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Abstract: M01A82W, M11A82W and M01A82WS72I are three cytochrome P450 BM3 (CYP102A1)
variants. They can catalyze the hydroxylation of testosterone (TES) and norethisterone at different
positions, thereby making them promising biocatalysts for steroid hydroxylation. With the aim of
obtaining more hydroxylated steroid precursors it is necessary to probe the steroidal substrate
diversity of these BM3 variants. Here, three purified BM3 variants were first incubated with
eight steroids, including testosterone (TES), methyltestosterone (MT), cholesterol, β-sitosterol,
dehydroepiandrosterone (DHEA), diosgenin, pregnenolone and ergosterol. The results indicated
that the two 3-keto-∆4-steroids TES and MT can be hydroxylated at various positions by the
three BM3 mutants, respectively. On the contrary, the three enzymes displayed no any activity
toward the remaining six 3-hydroxy-∆5-steroids. This result indicates that the BM3 mutants prefer
3-keto-∆4-steroids as hydroxylation substrates. To further verify this notion, five other substrates,
including two 3-hydroxy-∆5-steroids and three 3-keto-∆4-steroids, were carefully selected to incubate
with the three BM3 variants. The results indicated the three 3-keto-∆4-steroids can be metabolized to
form hydroxysteroids by the three BM3 variants. On the other hand, the two 3-hydroxy-∆5-steroids
cannot be hydroxylated at any position by the BM3 mutants. These results further support the above
conclusion, therefore demonstrating the 3-keto-∆4–steroid substrate preference of BM3 mutants,
and laying a foundation for microbial production of more hydroxylated steroid intermediates using
BM3 variants.
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1. Introduction

The hydroxylation of steroids is an important enzymatic reaction in steroid metabolism and
the resultant hydroxylated steroids can be used as the key-intermediates for the biosynthesis of
steroid drugs with diverse therapeutic purposes [1–5]. Both chemical and biological approaches
are thus used for the production of hydroxylated steroids [4–8]. Chemical synthesis suffers from
the complexity of hydroxysteroids, as well as the necessity of extreme reaction conditions and the
production of toxic by-products [9,10]. There are no reports, therefore, concerning the large scale
production of hydroxylated steroids by chemical synthesis methods. The biotechnological production
of hydroxysteroids by enzyme-catalyzed reactions or whole-cell biotransformation has made great
strides over the years. Several isolated P450s and engineered strains containing heterologous
P450s have been reported to hydroxylate steroids at various positions [6,7,11,12]. Among these
biological methods, steroid oxidations catalyzed by engineered P450 BM3 mutants have recently
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gained importance for their potential use to generate rather diverse and unique hydroxylated steroids
displaying important pharmacological activities [6–8,11].

Cytochrome P450 BM3, a well-known monooxygenase from Bacillus megaterium, was
initially found to catalyze the NADPH-dependent hydroxylation of long-chain fatty acids [13,14].
Later, P450 BM3 has been engineered to accommodate a wide range of other substrates including
short- and medium-chain fatty acid, alkanes and steroids [15–17]. More recently, engineered P450
BM3 variants have been reported to selectively hydroxylate steroids at various positions [6–8,11,18].
The first steroid-hydroxylating BM3 variant was reported in 2006 [8]. In that paper, a triple and two
double mutants were shown to form mainly 16β-OH-TES [8]. Since then, different BM3 variants,
like M01A82W, M11A82W and M01A82WS72I, have been described as biocatalysts for steroid
hydroxylation with altered regio- and stereoselectivity [6,7,11,18–20]. P450 BM3 variants are thus
deemed good biocatalyst candidates for the oxidative hydroxylation of steroids. The aim of previous
studies was usually to identify BM3 mutants capable of hydroxylating steroids at different positions.
Hence, only a few steroids, like TES [8,20], norethisterone [11,19] and progesterone [20], were used as
probes to verify the hydroxylation activity of different BM3 mutants. The limited steroid substrate
specificity of these BM3 mutants impedes their widespread application in the hydroxylation of steroidal
precursors. It has long been known that drug-metabolising P450s with substrate promiscuity are a
key factor in natural-product diversification. Therefore, it is necessary to probe the steroidal substrate
diversity of these BM3 variants in order to obtain more novel hydroxylated steroid precursors. Here, the
steroidal substrate specificity of three BM3 mutants M01A82W, M11A82W and M01A82WS72I, which
were shown previously to hydroxylate TES and norethisterone at various positions, was explored.
Specifically, the hydroxylation of eight steroids by three purified BM3 variants was performed first. The
results indicated that only 3-keto-∆4-steroids can be metabolized to hydroxylated metabolites. To verify
this conclusion, five other steroids including three 3-keto-∆4-steroids and two 3-hydroxy-∆5-steroids
were carefully selected and incubated with the aforementioned BM3 mutants. Detailed analysis
showed only the three 3-keto-∆4-steroids could be metabolized into different hydroxylated metabolites,
confirming a substrate preference of BM3 mutants for 3-keto-∆4-steroids. These results broaden the
known steroidal substrate promiscuity of BM3 variants, thereby expanding their synthetic utility as
biological catalysts.

