary factor for fat formation.

During the process of in vitro cell culture, the expression of C/EBPβ and C/EBPδ is transiently
induced in early stage of differentiation. Subsequently, the expression of PPARγ and C/EBPα is
induced, which activate a large number of downstream target gene expressions. Finally, preadipocytes
differentiate into adipocytes [30]. PPARγ and C/EBPα play essential roles in the differentiation
progress, as both of them are key adipocyte marker genes on the adipocyte differentiation of 3T3-L1
cells [23]. Therefore, to investigate the effects of extracts on the adipogenesis, 3T3-L1 preadipocytes
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were treated with various concentrations of extracts during differentiation. Our data showed that the
extracts significantly attenuated the expression of PPARγ and C/EBPα compared with adipocytes,
revealing that the extracts inhibited adipogenesis in the 3T3-L1 cells by down-regulating PPARγ and
C/EBPα expression.

Based on above analysis, we believe extracts from SFE with noticeable antioxidant and
anti-adipogenic activity have potential to become a drug or health care product for the prevention and
treatment of obesity.

4. Materials and Methods

4.1. Materials

The flowers of A. manihot were obtained from Suzhong Pharmacy (Taizhou, China). The flowers
were ground using an herbal pulverizer (FW 100, Tianjin Taisite Instrument Co. Ltd., Tianjin, China)
and sieved to obtain the particles smaller than 0.3 mm. Rutin, hyperin, isoquercetin, myricetin,
and quercetin standards were purchased from the National Institutes for Food and Drug Control
(Beijing, China). Hibifolin and quercetin-31-O-glucoside were made in the lab. DPPH was supplied by
Sigma-Aldrich Co. Ltd. (Shanghai, China). The mouse embryo 3T3-L1 cell line was obtained from
the American Type Culture Collection (Manassas, VA, USA) and cryopreserved at the Department
of Biochemistry of China Pharmaceutical University. Dulbecco1s modified eagle medium (DMEM)
and fetal bovine serum (FBS) were purchased from JianCheng Bioengineering Institute (Nanjing,
China). Insulin, dexamethasone (DEX), dimethyl sulfoxide (DMSO), 3-isobutyl-1-methylxanthine
(IBMX) and Rneasy MiNi Kit was purchased from QIAGEN (Germantown, MD, USA). RT PrimeScript
Kit and SYBR Premix Ex Taq were purchased from TaKaRa (Dalian, China). CO2 (Fangxin Gas Ltd.,
Ningbo, China, purity 99.5%) was used in all extraction experiments. Pioglitazone was purchased
from Takeda Co. (Tokyo, Japan). All other solvents were analytical or chromatographic grade.

4.2. Modified Supercritical CO2 Extraction Procedure

A Spe-ed SFE-2 system (Applied Separation, Franklin, PA, USA) was used for all extraction, which
operates with two pumps, a master pump for delivery of CO2 and second pump (Knauer pump, model
K-501, Berlin, Germany) for the addition of modifier. An accurately weighed quantity of the grounded
sample (about 0.5 g) was placed in a 10 mL volume extraction vessel (60 ˆ 15 mm, i.d.) sandwiched
with Celite. Before starting of extraction process the extraction vessel was preheated by oven for
10 min. The extraction conditions were as follows: pressure from 10 to 30 MPa; temperature from 40 to
60 ˝C; ethanol concentration from 60% to 90% (ethanol–water, v/v); flow-rate of CO2 (gaseous state),
2 L/min; flow-rate of modifier, 0.4 mL/min (correspond to 8% modifier). Inserting restrictor outlet
into a vial containing ethanol collected extract. The collection vial was placed in an ice-water batch
to aid trapping. The final volume of the extract was adjusted to 50.0 mL ethanol. This solution was
utilized for HPLC detection. Dry products were removed solvents by rotary evaporation. Different
concentrations of the products were made (25, 50, 100, 200 µg/mL) for DPPH radical scavenging
activity assay and 3T3-L1 cell culture.

4.3. HPLC Analysis

A high-performance liquid chromatography system (Hitachi, Tokyo, Japan) equipped with
a Hitachi pump (model L-2130) and an ultraviolet-visible detector (Hitachi, model L-2400) was
used. Analysis condition was as follows: Diamonsil C18 collumn (5 µm, 250 ˆ 4.6 mm i.d., Dikma
Technologies, Beijing, China); The mobile phase was A (acetonitrile) and B (0.2% phosphoric acid)
in a step gradient manner (0–10 min, 15%–18% A; 10–30 min, 18%–23% A; 30–40 min, 23% –30%A;
40–50 min, 30%–40% A; 50–60 min, 40%–15%A) ; flow-rate, 1 mL/min; detection wavelength, 360 nm.

