Supplementary Materials: Regioselective Benzoylation of Diols and Carbohydrates by Catalytic Amounts of Organobase

Yuchao Lu, Chenxi Hou, Jingli Ren, Xiaoting Xin, Hengfu Xu, Yuxin Pei, Hai Dong and Zhichao Pei

Contents

1. Characterization of Important Known Compounds	S2
2. ¹ H-NMR and ¹³ C-NMR Spectra	-S4
Reference	- S 7

1. Characterization of Important Known Compounds

Methyl 6-*O*-*benzoyl*-*α*-*D*-*glucopyranoside* (**2**): ¹H-NMR (500 MHz, CDCl₃) δ 8.05–7.98 (m, 2H), 7.53–7.50 (m, 1H), 7.39 (m, 2H), 4.78 (d, *J* = 3.4 Hz, 1H, H₁), 4.67 (dd, *J* = 12.1, 4.8 Hz, 1H), 4.54 (d, *J* = 11.8 Hz, 1H), 3.86 (dd, *J* = 9.6, 3.2 Hz, 2H), 3.80 (t, *J* = 8.9 Hz, 1H), 3.56 (d, *J* = 6.2 Hz, 1H), 3.48 (d, *J* = 9.5 Hz, 1H), 3.43 (s, 3H, OMe) [1].

2-*Hydroxy*-2-*phenylethyl benzoate* (**4a**): ¹H-NMR (500 MHz, CDCl₃) δ 8.11–8.03 (m, 2H), 7.64–7.54 (m, 1H), 7.45 (dd, *J* = 10.7, 4.7 Hz, 4H), 7.41–7.35 (m, 3H), 5.12 (d, *J* = 8.1 Hz, 1H), 4.54 (dd, *J* = 11.6, 3.5 Hz, 1H), 4.43 (dd, *J* = 11.6, 8.2 Hz, 1H) [2].

1-*Phenylethane*-1,2-*diyl dibenzoate* (**4b**): ¹H-NMR (500 MHz, CDCl₃) δ 8.19–8.12 (m, 2H), 8.08–8.00 (m, 2H), 7.66–7.55 (m,4H), 7.52–7.36 (m, 7H), 6.47 (dd, *J* = 8.2, 3.7 Hz, 1H), 4.80 (dd, *J* = 11.9, 8.2 Hz, 1H), 4.72 (dd, *J* = 11.9, 3.7 Hz, 1H) [3].

2-*Hydroxy*-3-*methoxypropyl benzoate* (**6a**): ¹H-NMR (500 MHz, CDCl₃): δ 8.09–8.03 (m, 2H, Ph), 7.60–7.55 (m, 1H, Ph), 7.48–7.41 (m, 2H, Ph), 4.45–4.36 (m, 2H, CH₂OCOPh), 4.19–4.12 (m, 1H, CHOH), 3.59–3.47 (m, 2H, CH₂OCH₃), 3.42 (s, 3H, OCH₃) [4].

3-*Methoxypropane*-1,2-*diyl dibenzoate* (**6b**): ¹H-NMR (500 MHz,CDCl₃) δ 8.13–8.04 (m, 4H, Ph), 7.64–7.57 (m, 2H, Ph), 7.51–7.44 (m, 4H, Ph), 5.68–5.62 (m, 1H, CHOCOPh), 4.74–4.62 (m,2H, CH₂OCOPh), 3.84–3.76 (m, 2H, CH₂OCH₃), 3.48 (s, 3H, OCH₃) [4].

3-(*Allyloxy*)-2-*hydroxypropyl benzoate* (**8a**): ¹H-NMR (500 MHz, CDCl₃) δ 8.3–8.07 (m, 2H, Ph), 7.64–7.59 (m, 1H, Ph), 7.53–7.45 (m, 2H, Ph), 6.01–5.90 (m, 1H), 5.37–5.22 (m, 2H), 4.52–4.41 (m, 2H), 4.27–4.18 (m, 1H), 4.15–4.07 (m, 2H), 3.63 (ddd, *J* = 15.8, 9.7, 5.2 Hz, 2H) [3].