2. Results and Discussion

2.1. Expression and Purification of BM3 Mutants

The pET28aM01A82W, pET28aM11A82W and pET28aM01A82WS72I were transformed into the
Escherichia coli strain Transetta (DE3) for heterologous expression, respectively.
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Figure 1. SDS-PAGE analysis of recombinant BM3 mutants. Crude protein extracts from a transformant
expressing M01A82W (lane 2), M01A82WS72I (lane 4), M11A82W (lane 5) or empty vector (lanes 1, 3, 6).
Lane M shows the proteins marker with the indicated molecular masses. The arrows indicated the
recombinant BM3 proteins.
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As depicted in Figure 1, an intense band with an apparent molecular mass of 119 kDa was
determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) detection,
suggesting the successful expression of a soluble M01A82W, M11A82W and M01A82WS72I protein.
The resulting three soluble proteins were then purified to apparent homogeneity using immobilized
metal affinity chromatography (IMAC).

2.2. Metabolism of TES by CYP102A1 Mutants

The three BM3 mutants were successfully expressed in E. coli. First of all, we needed to determine
whether these three purified BM3 variants possessed in vitro activity. Testosterone (Figure 2) has been
shown to be hydroxylated by the three BM3 variants tested [6,7].
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formed when TES was incubated with M01A82W, M01A82WS72I and M11A82W, respectively, thereby
suggesting that the three purified BM3 mutants are active.Molecules 2016, 21, 760 4 of 16 
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M01A82W, M01A82WS72I and M11A82W, respectively. Peak 1 is the testosterone standard. Peaks 2, 3,
4, 5 and 6 indicate the monohydroxy metabolites of testosterone produced by the various BM3 variants.

However, this number of products is inconsistent with previous reports [6,7]. TES was metabolized
by M01A82WS72I to five metabolites, one product more than those catalyzed by the same BM3
mutant described by Venkataraman et al. [6]. All five metabolites were identified by LC-MS as
monohydroxylated metabolites (m/z 305) (Figure S1). Product 5 was the major metabolite. For
structure characterization of the major metabolite, a large-scale incubation, which contained 17.5 mL
crude proteins (derived from 1000 mL cultures), 500 µM testosterone, 500 µM nicotinamide adenine
dinucleotide phosphate, reduced form (NADPH), and a regeneration system (0.3 mM NADP+, 0.8 mM
glucose 6-phosphate and 0.8 mM MgCL2 and 0.4 U/mL glucose 6-phosphate dehydrogenase), was
performed at 28 ˝C for 3 h. The reaction mixture was extracted with chloroform. The chloroform
extract was evaporated to dryness and the residues were resolubilized in acetonitrile. The resulting
high performance liquid chromatography (HPLC) injection solution was subsequently filtered prior
to preparative HPLC. The preparative major metabolite 5 was subjected to 600 MHz NMR analysis
and the structure of the major metabolite was assigned as 16α-hydroxytestosterone (16α-OH-T) based
on its 1H-NMR spectra and previously published data [6]. Details of the 1H spectra are tabulated in
Table 1. Previous results indicated that 16α-OH-T was eluted between 15β- and 16β-OH-T. There was
only one metabolite (product 6) that eluted before 16α-OH-T. Metabolite 6 was therefore presumed
to be 15β-OH-T. The result presented by Venkataraman et al showed there were two metabolites,
namely 16β- and 2β-OH-T, which eluted after 16α-OH-T. However, in the chromatogram illustrated in
Figure 3, there are three monohydroxylated metabolites (2, 3 and 4) that eluted after 16α-OH-T.

To identify the exact structures of these three metabolites, the preparative separation and
subsequent NMR analysis of the three metabolites were performed as mentioned above. Metabolite 2
was identified as 2β-OH-T, whereas metabolite 3 was identified as 16β-OH-T (Table 1). Since the fifth
metabolite (product 4) was only formed in a tiny amount, no further efforts were made to establish its
exact structure.
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Table 1. 1H and 13C-NMR data for 16β-OH-T, 16α-OH-T and 2β-OH-T (600 MHz for 1H-NMR and 150 MHz for 13C-NMR, D2O, δ in ppm).

