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Abstract: A comparative study among different pretreatment methods used for the fractionation of
the birch outer bark components, including steam explosion, hydrothermal and organosolv treatments
based on the use of ethanol/water media, is reported. The residual solid fractions have been
characterized by ATR-FTIR, *C-solid-state NMR and morphological alterations after pretreatment
were detected by scanning electron microscopy. The general chemical composition of the untreated
and treated bark including determination of extractives, suberin, lignin and monosaccharides was also
studied. Composition of the residual solid fraction and relative proportions of different components,
as a function of the processing conditions, could be established. Organosolv treatment produces a
suberin-rich solid fraction, while during hydrothermal and steam explosion treatment cleavage of
polysaccharide bonds occurs. This work will provide a deeper fundamental knowledge of the bark
chemical composition, thus increasing the utilization efficiency of birch outer bark and may create
possibilities to up-scale the fractionation processes.

Keywords: Betula pendula; outer bark; steam explosion pretreatment; organosolv pretreatment;
suberin; chemical composition

1. Introduction

Efficient bioconversion of lignocellulosic materials to ethanol and value-added biochemicals
represents a challenging proposition from both energy and environmental viewpoints. Apart from
polysaccharides, multiple biomass feedstocks, including cork and outer bark residues, are rich
in natural waxes, such as triterpenes, and insoluble polyesters (suberin) that serve as structural
components of the outer barriers of plants. In order to improve the utilization of these feedstocks, an
in depth delineation of the extraction and biodegradation of these components is needed. Moreover,
degradation products, some of which are found almost exclusively in the suberized plant cell walls,
may be of considerable value as sources of oleochemicals [1-3].

Silver birch (Betula pendula) is widely distributed in the northern hemisphere, particularly in
boreal climates, and is of great commercial significance as it constitutes the dominant hardwood tree
species used for pulp production in Northern European countries. The total production of market
pulp in Sweden amounts to approximately 3.8 million tons annually, according to The Swedish Forest
Industries Fact and Figures, leading to the production of considerable amounts of birch bark as
a residual product from log debarking, usually burned for energy production. According to the
biorefinery concept, using biomass directly as solid fuel is a waste of valuable material. Instead, the
natural and renewable resources should be used to prepare value-added products such as chemicals
and materials [4,5]. The bark of birch tree has been the subject of intensive research due to its high
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content of compounds with wide beneficial chemistry and bioactivity, such as pentacyclic lupin-type
triterpenes and suberinic polyesters [6,7].

Bark, the external layer that surrounds the stem, branches and roots, can be roughly divided into
inner bark, comprised of living cells that still maintain the function for transportation of liquids and
nutrients, and the dead tissues of the outer bark or rhytidome [8]. The outer bark consists mainly of a
periderm of cork layers forming an apoplastic barrier that controls the flow of water, gases and ions,
thus protecting the plant against pathogens. The walls of these cork cells are impregnated with suberin,
a lipid-derived insoluble polyester. Suberin consists of a lignin-like polyaromatic domain formed by
hydroxycinnamic acids and a cutin-like polyaliphatic domain composed of hydroxy or epoxy fatty
acids joined by ester linkages [9], but its complete structure remains unknown. Bark also contains
high content of extractable constituents (extractives) including organic solvent and water soluble
fractions (triterpenes and phenolic compounds) [10], so its chemistry can be practically subdivided
into the chemistry of the extractives and the chemistry of suberin. Both of these classes of molecules
can be used as starting materials in the synthesis and production of different poly- and oligomeric
value-added products, such as polyols, and polyurethanes [11,12]. Besides that, bark extractives find
numerous applications in pharmaceutical and cosmetic industry as antioxidants, due to their bioactive
characteristics, such as anti-virus, anti-inflammatory, anticancer and other properties [13,14].