3-*Phenoxypropyl benzoate* (**10a**): ¹H-NMR (500 MHz, CDCl₃) δ 8.17–8.06 (m, 2H), 7.69–7.59 (m, 1H), 7.56–7.45 (m, 2H), 7.40–7.32 (m, 2H), 7.10–7.00 (m, 1H), 7.02–6.92 (m, 2H), 4.67–4.55 (m, 2H), 4.48–4.40 (m, 1H), 4.17 (qd, *J* = 9.5, 5.2 Hz, 2H) [5].

3-*Phenoxypropane*-1,2-*diyl dibenzoate* (**10b**): ¹H-NMR (500 MHz, CDCl₃) δ 8.08 (dt, *J* = 12.2, 6.1 Hz, 4H), 7.61 (dd, *J* = 13.6, 7.3 Hz, 2H), 7.48 (dd, *J* = 13.8, 7.6 Hz, 4H), 7.40–7.32 (m, 2H), 7.09–6.95 (m, 3H), 5.88–5.78 (m, 1H), 4.92–4.75 (m, 2H), 4.48–4.33 (m, 2H) [5].

Morpholinopropyl benzoate (**14a**): ¹H-NMR (500 MHz, CDCl₃): δ 8.12–8.09 (m, 2H, Ar*H*), 7.64–7.58 (m, 1H, Ar*H*), 7.52–7.46 (m, 2H, Ar*H*), 4.46–4.33 (m, 2H, PhCO₂CH₂-), 4.17–4.11 (m, 1H, PhCO₂CH₂CH-),3.79–3.73 (m, 4H, -CH₂OCH₂-), 2.75–2.69 (m, 2H, -CH₂CH(OH)-), 2.55(m, 2H, -CH₂CH₂OCH₂-), 2.53–2.48 (m, 2H, -CH₂OCH₂-) [6].

3-*Morpholinopropane*-1,2-*diyl dibenzoate* (**14b**): ¹H-NMR (500 MHz, CDCl₃): δ 8.12–8.04 (m, 4H), 7.67–7.57 (m, 2H), 7.55–7.41 (m, 4H), 5.66 (qd, *J* = 6.4, 3.2 Hz, 1H), 4.75 (dd, *J* = 11.9, 3.2 Hz, 1H), 4.69–4.57 (m, 1H), 3.77–3.68 (m, 4H), 2.82–2.72 (m, 2H), 2.68–2.55 (m, 4H) [7].

3-*Hydroxybutyl benzoate* (**16a**): ¹H-NMR (500 MHz, CDCl₃): δ 8.11–8.05 (m, 2H, Ph), 7.64–7.56 (m, 1H, Ph), 7.52–7.45 (m, 2H, Ph), 4.74–4.37 (m, 1H), 3.78 (t, *J* = 77.9, 19.7, 7.1 Hz, 1H), 2.47–2.14 (m, 1H), 2.06–1.83 (m, 1H), 1.39 (dd, *J* = 73.3, 6.3 Hz, 2H) [3].

Butane-1,3-diyl dibenzoate (**16b**): ¹H-NMR (500 MHz, CDCl₃) δ 8.06–8.03 (m, 4H), 7.65–7.53 (m, 2H), 7.51–7.43 (m, 4H), 5.43 (dt, *J* = 12.7, 6.2 Hz, 1H), 4.62–4.44 (m, 2H), 2.31–2.13 (m, 2H), 1.49 (d, *J* = 6.3 Hz, 3H) [3].

3-Hydroxy-3-methylbutyl benzoate (**18**): ¹H-NMR (500 MHz, CDCl₃) δ 8.07 (m, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 4.55 (t, *J* = 6.8 Hz, 2H), 2.03 (t, *J* = 6.8 Hz, 2H), 1.37 (s, 6H) [8].

