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Abstract: Chemical investigation of the 90% acetone extract of the branches and leaves of
Sabina gaussenii led to the isolation of two new cinnamyl isovalerate derivatives (1–2) and eighteen
known compounds (3–20). Their structures were determined mainly by means of MS, 1D- and
2D-NMR data, and this is the first time these compounds have been reported from this plant.
The biological activity test results indicated that the 90% acetone extract showed cytotoxicity against
the human lung adenocarcinoma (A549) cell line (IC50 = 0.98 ˘ 0.1 µg/mL), compound 6 showed
cytotoxicities against human cervical carcinoma (HeLa) (IC50 = 0.4 ˘ 0.1 µM ) and human gastric
carcinoma (BGC-823) (IC50 = 0.9 ˘ 0.2 µM) cancer cell lines, and compound 19 showed cytotoxicities
against HeLa (IC50 = 1.5 ˘ 0.4 µM), BGC-823 (IC50 = 7.0 ˘ 0.8 µM ), and A549 (IC50 = 10.6 ˘ 1.5 µM )
cancer cell lines.
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1. Introduction

Sabina gaussenii is endemic to China and is usually used as a hedge plant. The genus Sabina,
which used to belong to genus Juniperus, has about 50 species and spread widely throughout the
northern hemisphere [1]. According to the literature, the Sabina plants have been reported to be a
rich source of bioactive terpenoids [2]. Up to now, only one diterpenoid and a few flavones have
been reported from S. gaussenii [3]. As part of serial investigations on the Gymnospermae plants and
in order to seek more novel bioactive compounds, we carried out an extensive chemical study on
S. gaussenii [4–7]. In this paper, we report the isolation and structure elucidation of two new cinnamyl
isovalerate derivatives (1–2) together with eighteen other known compounds (3–20) from the branches
and leaves of S. gaussenii, in addition to a screening of their cytotoxicities.

2. Results and Discussion

The air-dried powder of the branches and leaves of S. gaussenii was extracted with 90% acetone at
room temperature to give a crude extract, which was suspended in H2O and successively partitioned
with petroleum ether, ethyl acetate (EtOAc), and n-butyl alcohol (n-BuOH). Column chromatographic
separations of these extracts afforded compounds 1–20 (Figure 1). The two new structures (1–2) were
identified by spectroscopic analyses and physicochemical properties, while the known compounds
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were identified as 3’,4’,5’-dimethoxycinnamyl isovalerate (3) [8], 3’,4’,5’-dimethoxycinnamyl alcohol (4) [9],
dihydrosesamin (5) [10], 4’-O-demethylepipodophyllotoxin (6) [11], 7-hydroxy coumarin (7) [12],
7-β-D-glucosyloxy coumarin (8) [13], 1-β-D-glucosyloxy-2-(3,4-methylenedioxyphenyl)-propane-
l,3-diol (9) [14], lβ,6α-dihydroxy-4(14)-eudesmene (10) [15], selin-4(15)-en-1β, 11-diol (11) [16],
4-eudesmene-1β, 11-diol (12) [17], 7-epi-4-eudesmene-1β, 11-diol (13) [17], 3-eudesmene-1β, 11-diol
(14) [17], 8α,11-elemodiol (15) [18], hinokiic acid (16) [19], corchoionoside C (17) [20], hinokiol (18) [21],
isocupressic acid (19) [22], and sitostenone (20) [23] by comparison of their spectroscopic data and
specific rotations with those obtained in the literature.
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Figure 1. The chemical structures of compounds 1–20. 