An integral key step in all the biotechnological technologies employed for the exploitation and
valorization of lignocellulosic biomass, is the application of an initial pretreatment that will convert
raw materials to a form amenable to enzymatic degradation [15]. Chemical or thermochemical
pretreatments facilitate the disruption of the secondary cell walls structure and reduce biomass
recalcitrance in various ways, including reduction in crystallinity and degree of polymerization
of cellulose, lignin and hemicellulose modification and/or degradation and increase of pore
volume [16,17]. It also allows for the partial or more thorough fractionation of polysaccharidic
and phenolic cell wall components that can be more easily processed downstream. Hydrothermal
(HT) and steam explosion (SE) pretreatments have been shown to lead to rupture of the biomass
fibers’ rigid structure [18,19]. During steam explosion, biomass is treated with hot steam (180240 °C)
under pressure (1-3.5 MPa) followed by an explosive decompression, whereas during hydrothermal
pretreatment, water is present as a liquid. Biomass modifications after steam explosion are related
to hydrolysis and deacetylation of hemicellulose, partial removal of lignin, defibrillation of cellulose
bundles and disruption of fibers [17]. Organosolv (OS) fractionation, in which organic solvents or their
aqueous solutions are used as the pretreatment medium, yields three separate fractions including dry
lignin, an aqueous hemicellulose stream, and a relatively pure cellulose fraction [16]. This method
offers the advantage of hydrolysis and dissolution of aromatic structures, which can occur readily
than with water-rich counterparts, because of the penetration of the organic liquor into the cell
wall [18]. Moreover, organic solvents can be easily recovered through distillation and recycled. It
occurs usually at high temperatures (140-180 °C) in the presence or absence of a catalyst. The use
of alkaline catalyst along with organic solvents is often investigated, as alkaline catalysts have been
shown to have significant effect on disruption of ester bonds between lignin and hemicellulose, thus
achieving delignification, as well as removal of acetyl/uronic acids from hemicellulose [19].

Towards the valorization of bark as a residue from paper pulp mills in Sweden, in this study,
B. pendula outer bark samples were subjected to different pretreatment methods and the effects
of different process variables were studied. With the objective to analyze the potential of each
pretreatment method for selective component enrichment within a bark valorization chain for energy,
composite materials and chemicals, the major features of the residual solid fractions in relation to their
microscopic structure and chemical properties were also evaluated
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2. Results

2.1. Pretreatment and Bark Solubilization

Table 1 shows the results of different processing conditions, hydrothermal, steam explosion
and organosolv treatment of birch outer bark in terms of severity factor and the percentage of
extracted /solubilized material. The highest yield of dissolved substances in uncatalyzed treatments
was obtained with organososlv treatment, with a ratio of 80:20 of ethanol-water mixture. The addition
of 0.1 M sodium hydroxide resulted in a prominent increase of bark solubilization reaching a yield of
61.25% of the initial dry mass.

Table 1. Severity factor (SF)/combined severity (CS) and % dissolved bark for different pretreatment methods.

Batch Type SF/CS Bark Solubilization %
#1 HT 3.94 12.00
#2 SE 3.97 23.33
#3 OS/SE 4.81 21.67
#4 OS 50:50 4.81 21.00
#5 0OS 80:20 4.15 26.88
#6 0OS/NaOH 415 61.25

2.2. Chemical Characterization of the Residual Bark

2.2.1. Overall Chemical Composition

The chemical composition of the residual solids and the liquid fractions are shown in Tables 2
and 3. Total extractives of untreated material reach 39.4%, corresponding mainly to waxes and
non-polar compounds, extracted with dichloromethane. Polar compounds correspond to 35% of total
extractives. After pretreatment, there is a decrease in total amount of extractives, mainly attributed to
the ethanol and water extractives, while non-polar compounds percentage is not affected. In organosolv
samples, the amount of total extractives appears significantly lower, along with the increase of ethanol
concentration in liquid mixture of pretreatment.

Table 2. Summative chemical composition (% of total dry weight) of untreated and residual solid
fraction of pretreated bark samples.

Untreated HT SE OS/SE 0S50:50 0OS80:20 OS/NaOH
total sugars 4.45 5.38 5.61 6.11 6.19 7.58 7.75
glucose 2.19 4.35 443 5.37 4.26 4.86 5.82
xylose 0.67 0.58 0.80 0.53 1.28 0.75 0.61
galactose 0.21 0.06 0.03 n.d. n.d. n.d. n.d.
arabinose 1.21 0.35 0.28 0.10 0.63 0.11 0.18
mannose 0.18 0.04 0.07 0.11 0.02 n.d. 0.01
ash 0.67 0.41 0.26 0.19 0.19 0.23 0.21
total extractives 39.39 27.98 31.58 30.19 29.23 22.32 19.27
dichloromethane 25.49 24.57 26.99 25.65 23.76 16.18 16.56
ethanol 9.96 2.67 1.82 2.69 1.18 3.89 1.21
water 3.94 0.74 2.77 1.85 4.29 2.25 0.5
suberin 44.06 40.47 38.33 35.16 42.01 34.52 29.94
lignin 9.11 20.97 19.84 20.93 16.36 25.57 26.5
klason 8.87 20.80 19.59 20.65 16.18 25.36 26.2
acid-soluble 0.24 0.17 0.25 0.27 0.18 0.21 0.3
suberin + lignin 53.17 61.44 58.17 56.09 58.37 60.09 56.44
total 97.68 95.21 95.62 92.58 93.98 90.22 83.67