3-Hydroxyadamantan-1-yl)methyl benzoate (20): ¹H-NMR (CDCl₃, 500 MHz): δ 8.07–8.02 (m, 2H, ph), 7.59–7.54 (m, 1H, Ph), 7.48–7.42 (m, 2H, Ph), 4.01 (s, 2H), 2.29–2.25 (m, 2H), 1.77–1.68 (m, 4H), 1.65–1.53 (m, 8H) [9].

Methyl 2,3-*di*-O-*benzyl*-6-O-*benzoyl*-β-D-*glucopyranoside* (**24**): ¹H-NMR (CDCl₃, 500 MHz): δ 8.13–8.08 (m, 2H, Ph), 7.60–7.54(m, 1H, Ph), 7.49–7.28(m, 12H, Ph), 4.98–4.91 (m, 2H, -CH₂Ph), 4.76–4.69 (m, 2H, -CH₂Ph), 4.71–4.60 (m, 2H, H-6), 4.42 (d, *J* = 7.6 Hz, 1H, H-1), 3.66–3.63(m, 1H, H-4), 3.62 (s, 3H, OCH₃), 3.60–3.58 (m, 1H, H-3), 3.57–3.51 (m, 1H, H-2), 3.50–3.44 (m, 1H, H-5) [11].

Methyl 2,3-*di*-O-benzyl-6-O-benzoyl- α -D-galactopyranoside (**26**): ¹H-NMR (CDCl₃, 500 MHz): 8 8.09–8.05 (m, 2H, Ph), 7.64–7.58 (m, 1H, Ph), 7.51–7.31 (m, 12H, Ph), 4.91–4.88 (m, 1H, -CH₂Ph), 4.87 (d, J = 3.6 Hz, 1H, H-1), 4.79–4.70 (m, 3H, -CH₂Ph), 4.63–4.51 (m, 2H, H-6), 4.13–4.07 (m, 2H, H-4,-H-5), 3.98–3.89 (m, 2H, H-2,H-3), 3.42 (s, 3H, OCH₃) [12].

Methyl 2,3-*di*-O-*benzyl*-6-O-*benzoyl*-β-D-*galactopyranoside* (**28**): ¹H-NMR (CDCl₃, 500 MHz): δ 8.06–8.02 (m, 2H, Ph), 7.57 (m, 1H, Ph), 7.47–7.27 (m, 12H, Ph), 4.90 (d, *J* = 11.1 Hz, 1H, -CH₂Ph), 4.78–4.68 (m, 3H, -CH₂Ph), 4.65–4.55 (m, 2H, H-6), 4.29 (d, *J* = 7.7 Hz, 1H, H-1), 3.99 (m, 1H, H-4), 3.76–3.72 (m, 1H, H-5), 3.68–3.62 (m,1H, H-2), 3.56 (s, 3H, OCH₃), 3.55–3.51 (m, 1H, H-3) [12].

Methyl 2,3-*di*-O-benzyl-6-O-benzoyl-α-D-mannopyranoside (**30**): ¹H-NMR (CDCl₃, 500 MHz): δ 8.14–8.06 (m, 2H, Ph), 7.63–7.55 (m, 1H, Ph), 7.49–7.30 (m, 12H, Ph), 4.88 (d, *J* = 2.9 Hz, 1H, *H*-1), 4.72–4.65 (m, 5H,-CH₂Ph, *H*-6), 4.58–4.54 (m, 1H, *H*-6), 4.19–4.12 (m, 1H, *H*-4), 3.94–3.85 (m, 2H, *H*-5, *H*-2, 3.82–3.78 (m, 1H, *H*-3), 3.42 (s, 3H, OCH₃) [13].