2.1. Identification of New Compounds 

Compound 1 was obtained as a colorless oil. Its molecular was assigned as C18H26O5 on the basis 
of positive HRESIMS ([M + Na]+ 345.1674, calcd 345.1677) and NMR spectra data (Table 1), which 
implied six degrees of unsaturation. The IR absorption bands at 1735 cm−1 indicated the presence of 
carbonyl groups. The 1H-NMR spectrum of 1 showed three methoxy signals (δH 3.87 (s, 6H), 3.84 (s, 
3H)). The 13C- and DEPT-NMR spectra of 1 revealed 18 carbon signals: a carbonyl (δC 173.8 (C-1”)), a 
symmetrical benzene (δC 153.3 (C-3’, 5’), 138.0 (C-4’), 132.0 (C-1’), 103.6 (C-2’, 6’)), a double bond (δC 
134.2 (C-3), 122.9 (C-2)), five methylenes (δC 64.9 (C-1), 34.3 (C-2”), 31.4 (C-4”), 24.7 (C-3”), 22.4 (C-5”)), 
and four methyls (δC 56.1 (C-2*OMe), 61.0 (C-OMe), 14.0 (C-6”)). The NMR data indicated that 1 was 
a phenylpropanoid, which was very similar with those of 3 [8]. In comparison with 3, the only 
difference is a hexanoyl (δC 173.8 (C-1”), 34.3 (C-2”), 24.7 (C-3”), 31.4 (C-4”), 22.4 (C-5”), 14.0 (C-6”)) 
in 1 replaced the isovaleryl (δC 173.0 (C-1”), 43.4 (C-2”), 25.7 (C-3”), 22.4 (C-4”, 5”)) in 3. The 1H-1H 
COSY correlations (Figure 1) between H-2” and H-3”, H-3” and H-4”, H-4” and H-5”, H-5” and 
H-6”, and the HMBC cross-peaks of H-2” with C-1” confirmed the presence of the hexanoyl in 1.  
In the HMBC spectrum, the cross-peak of H-1 with C-1” suggested that the hexanoyl located at C-1 
(Figure 2). Hence, the structure of 1 was finally determined as 3’,4’,5’-trimethoxycinnamyl caproate. 
NMR spectrums show in Supplementary Materials. 
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2.1. Identification of New Compounds

Compound 1 was obtained as a colorless oil. Its molecular was assigned as C18H26O5 on the basis
of positive HRESIMS ([M + Na]+ 345.1674, calcd 345.1677) and NMR spectra data (Table 1), which
implied six degrees of unsaturation. The IR absorption bands at 1735 cm´1 indicated the presence
of carbonyl groups. The 1H-NMR spectrum of 1 showed three methoxy signals (δH 3.87 (s, 6H), 3.84
(s, 3H)). The 13C- and DEPT-NMR spectra of 1 revealed 18 carbon signals: a carbonyl (δC 173.8 (C-1”)),
a symmetrical benzene (δC 153.3 (C-3’, 5’), 138.0 (C-4’), 132.0 (C-1’), 103.6 (C-2’, 6’)), a double bond
(δC 134.2 (C-3), 122.9 (C-2)), five methylenes (δC 64.9 (C-1), 34.3 (C-2”), 31.4 (C-4”), 24.7 (C-3”), 22.4
(C-5”)), and four methyls (δC 56.1 (C-2*OMe), 61.0 (C-OMe), 14.0 (C-6”)). The NMR data indicated
that 1 was a phenylpropanoid, which was very similar with those of 3 [8]. In comparison with 3,
the only difference is a hexanoyl (δC 173.8 (C-1”), 34.3 (C-2”), 24.7 (C-3”), 31.4 (C-4”), 22.4 (C-5”),
14.0 (C-6”)) in 1 replaced the isovaleryl (δC 173.0 (C-1”), 43.4 (C-2”), 25.7 (C-3”), 22.4 (C-4”, 5”)) in 3.
The 1H-1H COSY correlations (Figure 1) between H-2” and H-3”, H-3” and H-4”, H-4” and H-5”, H-5”
and H-6”, and the HMBC cross-peaks of H-2” with C-1” confirmed the presence of the hexanoyl in 1.
In the HMBC spectrum, the cross-peak of H-1 with C-1” suggested that the hexanoyl located at C-1
(Figure 2). Hence, the structure of 1 was finally determined as 3’,4’,5’-trimethoxycinnamyl caproate.
NMR spectrums show in Supplementary Materials.
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Figure 2. Key 1H-1H COSY ( ) and HMBC ( ) correlations of compounds 1–2. 