n.d. Not detected.
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The monomeric composition of polysaccharides, which corresponds only to 4.45% of untreated
birch outer bark, is given in Table 2 in relation to the proportion of total dry weight of the sample. It
shows a predominance of glucose (50% of total neutral monosaccharides) and a significant content
of arabinose (27%). The content of xylose is also comparatively high (15%). Detectable amounts of
sugars originating from the hemicellulose were observed in the solid fraction after steam explosion
pretreatment and at low concentration of ethanol, whereas the increase of the organic solvent
concentration results largely to more extensive dissolution of the hemicelluloses. Suberin constitutes
the 44.06% of the untreated outer bark. It is decreased after all types of pretreatment, with the
highest degree detected upon employment of alkaline catalyst along with the organic solvent in the
liquid mixture. Lignin constitutes approximately 9% of the initial material and its content increases
remarkably after pretreatment. Both Klason and acid-soluble lignin may be overestimated for all
solid residues due to possible interference from other non-lignin components [20]. The data resulted
in a summative mass closure of 84%-98%, likely due to some components not accounted for in the
analysis, for example pectin that would be detected as uronic acid [21] or hemicellulose acetyl groups
which were also not quantified. The bark samples after organosolv fractionation gave lower mass
closures, possibly due to residual extractives/condensed materials which were still present even after
the subsequent extraction steps.

The composition of liquid fractions is reported in Table 3. Untreated outer bark contains a low
amount of carbohydrates and thus their concentration in the liquid fraction (expressed in monomeric
form) is negligible. Steam explosion stimulates the release of hemicellulosic sugars (xylose and
arabinose), while they are detected in higher contents with increasing proportions of ethanol in
organosolv treatments. The amount of phenolic compounds follows a similar pattern. Following the
low initial sugar content of outer bark, degradation products generated during the pretreatments
were also detected in traces, apart from acetic acid concentration that was higher in HT, OS/SE and
OS/NaOH samples.

Table 3. Composition of the liquid fraction (g/L of liquid fraction) of the pretreated bark samples.

HT SE OS/SE OS 50:50 OS 80:20 OS/NaOH
total sugars 0.39 2.02 241 1.14 1.69 2.16
glucose 0.21 0.17 0.21 0.53 0.42 0.31
xylose 0.09 0.33 0.43 0.13 0.31 0.45
galactose 0.04 0.17 0.38 0.03 0.13 0.12
arabinose 0.02 1.04 0.69 0.45 0.85 1.28
mannose 0.01 0.09 n.d. n.d. n.d. n.d.
phenolic compounds 0.13 0.20 0.27 0.74 2.74 5.74
inhibitors
formic acid n.d. 0.25 0.90 0.16 0.67 0.67
acetic acid 2.16 1.13 2.97 0.67 1.69 2.11
levulininc acid n.d. n.d. n.d. n.d. n.d. n.d.
HMF & 0.37 0.05 0.46 0.07 0.06 0.12
furfural 0.61 0.18 1.13 0.06 0.09 0.27

% 5-Hydroxy-methyl-furfural; n.d. Not detected.

2.2.2. ATR-FTIR Studies

The spectrum of untreated bark samples is characterized by a very broad O-H stretch band
at 3415 cm~!, attributed to carboxylic acids and alcohol groups, and two major bands at 2935 and
2850 cm~! mainly attributed to the aliphatic moieties of suberin, corresponding to asymmetric and
symmetric C-H stretching vibrations, respectively (Figure 1) [22-25]. The intense C=0 stretching band
at 1740 cm~! accounts for the ester groups in suberin. This band shows a small shoulder at 1715 cm ™!
that is usually associated with the C=O group of free carboxylic acids [26]. The 1636-1603 cm ™!

region corresponds most probably to C=C stretch from the conjugated carbonyl groups of aromatic
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components that are part of the suberin and lignin structure, not excluding the possibility to result
from the associated water molecules. The 1513 cm™~! band accounts for aromatic C=C stretching
vibrations mainly from lignin components. The bands at 1468 cm™! and 1364 cm ™! reflect C-H
asymmetric and symmetric deformations of aliphatic regions, respectively. Bands at 1265, 1161 cm~!,
corresponding to symmetric and asymmetric C-O-C stretching and at 722 cm ™! corresponding
to C-H bend, all associated with vinyl groups, were also observed and attributed to suberin [27].
Polysaccharides contribute to absorption of the region 1092 and 1034 cm ! with C-H, C-O and C-OH
deformations. Bands at 855 and 819 cm~! are associated with C-H deformation and ring vibration of
lignin components.