6-*O*-*Benzoyl*-*D*-*galactal* (**32a**): ¹H-NMR (CDCl₃, 500 MHz): δ 8.07–8.01 (m, 2H, Ph), 7.59–7.54 (m,1H, Ph), 7.47–7.41 (m,2H, Ph), 6.39 (dd, *J* = 6.4, 1.6Hz, 1H, *H*-1), 4.75–4.70 (m, 1H, *H*-2), 4.70–4.51 (m, 2H, *H*-6), 4.41 (m,1H, *H*-5), 4.22 (m, 1H, *H*-3), 4.00–3.93 (m, 1H, *H*-4) [14].

3,6-*Di*-*O*-*benzoyl*-*D*-*galactal* (**32b**): ¹H-NMR (CDCl₃, 500 MHz): δ 8.12–8.03 (m, 4H, Ph), 7.64–7.54 (m, 2H, Ph), 7.50–7.42 (m,4H, Ph), 6.57 (dd, *J* = 6.2, 1.5 Hz, 1H, *H*-1), 5.76–5.70 (m, 1H, *H*-3), 4.89–4.84 (m, 1H, *H*-2), 4.74–4.64 (m, 2H, *H*-6), 4.51–4.33 (m, 2H, *H*-5, *H*-4) [14].

Methyl 6-*O*-*benzoyl*- β -*D*-*glucopyranoside* (**34**): ¹H-NMR (500 MHz, CDCl₃): δ 8.05–7.98 (m, 2H), 7.53–7.50 (m, 1H), 7.39 (m, 2H), 4.67–4.62 (m, 1H), 4.56–4.51 (m, 1H), 4.22 (d, *J* = 7.7 Hz, 1H, H₁), 3.63–3.59 (m, 2H), 3.55–3.51 (m, 1H), 3.48 (s, 3H, OMe), 3.44–3.38 (m, 1H) [15].

Methyl 6-*O*-*benzoyl*-*α*-*D*-*galactopyranoside* (**36**): ¹H-NMR (400 MHz, CDCl₃): δ 8.08–8.03 (m, 2H), 7.59–7.55 (m, 1H), 7.47–7.43 (m, 2H), 4.72 (dd, *J* = 11.4, 6.8 Hz, 1H), 4.53 (dd, *J* = 11.3, 6.5 Hz, 1H), 4.21 (d, *J* = 7.4 Hz, 1H, H₁), 4.01–3.97 (m, 1H), 3.84 (d, *J* = 6.7 Hz, 1H), 3.67–3.64 (m, 2H), 3.57 (s, 3H, OMe) [16].

Methyl 6-*O*-*benzoyl*-β-*D*-*galactopyranoside* (**38**): ¹H-NMR (400 MHz, CDCl₃): δ 8.08–8.03 (m, 2H), 7.59–7.55 (m, 1H), 7.47–7.43 (m, 2H), 4.76 (dd, *J* = 11.2, 6.7 Hz, 1H), 4.56 (dd, *J* = 11.2, 6.6 Hz, 1H), 4.17 (d, *J* = 7.3 H, 1H, *H*-1), 3.84 (m, 2H), 3.69–3.65 (m, 2H), 3.37 (s, 3H, OMe) [16].

2. ¹H-NMR and ¹³C-NMR Spectra

¹³C-NMR (125 MHz, CDCl₃)

Figure S6. ¹³C-NMR spectrum (125 MHz, CDCl₃) of **12b**.