Table 1. 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data of 1–2 in CDCl3. (J in Hz, δ in ppm). 
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2 6.21 (dt, 15.7, 6.5, 1H) 122.9 6.21 (dt, 15.7, 6.5, 1H) 122.8 
3 6.57 (d, 15.7, 1H) 134.2 6.58 (d, 15.7, 1H) 134.2 
1’  132.0  131.9 
2’ 6.61 (s, 1H) 103.6 6.61 (s, 1H) 103.5 
3’  153.3  153.3 
4’  138.0  138.0 
5’  153.3  153.3 
6’ 6.61 (s, 1H) 103.5 6.61 (s, 1H) 103.5 
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1”  173.8  174.0 
2” 2.35 (t, 7.6 Hz, 2H) 34.3 2.35 (m, 2H) 32.1 
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6” 0.89 (t, 7.0 Hz, 3H) 14.0 0.87 (m, 3H) 18.8 
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2.2. Cytotoxicity Assay 

The in vitro cytotoxicities of the 90% acetone extract of S. gaussenii and compounds 1–20 were 
evaluated against three cancer cell lines, including human cervical carcinoma (HeLa), human gastric 
carcinoma (BGC-823), and human lung adenocarcinoma (A549). The results indicated that the 90% 
acetone extract showed cytotoxicity against the A549 cell line (IC50 = 0.98 ± 0.1 μg/mL), compound 6 
showed cytotoxicities against HeLa (IC50 = 0.4 ± 0.1 μM) and BGC-823 (IC50 = 0.9 ± 0.2 μM) cancer cell 
lines, and compound 19 showed cytotoxicities against HeLa (IC50 = 1.5 ± 0.4 μM), BGC-823 (IC50 = 7.0 ± 
0.8 μM) and A549 (IC50 = 10.6 ± 1.5 μM) cancer cell lines. 
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The in vitro cytotoxicities of the 90% acetone extract of S. gaussenii and compounds 1–20 were 
evaluated against three cancer cell lines, including human cervical carcinoma (HeLa), human gastric 
carcinoma (BGC-823), and human lung adenocarcinoma (A549). The results indicated that the 90% 
acetone extract showed cytotoxicity against the A549 cell line (IC50 = 0.98 ± 0.1 μg/mL), compound 6 
showed cytotoxicities against HeLa (IC50 = 0.4 ± 0.1 μM) and BGC-823 (IC50 = 0.9 ± 0.2 μM) cancer cell 
lines, and compound 19 showed cytotoxicities against HeLa (IC50 = 1.5 ± 0.4 μM), BGC-823 (IC50 = 7.0 ± 
0.8 μM) and A549 (IC50 = 10.6 ± 1.5 μM) cancer cell lines. 
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Table 1. 1H (600 MHz) and 13C (150 MHz) NMR spectroscopic data of 1–2 in CDCl3. (J in Hz, δ in ppm).

No.
1 2

δH δC δH δC

1 4.72 (dd, 6.5, 1.0, 2H) 64.9 4.72 (dd, 6.5, 1.0, 2H) 64.9
2 6.21 (dt, 15.7, 6.5, 1H) 122.9 6.21 (dt, 15.7, 6.5, 1H) 122.8
3 6.57 (d, 15.7, 1H) 134.2 6.58 (d, 15.7, 1H) 134.2
1’ 132.0 131.9
2’ 6.61 (s, 1H) 103.6 6.61 (s, 1H) 103.5
3’ 153.3 153.3
4’ 138.0 138.0
5’ 153.3 153.3
6’ 6.61 (s, 1H) 103.5 6.61 (s, 1H) 103.5

3’-OMe 3.87 (s, 3H) 56.1 3.87 (s, 3H) 56.0
4’-OMe 3.84 (s, 3H) 61.0 3.84 (s, 3H) 60.9
5’-OMe 3.87 (s, 3H) 56.1 3.87 (s, 3H) 56.0