I m v

|
Vbl

[ N

SE/ 0S 10:90
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4000 3000 2000 1000 0
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0S / NaOH

0S50:50

untreated
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Figure 1. ATR-FTIR spectra of extractive—free untreated and pretreated solid fractions from (a)
hydrothermal and steam explosion pretreatments and (b) treatments with organic solvents. The
following regions marked correspond to: (I) region 1740-1715 cm™! that accounts for the ester groups
(C=0 stretch); (II) “lignin triplet” region, including the three characteristic bands at 1600~1400 cm ™1,
derived from C=C vibrations of the aromatic ring, (III) region 1265-1161 cm~! for symmetric
and asymmetric C-O-C stretching and (IV) region 1092-1034 cm~! that accounts for C-H, C-O
and —“OH deformations.
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2.2.3. NMR Studies

The analysis of the 13C CP/MAS NMR spectra was conducted on the basis of previous work
reported [22,24,28-31] and the main tentative assignments of the observed bands are presented in
Table 4. The most intense aliphatic bands, at 30 and 33 ppm, correspond to aliphatic groups in
suberin structure, with the 33 ppm carbons accounting for methylenes near the -CH,O- linkages
between aliphatic suberin and the cell-wall matrix. The signal at 56 ppm arises mainly from lignin
and suberin -OCHj; groups and epoxy rings but also methoxy groups from polysaccharide part,
especially hemicellulose, can also contribute. The bands at 72-74 ppm arise from overlapping signals
of carbohydrates and lignin aliphatic carbons. 104 ppm carbons have been suggested to correspond to
polysaccharides, while in the 144-145 ppm region, signals arise from aromatic ring carbons from lignin
and/or suberin. The band at 172 ppm corresponds to acetyl groups of suberin and hemicellulose as
well as from carboxyls of lignin and suberin aromatic structures.

Table 4. 13C-NMR spectra assignments of the functional groups identified in suberinic material.

13C 5/ppm Functional Group Assignment [22,24,28-31]

29-30 CH, aliphatic methylenic groups

32-33 CH,COO; CH,COOH methylene linked to carboxylic moieties
56 CH; OCHj3 epoxy ring; methoxy groups
64 CH,OH;CHOH Alcohols
72 OCH methyne adjacent to ester groups
74 OCH, methylene adjacent to ester groups
130 CH=CH vinylic groups

144-145 -C= aromatic groups

172 COO; COOH ester and carboxylic acid groups

The NMR spectra of pretreated residual solids (Figure 2) show that both main aliphatic bands
generally decrease. In SE and OS/EtOH 10:90 and OS/EtOH 50:50, the two bands are affected in a
similar way, but when higher ethanol concentration is used, the decrease at 30 ppm is slightly more
significant than that at 33 ppm. When NaOH is added, the opposite effect is observed, thus confirming
the preferential removal of methylenes at 33 ppm compared to those at 30 ppm. Reasonance from
33 ppm carbons disappears completely, while the band at 30 ppm has been decreased significantly.
Strong intensity of 72-74 ppm bands is obvious in sample treated with alkaline catalyst. Reasonances
from epoxy rings and methoxy groups are less intense in SE sample, but are not affected in the other
spectra. Band at 104 ppm appear slightly increased in HT sample, but reduce when organic solvent is
used in the liquid mixture; interestingly, a remarkable increase of this band is observed in spectrum of
OS/NaOH sample. The band at 130 ppm appears in lower absorbance in all OS samples, especially
when alkaline catalyst is used. Resonances from ester and carboxylic acid groups in 172 ppm remain
unaltered in all samples, apart from those after HT and OS/NaOH treatment, indicating that part of
these components is affected by pretreatment.

2.3. Morphological Characterization of the Residual Bark

Scanning electrons microscopical observations of birch outer bark confirmed the existence of
numerous cork (phellem) layers with an elongated polygonal shape (Figure 3a,b). After pretreatment,
cell walls were ruptured to different extents. In case of hydrothermal and steam explosion treatment,
cell walls are covered with residues (Figure 4b,c). Fragments of broken cell-walls also appear at some
extent in all pretreatments of bark, illustrating the typical changes in structure of pretreated biomass.
Surface residues markedly decrease as samples undergo organosolv treatments (Figures 4d and 5a—c).