Position
16β-OH-T 16α-OH-T * 2β-OH-T

δC δH δH δC δH

1 35.7 1.50–1.42 (m, 1H);
1.88–1.84 (m, 1H)

1.50–1.47 (m, 1H);
1.80–1.77 (m, 1H) 41.3 1.63–1.56 (m, 1H); 2.05 (m, 1H)

2 34 2.06–2.00 (m, 1H);
2.34–2.27 (m, 1H)

2.04–2.00 (m, 1H);
2.35–2.29 (m, 1H) 68.6 4.00–3.95 (m, 1H)

3 199.5 199.4
4 124 5.73 (s, 1H) 5.72 (s, 1H) 120.3 5.63 (s, 1H)
5 170.9 172

6 32.7 2.28–2.26 (m, 1H);
2.37–2.34 (m, 1H)

2.29–2.25 (m, 1H);
2.42–2.37 (m, 1H) 30.3 2.19–2.16 (m, 1H); 2.40–2.37 (m, 1H)

7 31.7 1.02 -0.97 (m, 1H);
1.73–1.68 (m, 1H)

1.00–0.98 (m, 1H);
1.73–1.68 (m, 1H) 32.5 0.85 (m, 1H); 1.87–1.84 (m, 1H)

8 35 1.50–1.42 (m, 1H) 1.50–1.47 (m, 1H) 34.1 1.63–1.56 (m, 1H)
9 54.1 0.97–0.93 (m, 1H) 0.99–0.96 (m, 1H) 51.1 1.37–1.34 (m, 1H)

10 42.4 43.3

11 20.4 1.31–1.27 (m, 1H);
1.35–1.31 (m, 1H) 1.47–1.44 (m, 2H) 22.1 1.63–1.56 (m, 1H); 1.50–1.44 (m, 1H)

12 37 1.06–1.03 (m, 1H);
1.67–1.63 (m, 1H)

1.04–1.00 (m, 1H);
1.43–1.40 (m, 1H) 35.6 1.03 (m, 1H); 1.78–1.72 (m, 1H)

13 38.7 36.7
14 47 0.81–0.79 (m, 1H) 0.81–0.79 (m, 1H) 50.1 0.85 (m, 1H)

15 35 1.15–1.10 (m, 1H);
1.93–1.88 (m, 1H)

1.83–1.81 (m, 1H);
1.06–1.04 (m, 1H) 23.5 1.50–1.44 (m, 1H); 1.34 (m, 1H)

16 70 3.39–3.36 (m, 1H) 4.17–4.13 (m, 1H) 29.5 1.85–1.81 (m, 1H); 1.43–1.39 (m, 1H)
17 80.7 4.19 (m, 1H) 3.50 (d, J 5.7, 1H) 80.3 3.47–3.41 (m, 1H)
18 11.9 0.86 (s, 3H) 0.84 (s, 3H) 11.8 0.67 (s, 3H)
19 17.4 1.20 (s, 3H) 1.18 (s, 3H) 22.4 1.14 (s, 3H)

* No 13C-NMR analysis of 16α-OH-T was performed.
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TES was previously reported to be metabolized by both M01A82W and M11A82W to form
three monohydroxylated metabolites, namely 2β-OH-T, 15β-OH-T and 16β-OH-T [7]. In the present
investigation, 2β-OH-T (product 2), 15β-OH-T (product 3) and 16β-OH-T (product 6) were also
identified in the reaction mixture containing M01A82W or M11A82W. Moreover, a fourth trace
metabolite 4 was detected in both the reaction mixtures. Although the exact structure of product 4
was not fully characterized due to its trace amounts, the MS data identifies it as a monohydroxylated
testosterone derivative.

During the preparation of the hydroxylated metabolites, we used the crude proteins containing
BM3 mutants as catalysts. To exclude any interference of E. coli crude proteins, a control strain
harboring the empty vector pET-28a (+) was set up. As illustrated in Figure 3, no products were
detected in the control E. coli, thereby suggesting the formation of trace product 4 is not caused by the
total protein of E. coli, thus in this contribution, besides the previously identified metabolites, the three
BM3 variants were found to hydroxylate testosterone at a new position in small amounts.

2.3. Metabolism of MT by CYP102A1 Mutants

Having shown that the three purified BM3 mutants possess the in vitro ability to hydroxylate
TES at different positions, the three BM3 variants were next used as probes to test different
steroidal substrates. Seven steroids, including cholesterol, β-sitosterol, DHEA, diosgenin, ergosterol,
pregnenolone and MT (Figure 2), were incubated with the three P450 BM3 mutants, respectively. The
results indicated that new metabolites were formed after incubation of 200 µM MT in the presence of
the three variants of CYP102A1 (Figure 4).
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empty vector, M01A82W, M01A82WS72I and M11A82W, respectively. Peak 1 is the methyl-testosterone
standard; peaks 2 and 3 indicate the monohydroxy metabolites of methyltestosterone.