1” 173.8 174.0
2” 2.35 (t, 7.6 Hz, 2H) 34.3 2.35 (m, 2H) 32.1

3” 1.65 (m, 2H) 24.7 1.70 (m, 1H)
1.46 (m, 1H) 31.4

4” 1.31 (m, 2H) 31.4 1.34 (m, 1H) 34.0

5” 1.31 (m, 2H) 22.4 1.34 (m, 1H)
1.16 (m, 1H) 29.1

6” 0.89 (t, 7.0 Hz, 3H) 14.0 0.87 (m, 3H) 18.8
7” 0.87 (m, 3H) 11.3

Compound 2 was obtained as a colorless oil. The molecular formula of C19H28O5 was determined
by HRESIMS ([M + Na]+ 359.1842, calcd 359.1834) and NMR spectra data. The NMR data of 2 was
closely similar with those of 1, which suggested that 2 was also a phenylpropanoid. The only difference
is that a 4”-methyl-hexanoyl (δC 174.0 (C-1”), 32.1 (C-2”), 31.4 (C-3”), 34.0 (C-4”), 29.1 (C-5”), 18.8
(C-6”)) in 2 replaced the hexanoyl (δC 173.8 (C-1”), 34.3 (C-2”), 24.7 (C-3”), 31.4 (C-4”), 22.4 (C-5”), 14.0
(C-6”), 11.4 (C-7”)) in 1. The 1H-1H COSY correlations between H-2” and H-3”, H-3” and H-4”, H-4”
and H-5”, H-4” and H-7”, H-5” and H-6”, and the HMBC cross-peaks of H-2” with C-1”, confirmed
the presence of the 4”-methyl-hexanoyl portion in 2. In the HMBC spectrum, the cross-peak of H-1
with C-1” suggested that the 4”-methyl-hexanoyl located at C-1 (Figure 2). Thus, the structure of 2 was
assigned as 3’,4’,5’-trimethoxycinnamyl-4”-methyl-caproate.

2.2. Cytotoxicity Assay

The in vitro cytotoxicities of the 90% acetone extract of S. gaussenii and compounds 1–20 were
evaluated against three cancer cell lines, including human cervical carcinoma (HeLa), human gastric
carcinoma (BGC-823), and human lung adenocarcinoma (A549). The results indicated that the 90%
acetone extract showed cytotoxicity against the A549 cell line (IC50 = 0.98 ˘ 0.1 µg/mL), compound 6
showed cytotoxicities against HeLa (IC50 = 0.4 ˘ 0.1 µM) and BGC-823 (IC50 = 0.9 ˘ 0.2 µM) cancer
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cell lines, and compound 19 showed cytotoxicities against HeLa (IC50 = 1.5 ˘ 0.4 µM), BGC-823
(IC50 = 7.0 ˘ 0.8 µM) and A549 (IC50 = 10.6 ˘ 1.5 µM) cancer cell lines.

3. Materials and Methods

3.1. General Experimental Procedures

Spectra were recorded on a Bio-Rad FTS-135 spectrometer (Bio-Rad, Berkeley, CA, USA)
with KBr pellets, ν in cm´1. UV spectra were measured on SHIMADZU UV-2401PC spectrometer
(Shimadzu Corporation, Kyoto, Japan). NMR spectra were conducted on Bruker ARX-600
spectrometers (Bruker Corporation, Rheinstetten, Germany) with TMS as internal standard, chemical
shift (δ) was expressed in ppm, and coupling constants (J) in Hz. ESI and HR-ESI-MS were taken on
an API Qstar-Pulsar-1 mass spectrometer (Thermo Fisher Scientific, Bremen, Germany).

3.2. Plant Material

Branches and leaves of Sabina gaussenii (Cheng) Cheng et W. T. Wang were collected from Kunming
Botany Garden, Yunnan Province, People’s Republic of China, in August 2010. It was identified by
Prof. Wei-bang Sun at Kunming Institute of Botany, Chinese Academy of Sciences.

3.3. Extraction and Isolation

The powdered air-dried branches and leaves (13 kg) of S. gaussenii were extracted with 90% acetone
(3 ˆ 40 L) at room temperature and then concentrated under reduced pressure. The concentrated
acetone extract (910 g) was dissolved in 60 ˝C water and partitioned with petroleum ether, EtOAc, and
n-BuOH, respectively, to afford petroleum ether fraction (170 g), EtOAc fraction (130 g), and n-BuOH
fraction (250 g).

The petroleum ether fraction (170 g) was separated on an MCI gel column eluted with MeOH–H2O
(3:7 to 1:0, v/v) to produce thirteen subfractions A´M. Fraction C (41 g) was separated on a silica
gel column and eluted with gradient mixtures of petroleum ether-acetone (from 20:1 to 1:1) and
then separated on a column of RP-C18 silica gel (MeOH in H2O, 60%´80%) to yield five major
components, with each purified by semipreparative HPLC (SunFire C18 column, 10 mm ˆ 250 mm,
5 µm, CH3CN–H2O, 85:15, 3 mL/min) to afford 1 (2.9 mg), 2 (2.3 mg), 3 (16 mg), 10 (11 mg), and 20
(26 mg), respectively. Fraction E was chromatographed on a RP-C18 silica gel column (MeOH in H2O,
50%´90%) and then purified by semipreparative HPLC with CH3CN–H2O (80:20, 3 mL/min) as the
mobile phase to give compounds 4 (29 mg), 11 (21 mg), 12 (17 mg), 13 (35 mg), 14 (11 mg), 16 (13 mg),
and 18 (11 mg), respectively. The EtOAc fraction was subjected to silica gel column (CHCl3/MeOH,
9:1 to 7:3) to yield five subfractions N´R. Fraction P was chromatographed on a RP-C18 silica gel
column (MeOH in H2O, 50%´90%) to give 5 (44 mg), 6 (28 mg), 7 (25 mg), 15 (27 mg), and 19 (81 mg),
respectively. The n-BuOH fraction was subjected to silica gel column (CHCl3–MeOH, 10:1 to 0:1), and
then subjected to RP-C18 column and eluted with MeOH–H2O (65:35) to obtain compounds 8 (32 mg),
9 (99 mg), and 17 (28 mg).