Another remarkable feature is the presence of globular structures associated to lignin condensation
that were observed on the surface of samples treated with 90:10 and 50:50 ratios of EtOH/water
(Figure 5a,b). When ethanol concentration increases in the liquid mixture, then clefts and defects
appear on the surface of cell wall, which seems to be corroded. When sodium hydroxide is used as
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catalyst, the most evident effect on the bark surface is the separation of the cell bundles (Figure 4e),
followed by total collapse and breaking up of the structure, resulting in a highly heterogeneous
solid fraction.
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Figure 2. 13C-CP/MAS NMR spectra extractive—free untreated and pretreated solid fractions from (a)
hydrothermal and steam explosion pretreatments and (b) treatments with organic solvents.
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(b)

Figure 3. SEM images of (a) radial and (b) cross section of untreated birch outer bark.
Magnification 1000 x.

Figure 4. SEM images of cross section birch outer bark showing the effect of each type of pretreatment
on the structural configuration of cell layers. (a) untreated material; (b) hydrothermal pretreatment (HT);
(c) steam explosion (SE); (d) organosolv pretreatment without catalyst and (e) organosolv pretreatment
with alkaline catalyst. Magnification 2500 x.

Figure 5. SEM images of birch outer bark showing cell wall deconstruction after organosolv
treatment with increasing EtOH /water ratio in the liquid mixture (a) 10:90; (b) 50:50 and (c) 80:20.
Magnification 5000 x.
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3. Discussion

The compositional analysis of birch outer bark revealed a material mainly composed of the
polyester suberin (44% w/w) and extractives (40% w/w), with a low content of polysaccharides (4.5%
w/w) and lignin (9% w/w). These values are similar to those reported in the literature for birch outer
bark [2]. Ash content (0.67%) was also similar to that reported previously [2,6]. Different pretreatment
methods were applied in order to evaluate the potential fractionation of this biomass material. The
higher obtained yield of dissolved substances from uncatalyzed treatments reached 27% of initial dry
mass and increased only upon the addition of alkaline catalyst in the liquid mixture. When compared to
solubilization rates of organosolv pretreated, under similar conditions, cork from Quercus suber L. [18],
the yields appear significantly lower. This can be attributed to the rigid structure of bark or the higher
extractives content of the bark feedstock (40% w/w) when compared to those from cork (19% w/w).
Another possible reason could be that the presence of suberin in the cell walls can limit the diffusion of
the liquid mixture [18] inside the bark structure. The recalcitrant ester bonds in suberin can be readily
hydrolyzed by bases, as clearly shown by the substantial yield increase when sodium hydroxide was
added to the liquid phase. Throughout the literature, various strategies have been developed for the
pretreatment of bark biomass from different tree species both hardwood and softwood either as a
part of the bioethanol production process or as a prehydrolysis method for the isolation of valuable
compounds. Dilute sulfuric acid and alkaline pretreatment methods have been applied to pine and
poplar bark in order to facilitate the enzymatic digestibility of cellulose to ethanol or to increase the
phenolic content of spruce bark by removal of hemicelluloses [32-34]. Hydrothermal pretreatment
has been proven an efficient method for the removal of hemicellulose from beech bark [35] and the
increase of sugars yields from enzymatic hydrolysis of cellulose in Eucalyptus bark [36]. Finally, steam
explosion has been utilized as a pretreatment method for the production of bioethanol from spruce
bark, as well as for the extraction of the triterpene betulin from birch bark in combination with alkaline
hydrolysis [37,38].

The Klason lignin content of the residual solid fractions increased after pretreatment, although
a decomposition and removal of lignin aromatic structures can be assumed from FTIR and NMR
data. Previous studies report that water-soluble phenolic compounds that are present in bark can
condense with lignin during pretreatment and appear as acid-insoluble lignin in the subsequent
compositional analysis [33,37,39]. Degradation products generated during the pretreatments as a
function of the severity of the process and the concentration of carbohydrates present in outer bark
were in low concentrations (0.2%-1.8% w/w of the initial bark dry matter). Release of acetic acid was
more extensive when steam explosion and organosolv pretreatment are applied, following the release
of hemicellulosic sugars detected in the liquid fraction.The ethanol/water ratio was shown to affect
significantly disruption of lignin/hemicellulose ester bonds.