As illustrated in the chromatogram obtained after incubation of BM3 mutant M01A82W with
MT, one major metabolite was produced (Figure 4). The mass spectrum of this metabolite showed
a [M + H]+ peak at a m/z value of 319.29 (Figure S2), consistent with the introduction of a hydroxyl
group into MT. Its structure was determined on the basis of a combination of 1H-NMR, 13C-NMR,
HMQC, HMBC and CD assays. Detailed 1H-NMR and 13C-NMR data are given in Table 2. As shown
in the HMBC, there is only one oxygenated methylene signal (δH 3.63, dd), which has long-range
correlation both to 20-CH3 and 14-C, so the newly hydroxylated methylene is determined to be C-16.
The OH group was determined to be in a β-orientation from the CD experiment. After the addition of
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Mo2(OAc)4, a significant positive Cotton effect was observed at 310 nm (Figure 5), thereby assigning
this metabolite as 16β-OH-MT according to the literature analysis [21,22].

310.5 nm, 3.10619220 nm

315 nm 274 nm, -0.664203

Wavelength [nm] Wavelength [nm]

Mol, CD Mol, CD

200                            250                             300                             350                           400 250                            300                             350                             400                           450

Figure 5. CD spectrum of 16β-OH-MT without Mo2(OAc)4 (A) or mixed with Mo2(OAc)4 (B).

M1182W also converted MT to form mainly 16β-OH-MT (Figure 4). However, M01A82WS72I can
metabolize MT to form several new metabolites (Figure 4). Besides the two major metabolites (peaks 2
and 3), there were several metabolites formed in trace amounts that eluted between products 2 and 3
(Figure 4). A HPLC-NMR coupling technology was therefore applied, allowing rapid and detailed
structural characterization of the reaction mixture catalyzed by M01A82WS72I. A large-scale incubation
(25 mL) of M01A82WS72I with MT was performed. The resulting reaction mixture was subsequently
injected to the HPLC-NMR system for analysis. As illustrated in Figure 6, four new metabolites with
retention times (Rt) of 10.46 (B), 17.43 (C), 18.90 (D) and 20.25 (E) min were obtained after incubation
of M01A82WS72I with MT. Figure S3 shows the ESI mass spectrum of the four MT metabolites which
generated abundant [M + H]+ ions at a m/z value of 319. This pseudomolecular ion was in accordance
with the hypothesis of an hydroxylated metabolite of MT [23]. The metabolites eluted at 10.46, 18.90
and 20.25 min were assigned to 16α-OH-MT, 16β-OH-MT and 2β-OH-MT based on the NMR spectra
and 1H and 13C chemical shifts. The assignment of 16β-OH-MT is the same as described above. The
structural identification of 2β-OH-MT and 16α-OH-MT was described as follows (Table 2):

16α-OH-MT: in the HMBC, there is only one oxygenated methylene signal (δH 4.18, dd), which has
long-range correlations to 20-CH3, 13-C and 14-C, so the newly hydroxylated methylene is determined
to be C-16. The oxygenated methane signal (δH 4.18) is at lower field than in 16β-OH-MT (δH 3.63),
indicating it is sterically affected by 17-CH3, which is an α-orientation. Besides, its HPLC retention
time is shorter than that 16β-OH-MT, which together determined the 16-OH to be in the α-orientation
(Table 2).

2β-OH-MT: the final quantity obtained was not far from the detection limit of the 13C-NMR
instrument used. The 1H-NMR spectrum was recorded to demonstrate the purity of the product and
to confirm its structure. In the HMBC, 4-H (δH 5.68) is long-ranged correlated to C-2, C-6, and C-10. In
the 3 signal of the 3-carbonyl, the δC of C-2 should be the largest (δC 69.0). In the HMQC, it is directly
correlated to the only one oxygenated methylene signal (δH 4.15, dd). All these clues suggest the
hydroxyl group is attached to C-2.The narrow-wide doublet-doublet shape of H-2 indicated that this
proton was axial. In other words, the orientation of the hydroxyl was on the β-face [24].

Details of the 1H- and 13C-NMR spectra of 2β-OH-MT and 16α-OH-MT are also tabulated
in Table 2.

The metabolite C eluted at 17.43 min has not been well-characterized due to the trace amount
available. The three BM3 mutants did not metabolize any of the other six steroids tested.
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Table 2. NMR data for 16α-OH-MT, 16β-OH-MT and 2β-OH-MT (600 MHz for 1H-NMR and 150 MHz for 13C-NMR, D2O, δ in ppm) obtained via HPLC-NMR.