Qualitative HPLC chromatography was performed on seven standards as follows: rutin, hyperin,
isoquercetin, hibifolin, myricetin, quercetin-31-O-glucoside and quercetin. Linear regression analysis
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for each of the seven standards was performed by plotting the peak area (Y) versus content (X, ng/mL).
The linear calibration curves, linear ranges and correlation coefficients (R2) are shown in Table 4.
The extraction yields of seven compounds for all experiments were calculated by the calibration curves.
The sum of the contents of the seven pharmacologically active flavonoids was taken as the major
flavonoid content.

Table 4. Linear calibration curves, linear ranges and correlation coefficients for the seven flavonoids.

Compound Linear Calibration Linear Range R2

Rutin Y = 32393X + 4828.5 0.3–125.0 0.9998
Hyperin Y = 38981X ´ 19675 3.7–150.0 0.9999

Isoquercetin Y = 35082X + 259.2 2.2–111.0 1.0000
Hibifolin Y = 46777X + 3563.3 5.0–250.0 0.9999
Myricetin Y = 39487X ´ 6277.1 1.1–50.0 0.9998

Quercetin-31-O-glucoside Y = 71346X ´ 631.5 5.0–250.0 0.9999
Quercetin Y = 78474X ´ 742.2 3.1–50.6 0.9999

4.4. DPPH Radical Scavenging Activity Assay

The DPPH radical assay has been widely used to evaluate the antioxidant activity of various
active materials. DPPH radical scavenging activity was tested according to the method [31] with
some modifications. Briefly, each extract was diluted with ethanol to form a series of concentration
gradients. One hundred µL of each sample solution was added to 96- well plate, and then mixed with
100 µL of ethanol solution containing DPPH radicals (0.2 mmol/L). After incubation for 30 min at
room temperature in the dark, the absorbance of reactants was measured at 517 nm in a Benchmark
plus microplate spectrophotometer reader (Bio-Rad, Philadelphia, PA, USA). Antioxidant activity was
expressed as an inhibition percent of DPPH radical and calculated from Equation (3):

DPPH radical scavenging activity p%q “ r
Anegative control ´ Asample

Anegative control
s ˆ 100% (3)

where Anegative control was the absorbance of the control (without extract); Asample was the absorbance of
the sample. Then the antioxidant activity was shown as the effective concentration at 50% (IC50 value),
the concentration of sample required to scavenge 50% DPPH free radicals, were calculated by nonlinear
regression analysis and expressed in mg/mL.

4.5. Box-Behnken Experimental Design

In this work, a Box-Behnken experimental design with three variables at three levels was
used, which allows us to determine the interactions among the factors and improve the quality
of prediction [22]. The software Design Expert (Stat-Ease Inc., Minneapolis, MN, USA) was employed
for experimental design, model building and data analysis.

The effect of extraction pressure (X1), temperature (X2) and ethanol content (X3) on major
flavonoids content (Y1) and IC50 value of antioxidant activity (Y2) was investigated using a
Box-Behnken statistical model. The 17 runs of independent variables and responses are shown
in Table 5.
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Table 5. The Box-Behnken experimental design and experimental variables (X1: pressure;
X2: temperature; X3: ethanol content) and responses (Y1: major flavonol content; Y2: IC50 value).

Run X1 (MPa) X2 (˝C) X3 (Vethanol/Vwater, %) Y1 (mg/g) Y2 (mg/mL)

1 30 50 60 34.79 0.447
2 30 40 75 33.56 0.357
3 20 40 60 32.48 0.435
4 20 50 75 40.33 0.305
5 30 60 75 36.11 0.407
6 20 50 75 39.92 0.319
7 20 50 75 40.51 0.296
8 20 60 60 34.19 0.391
9 20 50 75 39.97 0.314
10 10 40 75 32.13 0.315
11 20 40 90 37.52 0.302
12 20 50 75 40.72 0.281
13 10 60 75 35.74 0.299
14 20 60 90 41.58 0.304
15 10 50 90 38.43 0.311
16 30 50 90 38.98 0.309
17 10 50 60 33.41 0.327

4.6. Statistical Analysis

A second-order polynomial model was used to evaluate the relationship between the response
and the variables, which can be expressed as the following Equation (4):