Since ATR-FTIR spectra can provide useful information for identifying the presence of certain
functional groups or chemical bonds in a molecule or an interaction system, it was applied here to
survey the changes in chemical structures before and after extraction by various methods. Bands at
2935-2850, 1740, 1265, 1161, 723 cm—! were used for monitoring ester bonds and thus suberin presence
and structure, while bands at 1513, 1468, 855 and 819 cm ! were used for lignin aromatic vibrations.
Apart from the samples after hydrothermal and treatment with alkali catalyst, there are no detectable
changes in the ATR-FTIR spectra indicating suberin removal, while lignin removal is profound in all
OS samples. The clear presence of signals from ester groups at 1740 cm~!, associated with the low
intensity of signals from acidic groups at 1715 cm ™!, indicates the polymeric nature of residual suberin
in most of the samples. The latter band is associated with hydrogen bonded carbonyl groups in either
esters or acids and reflects the formation of monomers released during the polymerization of suberin
molecule. The presence of suberin can be also reflected by the strong intensity of the 1161 cm~! band
from C—O-C asymmetric stretching of high esters. However, one important observation is the reduced
intensity of the 1265 cm ™! band from C-O-C symmetric stretching in all pretreated samples, compared
to the 1161 cm™! band, corroborating the idea that cleavage of ester bonds within the polymeric
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structure of suberin (ester bonds in epoxide groups, head-to-tail bonds between hydroxyl fatty acids
and diacids) occured [30], while the resistant domain close to glycerol anchor parts and the phenolic
components remained unaltered. Cleavage of bonds in the polysaccharidic part of the outer bark cell
walls was more intense than for the aromatic and the ester part of the polymeric structure when SE
and OS treatment was applied; however, the increase in band 1032 cm ™! relative to that at 1161 cm ™!
suggests that lignin has been more largely removed in comparison to polysaccharides [18].

The NMR spectra of OS/NaOH residual solid show that both main aliphatic bands generally
decrease, but the decrease at 33 ppm is more significant than that at 30 ppm, which confirms the
preferential removal of these methylenes compared to those at 30 ppm. This is attributed to the
presence of alkaline catalyst that cleaves the ester bonds closer to linkage groups, thus removing
shorter aliphatic chains, while it may also account for the removal of a higher number of -CH,
groups close to the glycerol anchorage points compared to the middle- and end-chain -CH,. Upon
80:20 OS treatment, the opposite effect is observed; 30 ppm carbons resonances from polymethylenic
domains are decreased, suggesting that higher concentration of ethanol in the pretreatment liquor
leads to middle-and end-chain bonds cleavage. The reduction of 30 ppm carbons in NMR spectra of
OS/EtOH samples goes along with the increase of ethanol concentration in the liquid mixture. 1>C
ssNMR molecular dynamics studies in other suberinic materials, such as cork and potato periderm,
have also revealed the presence of two different populations of aliphatic CH, (methylene) groups,
complementing the idea that suberin rigid moieties correspond to the hydrocarbon chains in the more
orderly organized parts of the suberin polyester, close to the the glycerol anchorage points, as well as
those with more freedom of motion to the hydrocarbon chains in less constrained regions [30,31,40].
The marked loss of carbonyl signal at 172 ppm in all organosolv pretreated samples confirmed the
cleavage of acetyl groups from suberin and hemicelluloses. In all spectra of samples treated with liquid
mixture containing ethanol, a reduction of resonances attributed to lignin is detected. A clear presence
of signal from the ester groups, along with the absence of resonances from aromatic groups, suggests
that organic solvents penetrate the cell wall and remove lignin, with the effect on recalcitrant suberin
bonds close to linkage groups being less intense.

Scanning electron microscopy was used in order to appreciate the morphological changes after
pretreatment. The destruction of the cell layers and phellem configuration in the sample treated with
alkaline catalyst is probably related to lignin removal. It is speculated that lignin is mainly located
in the middle lamellae, the membrane delimiting neighboring cells; studies has shown that in wood
cells at least 50% is concentrated in this compartment [41,42]. As a result, partial depolymerization
of lignin may lead to separation of cell bundles. Collapse of cell wall can also occur after cleavage of
lignin/hemicellulose ester bonds and subsequent suberin removal, which also occurs when alkaline
treatment is applied. Higher amount of lignin droplets on the cell wall surface were observed for bark
samples treated with 50:50 EtOH /water ratio compared to 90:10, probably due to the fact that higher
concentration of organic solvent may draw away the lignin components formed during pretreatment
in the liquid mixture, which can adhere to each other and deposit again on the biomass surface upon
cooling [43]. The formation of lignin agglomerates on the surface has also been described in other
lignocellulosic biomasses exposed to steam-explosion, diluted acid or organosolv pretreatments [44—46].