Position
16α-OH-MT 16β-OH-MT 2β-OH-MT

δC δH HMBC δC δH HMBC δC δH HMBC

1 35.8 1.87, m C2, C3, C10, C19 36.8 2.16, m C2, C3 41.6 1.61–1.68, m C2, C9, C10, C19
2 33.2 2.25, m; 2.42, m C1, C3, C4, C10 33.9 2.25, m; 2.43, m C1, C3, C4 69.8 4.15–4.18, m C1, C3
3 200.9 202.4 201.6
4 122.7 5.68, s C3, C5 124.1 5.68,s C3, C5 120.5 5.69, s C2, C6, C10
5 173.7 175.1 174.3
6 33.2 2.28, m; 2.46, m C4, C5, C7 34.7 2.29, m; 2.47, m C4, C5, C7 32.7 2.39–2.45, m;2.51–2.59, m C5, C7, C10
7 31.4 1.38, m; 1.81, m C6, C8, C9 33.1 1.03, m;1.87, m C6, C8, C9 33.9 1,31, m C5, C9
8 35.8 1.60, m C6, C8, C9 37.2 1.69, m C7, C9 35.7 1.61–1.68, m C9, C10, C14, C15
9 35.8 0.93, m C8, C10, C11, C12, C19 55.4 0.91, m C8, C10, C11, C19 51.5 0.93, m C8, C10
10 38.6 37.2 42.4
11 19.8 1.46, m; 1.51, m C9, C12 21.6 1.48, m;1.53, m C9, C12 27.1 1.51–1.56, m; 1.61–1.68, m C9, C12
12 31.5 1.00, m; 1.67, m C9, C18 33.5 0.94, m; 1.60, m C9, C13, C18 37.8 1.26–1.28, m C18
13 45.8 46.0 47.2
14 47.9 1.41, m C13, C15, C16, C18 47.9 1.31, m C13, C15, C16, C18 49.9 0.95–1.03, m C8, C9, C15
15 32.4 1.35, m; 2.06, m C13, C14, C16 35.8 0.99, m;2.06m C13, C14, C16 24.2 1.28–1.30, m; 1.51–1.56, m C14, C16
16 79.1 4.15, m C14, C15, C17 78.3 3.58, m C15, C17, C20 26.1 1.80–188, m C15
17 83.4 79.8 82.0
18 13.4 0.89, s C12, C13, C17 14.2 0.87, s C12, C13, C17 14.7 0.87, s C12, C13, C17
19 16.2 1.21, s C1, C9 17.7 1.22, s C9, C10 23.0 1.21, s C13, C16, C17
20 16.7 1.11, s C13, C16, C17 24.2 1.07, s C13, C16, C17 23.5 1.16, s C5, C9, C10
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metabolites eluted at 10.46 (B), 17.43 (C), 18.90 (D) and 20.25 (E) min, respectively.

2.4. Metabolism of 3-keto-∆4-steroids by CYP102A1 Mutants

Structural analysis reveals that TES and MT are two 3-keto-∆4-steroids, whereas the other six
steroids not hydroxylated by BM3 variants are all 3-hydroxy-∆5-steroids. Hence, we presumed that
the three BM3 mutants preferred 3-keto-∆4-steroids as substrates. To verify the hypothesis, five
steroids, including two 3-hydroxy-∆5-steroids and three 3-keto-∆4-steroids, were further carefully
selected to incubate with the three BM3 mutants (Figure 7). The two 3-hydroxy-∆5-steroids
include 17α-hydropregnenolone and androstenediol, while the other three 3-keto-∆4-steroids are
androstenedione, progesterone and 17α-hydroprogesterone (Figure 7). The five compounds, together
with the aforementioned three steroids DHEA, pregnenolone and TES, can form four pairs of
structurally similar compounds, namely DHEA and androstenedione, pregnenolone and progesterone,
17α-hydropregnenolone and 17α-hydroprogesterone, as well as androstenediol and TES (Figure 7).

Actually, the four 3-hydroxy-∆5-steroids are substrates of the respective ∆4-3-keto
configuration. The biosynthesis of DHEA from androstenedione, pregnenolone from progesterone,
17α-hydropregnenolone from 17α-hydroprogesterone, and androstenediol from TES occur under the
action of 3β-hydroxysteroid dehydrogenase/∆5´4 isomerase (3β-HSD, EC 1.1.1.145) (Figure 7). These
structurally similar compounds were therefore selected to incubate with the three purified BM3 mutant
proteins. HPLC profiles showed the BM3 mutants can metabolize the four 3-keto-∆4-steroids to form
various metabolites (Figures 3, 4, 6 and 8–10). However, there are no new metabolites after incubation
of the 3-hydroxy-∆5-steroids with the three purified enzymes (Figures S5, S7, S9 and S10).