Reference

- 1. Evtushenko, E.V. Regioselective benzoylation of glycopyranosides by benzoic anhydride in the presence of Cu(CF₃COO)₂. *Carbohydr. Res.* **2012**, *359*, 111–119.
- 2. Lee, D.; Williamson, C.L.; Chan, L.N.; Taylor, M.S. Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: Expansion of substrate scope and mechanistic studies. *J. Am. Chem. Soc.* **2012**, *134*, 8260–8267.
- 3. Ciuffreda, P.; Alessandrini, L.; Terraneo, G.; Santaniello, E. Lipase-catalyzed selective benzoylation of 1,2-diols with vinyl benzoate in organic solvents. *Tetrahedron Asymmetry* **2003**, *14*, 3197–3201.
- 4. Uzawa, H.; Nishida, Y.; Ohrui, H.; Meguro, H. Application of the dibenzoate chirality method to determine the absolute configuration of glycerols and related acyclic alcohols. *J. Org. Chem.* **1990**, *55*, 116–122.
- 5. Prasada, A.K.; Kumara, V.; Malhotraa, S.; Ravikumarb, V.T.; Sanghvib, Y.S.; Parmar, V.S. Green'methodology for efficient and selective benzoylation of nucleosides using benzoyl cyanide in an ionic liquid. *Bioorg. Med. Chem.* **2005**, *13*, 4467–4472.
- Babakhanov, R.A.; Zeinalov, S.B.; Sharifova, S.K.; Mekhtiev, M.S.; Agaeva, E.A. Synthesis of hydroxyamino-substituted aromatic acid esters from their chlorohydrin derivatives. *Russ. J. Org. Chem.* 1993, 29, 559–564.
- 7. Cambie, R.C.; Hayward, R.C.; Jurlina, J.L.; Rutledge, P.S.; Woodgate, P.D. reinvestigation of the Prévost reaction with N-allylmorpholine. *Aust. J. Chem.* **1981**, *34*, 1349–1351.
- 8. Adams, A.M.; Bois, J.D. Organocatalytic C–H hydroxylation with Oxone[®] enabled by an aqueous fluoroalcohol solvent system. *Chem. Sci.* **2014**, *5*, 656–659.
- 9. Stepanov, F.N.; Krasutskii, P.A.; Yurchenko, A.G. Interaction of 3,7-dimethylenebicyclo[3.3.1]nonane with perbenzoic and monoperphthalic acids. *Zhurnal Org. Khimii.* **1972**, *8*, 1179–1183.
- 10. Burugupalli, S.; Shah, S.; vanderPeet, P.L.; Arora, S.; White, J.M.; Williams, S.J. Investigation of benzoyloximes as benzoylating reagents: Benzoyl-Oxyma as a selective benzoylating reagent. *Org. Biomol. Chem.* **2016**, *14*, 97–104.
- 11. Zhang, X.L.; Ren, B.; Ge, J.T.; Pei, Z.C.; Dong, H. Tetrahedron 2016, 7, 1005–1010.
- 12. Chéry, F.; Pillard, C.; Tatibouët, A.; Lucchi, O.D.; Rollina, P. Vinyl bis-sulfone methodology in thiosugars: Selective access to chiral thiovinyl sulfones and PSE oxathianes. *Tetrahedron* **2006**, *62*, 5141–1551.
- 13. Ren, B.; Wang, M.Y.; Liu, J.Y.; Ge, J.T.; Dong, H. Enhanced Basicity of Ag₂O by Coordination to Soft Anions. *ChemCatChem.* **2015**, *7*, 761–765.
- 14. Graziani, A.; Passacantilli, P.; Piancatelli, G.; Tani, S. A mild and efficient approach for the regioselective silyl-mediated protection–deprotection of C-4 hydroxyl group on carbohydrates. *Tetrahedron Lett.* **2001**, *42*, 3857–3860.
- 15. Muramatsu, W.; Takemoto, Y. Selectivity Switch in the Catalytic Functionalization of Nonprotected Carbohydrates: Selective Synthesis in the Presence of Anomeric and Structurally Similar Carbohydrates under Mild Conditions. *J. Org. Chem.* **2013**, *78*, 2336–2345.
- 16. Gray, I.J.; Kluger, R. Chelation-controlled regioselectivity in the lanthanum-promoted monobenzoylation of monosaccharides in water. *Carbohydr. Res.* **2007**, *342*, 1998–2002.