4. Materials and Methods

4.1. Sample

The analytical protocol applied in this work is illustrated in Figure 6. The bark from Betula pendula
was obtained as residual by-product of commercial debarking at Smurfit Kappa pulp mills (Pite3,
Sweden) with 4.5% of moisture and was ground in a knife mill (Retsch SM 3000, Haan, Germany)
using an output sieve of 1 mm x 1 mm. After grounding, dry birch bark samples were soaked by
mixing in distilled water. The outer bark fraction, which floated to the top of the water surface, was
collected and dried [6,47]. Final moisture was 2%-3%. The mass retained was weighed and stored
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in plastic bags until pretreatment. Ash content before and after pretreatment was determined with
incineration of the material at 550 °C overnight and weighing of the residues.

Birch bark from pulp mill

knife mill grounding
and fractionation

Quterbark

pretreatment (HT, SE, OS)

L
NMR, ATR-FTIR «----- Solid Fraction | |Liquid Fraction |------ » Phenolicsand polysaccharides
and SEM analysis determination
extractives removal l acidolysis
4

Extractive-freebark Polysaccharides

alkaline methanolysis l_, Suberin

Desuberinized bark

acidolysis l_. }Acid-soluble lignin

Klason-lignin

Figure 6. Flow diagram of the experimental steps followed.

4.2. Pretreatment

A summary of the processing conditions of each pretreatment is given in Table 5. Steam explosion
pretreatment was carried out in a 12 L pressurized vessel of a pilot scale steam explosion reactor,
installed in the Biochemical Process Engineering Laboratory, LTU, Luled, Sweden. The liquid mixture
consisted of water (SE sample) or water-EtOH in ratio 90:10 (OS/SE sample). The vessel was
heated with steam to the desired temperature (195 °C/15 bar or 203 °C/21 bar when EtOH 10%
was used) and maintained during the specific reaction time there before releasing the pressure to a
collection vessel. Hydrothermal (HT) and organosolv (OS) pretreatments took place in a high-pressure
hydrothermal reactor and have been conducted in replicates. A suspension of biomass-water (HT)
or biomass-water-EtOH (OS), with a solid to liquid ratio 1:9, was heated to the reaction, kept at its
set-point during the specific reaction time, and subsequently cooled down below 40 °C. In case of
alkaline catalyst, sodium hydroxide was added to the liquid mixture to a final concentration of 0.1 M.
After pretreatments, the pH of the resulting slurry was determined and the solid residue was washed
until pH reached approximately 5.0 with warm distilled water before any further analysis. After
filtration, the samples were dried in a vacuum oven and weighed to determine the solid recovery and
calculate the % solubilization of bark.

The treatments were evaluated with the severity correlation, which describes the severity of the
pretreatment as a function of treatment time (min) and temperature (°C): Log(R,) = Log (t exp(T —
Tref)/14.7, where T = 100 °C [48,49]. The effect of pH was taken into consideration by Combined
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Severity [50], where the pH of the liquor was employed as a measure of the hydrogen ion concentration
for water and ethanol-water solutions: Combined Severity (CS) = Log(R,) — pH.

Table 5. Processing conditions of different types of pretreatment applied to birch outer bark.

Catalyst Temperature Time

Batch Type Catalyst Concentration (M) Ethanol/Water ©C) (min)
#1 HT - - - 200 10
#2 SE - - - 195 10
#3 OS/SE - - 10/90 203 60
#4 OS 50:50 - - 50/50 195 60
#5 OS 80:20 - - 80/20 160 240
#6 0OS/NaOH NaOH 0.1 80/20 160 240

4.3. Chemical Characterization

Extractives were fully removed by successive Soxhlet extractions with dichloromethane, ethanol
and water. The solvents were recovered and the extractives content determined from the mass of the
solid residue after drying at 105 °C, and reported as a percentage of the original samples.

The extractive-free bark sample was used for determination of suberin by use of methanolysis
for depolymerisation [51]. A 1.5 g sample of extractive-free material was refluxed with 100 mL of a
3% methanolic solution of NaOCHj3 in CH30H during 3 h. The sample was filtrated and washed
with methanol; the residue was refluxed with 100 mL CH3OH for 15 min and filtrated again. The
combined filtrates were acidified to pH 6 with 2 M H,SOy4 and evaporated to dryness. The residues
were suspended in 50 mL water and the alcoholysis products recovered with dichloromethane in three
successive 50 mL dichloromethane extractions. The combined extracts were dried over anhydrous
Na;SOy, and the solvent was evaporated to dryness. The suberin extracts, that include the fatty acid
and fatty alcohol monomers of suberin, were quantified gravimetrically, and the results expressed in
percent of the initial dry mass.