As illustrated in Figure 8, all three BM3 mutants M01A82W, M01A82WS72I and M11A82W
can convert progesterone to form three new metabolites (2, 3 and 4). These new metabolites were
identified by MS as monohydroxylated products (m/z 331, Figure S4). However, the further structural
characterizations of these compounds were not performed due to their trace amount. On the other
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Figure 8. (a) HPLC chromatogram of progesterone; (b)–(e) progesterone incubations with empty vector,
M01A82W, M01A82WS72I and M11A82W, respectively. Peak 1 is a progesterone standard; peaks 2, 3
and 4 are three monohydroxylated metabolites of progesterone.
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17α-Hydroxyprogesterone is also a 3-keto-∆4-steroid. As shown in Figure 9, all the three BM3
enzymes can metabolize 17α-hydroxyprogesterone to form two monohydroxylated metabolites
with an m/z value of 347 (Figure S6). The concentrations of the two metabolites are too
low to perform structural analyses. However, when 17α-hydroxypregnenolone, a substrate of
17α-hydroxyprogesterone, was incubated with the three BM3 proteins, no new metabolites were
appeared in the HPLC profiles (Figure S7).
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Figure 9. (a) HPLC profile of 17α-hydroxyprogesterone; (b–e) 17α-hydroxyprogesterone incubations
with empty vector. M01A82W. M01A82WS72I and M11A82W, respectively. Peak 1 shows a
17α-hydroxyprogesterone standard; peaks 2 and 3 show the two monohydroxylated metabolites
of 17α-hydroxyprogesterone.

Androstenedione and DHEA are structurally similar compounds. When the two steroids reacted
with the three BM3 enzymes, two opposite results were not unexpected. Specifically, androstenedione
can be hydroxylated by the three BM3 proteins at varied positions, which can be verified by the
corresponding HPLC profile (Figure 10) and ESI-MS results (Figure S8). On the contrary, DHEA has
no reactivity with any of the three BM3 variants (Figure S9). As indicated in Figure 10, M01A82W
can hydroxylate androstenedione at one position. The sole metabolite was subsequently assigned to
be 1α-hydroxyandrostenedione based on the combination of LC-MS and NMR analyses. The NMR
data details are summarized in Table 3. M11A82W can add a hydroxyl group to androstenedione at
the same position. Besides hydroxylating at the 1β position, M01A82WS72I is able to hydroxylate
androstenedione at two other positions. The exact structures of two monohydroxylated metabolites
had never been well-characterized due to their trace amount.

Table 3. NMR data for 1α-OH-androstenedione (600 MHz for 1H-NMR and 150 MHz for 13C-NMR,
DMF, J in Hz, δ in ppm).

Position
1α-OH-Androstenedione

δC δH

1 74.77 3.81 (t, J = 8.6 Hz, 1H)
2 35.73 2.40–2.36 (m, 1H) 2.42 (dd, J = 14.0 Hz, 5.0, 1H)
3 198.22
4 123.55 5.57 (s, 1H)
5 170.74
6 32.34 2.26–2.19 (m, 2H)
7 31.59 0.94-0.88 (m, 1H) 1.88–1.85 (m, 1H)
8 33.96 1.58–1.53 (m, 1H)
9 46.63 1.68–1.63 (m, 1H)
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Table 3. Cont.

Position
1α-OH-Androstenedione

δC δH

10 38.92
11 20.3 1.43–1.34 (m, 1H )1.58–1.53 (m, 1H)
12 31.85 1.02–0.95 (m, 1H) 1.74 (ddd, J = 22.3, 11.2, 3.5 Hz, 1H)
13 44.81
14 54.24
15 31.24 1.43–1.34 (m, 1H) 1.96–1.92 (m, 1H)
16 35.52 2.13–2.07 (m, 1H) 2.36–2.30 (m, 1H)
17 218.95
18 14.16 0.85 (s, 3H)
19 16.7 1.15 (s, 3H)
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Figure 10. (a) HPLC chromatogram of androstenedione; (b–e) androstenedione incubations with empty
vector, M01A82W, M01A82WS72I and M11A82W, respectively. Peak 1 shows the androstenedione
standard; peaks 2, 3 and 4 are three monohydroxylated metabolites of androstenedione.

Androstenediol is the ∆5–3-hydroxy configuration of testosterone. Androstenediol was therefore
incubated with the three BM3 mutants. As expected, the incubation of androstenediol with the BM3
variants did not result in any new products (Figure S10).

The hydroxylation of steroids is an important enzymatic reaction in the course of preparation
of oxysterols and saponins with diverse pharmacological activities. As biocatalysts capable of
hydroxylating steroids, bacterial P450 BM3 mutants are considered to have a very broad application
prospects. However, the limited substrate diversity mentioned previously hinders their application in
the preparation of hydroxylated steroids. In the present investigation, we investigated the oxidation
effects of three BM3 mutants on multiple steroid substrates. The P450 BM3 variants chosen for this
experiment included M01A82W, M11A82W and M01A82WS72I, which had been shown to display
regio- and stereoselective hydroxylation activity towards a few steroid probes [6,7]. From the results,
we revealed that these P450 BM3 mutants preferred 3-keto-∆4-steroids as substrates. To our knowledge,
this is the first report about the substrate preference of P450 BM3 variants, which lays a foundation for
a structure-activity relationship study of bacterial P450 BM3s.