Y “ β0 `β1X1 `β2X2 `β3X3 `β11X2
1 `β22X2

2 `β33X2
3 `β12X1X2 `β13X1X3 `β23X2X3 (4)

where Y is the predicted response; X1 ´ X3 are independent factors that influence the response Y;
β0 is a constant; β1 ´ β3 are the linear coefficients for the main variable effects, β11, β22 and β33 are
quadratic coefficients, β12, β13 and β23 are interaction coefficients. Analysis of variance (ANOVA) was
employed to analyze the chosen model and view the results. The statistical significant difference was
defined as a probability (p-value) less than 0.05 and coefficient of determination (R2) greater than 0.900.

4.7. Soxhlet Extraction

A known quantity of ground sample (about 0.5 g) was accurately weighed into an extraction
thimble. Extractions were carried out in a Soxhlet extractor with 50 mL of 95% ethanol in an 87 ˝C water
bath. After 28 cycles in the Soxhlet equipment, the extracts were transferred to a 50 mL volumetric
flask and made up to the mark with 95% ethanol.

4.8. 3T3-L1 Cell Culture and Adipocyte Differentiation

In 6-well plates, 3T3-L1 preadipocytes were grown in DMEM supplemented with 10% FBS and
antibiotics (100 units/mL penicillin and 100 g/mL streptomycin). The culture was maintained in
a 5% CO2 atmosphere at 37 ˝C. Two days post-confluence, 3T3-L1 cells (designated as day 0) were
stimulated by a differentiation mixture culture containing 1 µM DEX, 0.5 mM IBMX and 1 µg/mL
insulin in DMEM with 10% FBS for 3 days (days 0–2). Then cells were incubated in the medium
with DMEM containing 10% FBS and 10 µg/mL insulin for 2 days further (days 3–4), and thereafter
incubated in DMEM containing 10% FBS and refreshed at 2 day intervals (days 5–8). Dosage groups:
adding the final concentration of 25, 50, 100 and 200 µg/mL extracts in the above cell culture fluid from
day 0 to 8. Pioglitazone groups were given 10 µmol/L pioglitazone in the whole cell culture process.
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4.9. Real-Time PCR Detection Cell Differentiation Marker Genes

Total RNA was extracted from the 3T3-L1 cells by an Rneasy MiNi Kit from the normal and
dosage and pioglitazone groups on days 2, 4 and 8, and reverse transcription and real-time PCR were
performed by a RT PrimeScript Kit and SYBR Premix Ex Taq, respectively. Table 6 shows the primer
sequences that were synthesized by Sangon Biotech Co., Ltd. (Shanghai, China). To enable comparison
of Ct (cycle threshold) values between groups, quantities of all target genes in the test samples were
normalized by GAPHD. The results of relative mRNA expression were used in formula:

2´44Ct, 4Ct = Ct value (target gene) ´ Ct value (GAPHD),
(5)44Ct = 4Ct (dosage group) ´4Ct (control group)

All results obtained were expressed as mean ˘ SD. Statistical analysis was performed using
the SPSS software (22.0 version; IBM, Armonk, NY, USA). Significant differences (p < 0.05) were
determined by One-way ANOVA.

Table 6. Primer sequences used for real-time PCR.

Mouse Primers Forward Primer Reverse Primer

PPARγ TTCAGAAGTGCCTGGCTGTG TCTTTCCTGTCAAGATCGCC
C/EBPα AGGAACACGAAGCACGATCAG CGCACATTCACATTGCACAA
GAPHD AATGACCCCTTCATTGAC TCCACGACGTACTCAGCGC

5. Conclusions

In this study, the optimized SFE extraction parameters were screened by a Box-Behnken response
surface methodology experiment. This is the first study on utilization of modified superficial CO2

for the extraction of flavonoids from the flowers of A. manihot, quantitative analysis by HPLC and
antioxidant activity determination by IC50 value. The optimum parameters for extraction of flavonoids
were 20 MPa, 53 ˝C,and 85% ethanol content. The results suggest that the flowers of A. manihot
can be a good source of natural antioxidants and SFE is an efficient method to extract its flavonoids.
Furthermore, the extracts might inhibit adipogenic activity through down-regulation of the expression
of PPARγ and C/EBPα (major adipogenic transcription activator) at mRNA in 3T3-L1 adipocytes.
Therefore, flavonoids may provide a possible therapeutic approach for the prevention and treatment
of obesity.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
7/810/s1.
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