Klason and acid-soluble lignin, and carbohydrates contents were determined on the extracted and
desuberinized materials after acidolysis. Sulphuric acid (72%, 3.0 mL) was added to 0.3 g of the material
sample, and the mixture was placed in a water bath at 30 °C forl h after which the sample was diluted
to a concentration of 3% H;SO, and hydrolyzed for 1 h at 120 °C. The sample was vacuum-filtered
through a crucible, washed with boiling purified water and Klason lignin was determined as the mass
of the solid residue after drying at 105 °C. The acid-soluble lignin was determined on the combined
filtrate following TAPPI T 222 and TAPPI UM 250 methods by measuring the absorbance at 205 nm
using a UV /Vis spectrophotometer (SpectraMax 250 Microplate reader, Molecular Devices, Sunnyval,
CA, USA) and using an extinction coefficient of 110 L- g’lo cm— L.

The polysaccharides were determined after acidolysis of the extractive-free material, as described
above. The combined filtrates were further subjected to complete digestion by incubating 4.5 mL of each
sample with 0.5 mL HC14 M at 70 °C for 15 min followed by neutralization with 0.5 mL NaOH- 12N.
The monomeric sugars produced were quantified with isocratic ion-exchange chromatography using
an Aminex HPX-87P column with a De-Ashing Bio-Rad micro-guard column at 85 °C (Bio-Rad
Laboratories, Hercules, CA, USA) using Millipore water at a flow rate of 0.5 mL- min—! as the mobile
phase. Organic acids and other by-products in pretreated materials were determined using an Aminex
HPX-87H chromatography column with a Cation-H Bio-Rad micro-guard column at 65 °C (Bio-Rad
Laboratories), with a mobile phase of 5 mM sulphuric acid at a flow rate of 0.6 mL- min~!.

The total phenolic content in the hydrolysate (liquid phase) of the pretreated materials was
determined using Folin—-Ciocalteu method. Gallic acid (GA) was used as standard and the total
phenolic content was expressed as mg GA equivalent/mL. An aliquot (50 pL) of each extract, or of the
gallic acid standard, was mixed with 2 mL of Folin-Ciocalteu reagent (1:10 v/v). After 3 min, at room
temperature, 2 mL of aqueous NayCOj3 (7.5% m/v)was added, then the mixture was vortexed and
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further incubated in a thermostat at 45 °C for 15 min and the absorbance of the resulting blue colored
mixtures was recorded at 765 nm against a blank containing only water.

4.4. ATR-FTIR Measurements

ATR-FTIR spectra of extractive—free untreated and pretreated solid fractions were collected on a
Bruker IFS 66v /S FTIR spectrometer (Bruker Daltonics, Billerica, MA, USA) using a single reflection
ATR cell (DuraDisk, equipped with a diamond crystal). Data were recorded at room temperature, in the
range of 4000400 cm ™!, by accumulating 128 scans with a resolution of 4 cm~!. Three replica spectra
were collected for each sample in order to evaluate reproducibility (OPUS v6.0; Bruker Daltonics,
Billerica, MA, USA).

4.5. 3C/MAS NMR Measurements

I3C-NMR analyses were recorded with a Bruker Ascend Aeon WB 400 spectrometer. Data
extractive—free untreated and pretreated solid fractions were obtained at 25 °C using standard Bruker
pulse programs. 1*C-CP/MAS NMR spectra were recorded at 9.48 T using 12 kHz spinning rate and
MAS with proton 90° pulses 2.5 pus. Chemical shifts are given in ppm from glycine. The NMR spectra
were processed and analyzed with Topspin software (3.5; Bruker BioSpin Scandinavia, Solna, Sweden).

4.6. Scanning Electron Microscopy (SEM)

Samples from extractive—free untreated and pretreated materials were dried prior to use and
coated with a thin layer of tungsten using a sputter coater. Electron micrographs were recorded
using the extreme high-resolution (XHR) FEI Magellan™ 400 system (FEI Company, Eindhoven, The
Netherlands) operated at 3.0 kV. Micrographs are regarded as representative.

5. Conclusions

The present work studies the chemical composition of the European hardwood Betula pendula
silver birch barks after different pretreatment methods. The solid fractions obtained present different
characteristics depending on the specific process conditions. During hydrothermal and steam explosion
pretreatment, cleavage of the hemicellulosic bonds led to the release of hemicellulosic sugars in the
liquid fraction, while suberin was partially depolymerized. Organosolv treatment with ethanol/water
solvent was proved to be an efficient method for the fractionation of bark components, resulting in
removal of significant extractives, cleavage of lignin/hemicellulose bonds, removal of lignin and
retaining of suberin components. This work contributes to a deeper fundamental knowledge of the
bark chemical composition and the development of pretreatment strategies for a selective component
enrichment to facilitate downstream fractionation processes and bark valorization.
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