3. Experimental Section

3.1. Substrates, Chemicals and Enzymes

Materials used in this study were as follows: a total of 13 steroids were used as substrates
in the enzyme assays. The details of the sources of these steroidal substrates are summarized in
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Supplementary Materials Table S1; Restriction enzymes (Takara Shuzo Co. Ltd., Kyoto, Japan)
and KOD-Plus-Neo DNA polymerases (Toyobo Co. Ltd., Osaka, Japan) were applied to construct
expression vectors; Ni-Sepharose (Invitrogen, Carlsbad, CA, USA) was used for protein purification;
Fast Mutagenesis System kit was used for the site-directed mutagenesis of BM3 variants (TransGen
Biotech Co. Ltd., Beijing, China). All other chemicals used in this study were of analytical grade.

3.2. Strains and Plasmids

Prokaryotic expression vector pET-28a (+), which was used for heterologous expression, was
purchased from Novagen (Madison, WI, USA). The CYP102A1 mutants M01A82W (R47L/A82W/
F87V/L188Q/E267V) and M11A82W (R47L/E64G/F81I/A82W/F87V/E143G/L188Q/E267V/
G415S) [7] were synthesized and cloned into expression vector pET-28a (+) by Taihe Biotechnology
Co. Ltd. (Beijing, China) One of the resulting expression vector pET28aM01A82W was used either for
heterologous expression of M01A82W, or as the template for the third BM3 mutant M01A82WS72I [6].
The E. coli strain Trans1-T1 and Transetta (DE3) (TransGen Co. Ltd., Beijing, China) were used as a
bacterial host for recombinant plasmid amplification and enzyme expression, respectively. The strain
was grown in Luria-Bertani medium(10 g/L Bacto-Tryptone, 5 g/L Bacto-yeast extract, 10 g/L NaCl)
or induced in TB medium (12 g/L Bacto-Tryptone, 24 g/L Bacto-yeast extract, 4 mL glycerol, 72 mM
K2HPO4, 17 mM KH2PO4), supplemented with appropriate antibiotics, i.e., kanamycin (30 mg/mL)
and chloromycetin (34 mg/mL) for selection.

3.3. Site-Directed Mutagenesis

Site-directed mutagenesis was performed to obtain the third BM3 mutant M01A82WS72I as
described previously [25]. Specifically, the S72I mutation were introduced into M01A82W by
PCR-based amplification of the entire pET28aM01A82W expression plasmid using two mutated
oligonucleotide primers, each complementary to the opposite strand of the vector. The sequence
of the forward primer for the mutation was 51-TTTGATAAAAACTTAATTCAAGCGCTT-31,
with the altered residue shown in bold italics. The reverse primer for this position was
51-ATTAAGTTTTTATCAAAGCGTGATTCA-31. All components necessary for PCR-based mutagenesis,
contained in the Fast Mutagenesis System kit, were used according to the manufacturer’s instructions.
The mutants were confirmed by sequencing and those plasmids with target substitutions and without
other unwanted mutations were retained.

3.4. Expression and Purification of BM3 Mutants

The expression plasmids pET28aM01A82W, pET28aM11A82W and pET28aM01A82WS72I
were transformed into the expression host strain Transetta (DE3) for heterologous expression of
the three BM3 variants. Strains inoculation and genes induction were performed as described
previously [25–28]. Briefly, a single transformant containing pET28aM01A82W, pET28aM11A82W
or pET28aM01A82WS72I was used to start a 10 mL LB culture with chloromycetin (34 mg/mL) and
kanamycin (30 mg/mL) at 37 ˝C and 200 rpm. The starter culture was then used to inoculate 100 mL TB
medium for continuous culture until OD600 reached 0.6 at the same antibiotic concentrations as above.
Subsequently, isopropyl β-D-thiogalactopyranoside (IPTG) was added to induce the heterologous
expression of M01A82W, M11A82W and M01A82WS72I at the final concentration of 0.1 mM. After
induction culture at 20 ˝C for 20 h, the induced cells were harvested by centrifugation (10,000 g, 5 min)
at 4 ˝C. The resultant cell pellets (derived from 1 mL culture) were analyzed via SDS-PAGE to confirm
the presence of recombinant M01A82W, M11A82W or M01A82WS72I, first and then, the rest cell pellets
were prepared for protein purification.