3.4. Spectroscopic Data

3’,4’,5’-Trimethoxycinnamyl caproate (1): colorless oil. UV λmax (CH3OH) nm (log ε): 270 (4.32), 221 (4.64).
IR (KBr) νmax (cm´1): 2957, 2935, 1735, 1583, 1507, 1462, 1419, 1242, 1128. 1H- and 13C-NMR: Table 1.
HRESIMS: m/z 345.1674 (calcd for C18H26O5Na, 345.1677 [M + Na]+). 3’,4’,5’-Trimethoxycinnamyl

4”-methyl-caproate (2): colorless oil. UV λmax (CH3OH) nm (logε): 270 (3.52), 220 (3.86). IR (KBr) νmax

(cm´1): 2959, 2928, 1735, 1584, 1508, 1462, 1420, 1242, 1128. 1H- and 13C-NMR: Table 1. HRESIMS: m/z
359.1842 (calcd for C19H28O5Na, 359.1834 [M + Na]+).
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3.5. Bioassay

The cytotoxicities of the 90% acetone extract and compounds (1–20) against the HeLa, BGC-823,
and A549 cancer cell lines were measured using a sulforhodamine B (SRB, Sigma, Saint Louis, MO,
USA) assay as described in the literature [24]. Taxol were used as positive controls. Briefly, cells were
plated in 96-well culture plates for 24 h and then treated with serial dilutions of all compounds with a
maximum concentration of 20 µg/mL. After being incubated for 48 h under a humidified atmosphere
of 5% CO2 at 37 ˝C, cells were fixed with 25 µL of ice-cold 50% trichloroacetic acid and incubated
at 4 ˝C for 1 h. After washing with distilled water and air-drying, the plate was stained for 15 min
with 100 µL of 0.4% SRB in 1% glacial acetic acid. The plates were washed with 1% acetic acid and
air-dried. For reading the plate, the protein-bound dye was dissolved in 100 µL of 10 mM Tris base.
The absorbance was measured at 560 nm on a microplate spectrophotometer (Molecular Devices
SpectraMax 340, MWG-Biotech, Inc., Sunnyvale, CA, USA). All tests were performed in triplicate, and
results are expressed as IC50 values.

4. Conclusions

This work was part of a series of investigations on anti-tumor compounds from Gymnospermae
plants. Compounds 1–2 were found to be new cinnamyl isovalerate derivatives, and the other
eighteen compounds were found for the first time from S. gaussenii. The 90% acetone extract showed
significant cytotoxicity against the A549 cell line (IC50 = 0.98 ˘ 0.1 µg/mL). The next bioassay guided
isolation led to the discovery of two cytotoxic compounds, compound 6 showed cytotoxicities against
HeLa (IC50 = 0.4 ˘ 0.1 µM) and BGC-823 (IC50 = 0.9 ˘ 0.2 µM) cancer cell lines, and compound 19
showed cytotoxicities against HeLa (IC50 = 1.5 ˘ 0.4 µM), BGC-823 (IC50 = 7.0 ˘ 0.8 µM), and A549
(IC50 = 10.6 ˘ 1.5 µM) cancer cell lines. The result indicated that the podophyllotoxin type and the
diterpene type compounds were the major cytotoxic constituents in this species, which might be
worthy of more extensive investigation so that more novel bioactive compounds can be discovered
in the future.

Supplementary Materials: The 1H- and 13C-NMR data of 1–20, HR-ESI-MS, 2D-NMR spectra of compounds 1–2
can be accessed at: http://www.mdpi.com/1420-3049/21/5/571/s1.
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