For enzyme purification, all steps were performed at 4 ˝C. First, E. coli cells were washed and
resuspended in lysis buffer (50 mM potassium phosphate, pH7.4). Cells were then lysed with a
high-pressure homogenizer (800 bar, 3 passes), after which 1 U/mL DNaseI was added, and then the
homogenate was incubated at 4 ˝C for approximately 2 h. After centrifugation at 12,000 g for 30 min,
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the supernatant was passed through a 0.45 µm pore-size filter to remove E. coli cell debris and other
contaminants, and then loaded onto a pre-equilibrated (20 mM sodium phosphate buffer containing
10–50 mM imidazole and 300 mM NaCl, pH 8.0) to remove non-specifically bound proteins, after
which an elution buffer (20 mM sodium phosphate containing 200 mM imidazole and 300 mM NaCl,
pH 8.0) was used to elute the His6-tagged protein. To remove small molecules such as imidazole,
dialysis was performed. A semipermeable membrane with a molecular weight cutoff of 30 kDa was
selected and approximately 20 mL protein sample was dialyzed against 1 L dialysis buffer (10 mM
sodium phosphate, pH 8.0) for 4 h at 4 ˝C with four changes of dialysis buffer. Proteins were then
either stored at ´80 ˝C or used directly.

3.5. Metabolism of Steroids by CYP102A1 Mutants

Hydroxylation activity of purified M01A82W, M11A82W or M01A82WS72I was determined by
measuring the formation of hydroxylated derivatives from steroid substrates by in vitro reactions.
Unless specified otherwise, the final volume of the reaction mixture was 200 µL, with a steroid
substrate concentration of 200 µM. The reactions were initiated by addition of an NADPH regenerating
system (final concentrations of 0.2 mM NADPH, 0.3 mM glucose 6-phosphate, and 0.4 unit/mL
glucose-6-phosphate dehydrogenase) using an enzyme-coupled method [29]. The reaction was allowed
to proceed for 3 h at 25 ˝C and terminated by the addition of 100 µL of chloroform. Precipitated protein
was removed by centrifugation (16,200 g, 5 min), and the organic layers were evaporated using a
vacuum pump. The formation of hydroxylated steroid derivatives was unambiguously determined by
a combination of by HPLC-UV, HPLC-MS, 1H- and 13C-NMR and LC-SPE-NMR.

HPLC-UV was performed on a LaCrom elite L-2000 HPLC system (Hitachi, Toyokawa, Japan)
using a C18 column (YMC-Pack ODS-A (5 µm, 12 nm, 250 ˆ 4.6 mm)). Chromatographic condition
was as follow. The mobile phase consisted of deionized water-trifluoroacetic acid (A, 99.95%:0.05%,
v/v) and acetonitrile (B) in gradient mode as follows: from 1 to 15 min, linear increase from 20%
to 60% B; from 15 to 20 min, linear increase to 100% B. The flow rate was kept at 1.0 mL/min and the
column temperature was maintained at ambient. The sample injection volume was 50 µL. The DAD
detection was performed in the range of 210–284 nm. LC-MS and NMR analyses were performed
as previously reported [26,27,30]. LC-SPE-NMR experiments were performed using an Agilent 1260
series HPLC (Agilent, Palo Alto, CA, USA) interfaced with an AVANCE III HD 600 MHz spectrometer
(Bruker, Fallanden, Switzerland). The chromatographic separation was performed using an YMC-Pro
C18 column (5 µm, 12 nm, 250 ˆ 4.6 mm) with an isocratic elution of 65% water-trifluoroacetic acid
(A, 99.95%:0.05%, v/v) and 35% acetonitrile (B) at a flow rate of 0.8 mL/min. The column temperature
was maintained at 30 ˝C. UV spectra were recorded from 190 to 400 nm. Varied hydroxylated
metabolites of steroids were enriched using the on-line solid-phase extraction (SPE) add-on. The
resulting enriched metabolites were then structurally characterized by NMR analysis at 600 MHz for
1H-NMR and 150 MHz for 13C-NMR using the solvent CDCl3. Chemical shifts (δ) are given in ppm,
coupling constants (J) are given in Hertz (Hz).

4. Conclusions

Bacterial P450 BM3 mutants were reported to display altered regio- and stereoselectivities in
hydroxylations of a few steroids. P450 BM3 mutants were therefore deemed to be promising candidates
for biocatalysis of steroids. Hence, it is necessary to probe the steroidal substrate diversity of these BM3
variants with the aim of obtaining more hydroxylated steroids precursors. In the present investigation,
a total of 13 steroids were used as substrates to probe the hydroxylation capacity of three representative
BM3 mutants. The results revealed that the three BM3 proteins were indeed able to metabolize
3-keto-∆4-steroids to monohydroxylated metabolites. On the contrary, the three BM3 mutants had no
any oxidative activity on 3-hydroxy-∆5-steroids. These results suggest a substrate preference of BM3
mutants towards 3-keto-∆4-steroids. These results broaden our knowledge of the steroid substrate
promiscuity of BM3 variants, thereby expanding their synthetic utility as biological catalysts.
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