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Abstract: Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and
it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this
study, we employed the used of in silico studies to find effective UCK2 inhibitors of natural origin
using bioinformatics tools. An in vitro kinase assay was established by measuring the amount of ADP
production in the presence of ATP and 5-fluorouridine as a substrate. Molecular docking studies
revealed an interesting ligand interaction with the UCK2 protein for both flavokawain B and alpinetin.
Both compounds were found to reduce ADP production, possibly by inhibiting UCK2 activity in vitro.
In conclusion, we have identified flavokawain B and alpinetin as potential natural UCK2 inhibitors
as determined by their interactions with UCK2 protein using in silico molecular docking studies.
This can provide information to identify lead candidates for further drug design and development.

Keywords: UCK2; in silico; flavokawain B; alpinetin; Alpinia mutica; nucleoside analogues; amino
acid active site residues

1. Introduction

Nucleotides are the foundation of all physiological functions required for cell growth and
replication and any genetic changes will therefore lead to disturbances in nucleotide pools [1,2].
In cancer cells, these genetic changes can show characteristic DNA/RNA modifications and activities
of modifying enzymes, that results in fluctuations in nucleotide levels [3]. In mammalian cell, RNA is in
constant turned over in cells, both during the production of mature RNAs from longer precursors and
to regulate the amounts of mRNA expressed in cells. During the metabolic breakdown of polymeric
RNA and DNA, the resulting NMPs are released which can then be recycled by the action of the
uridine-cytidine kinase 2 (UCK2) via alternative salvage pathway [4]. Drugs such 5-fluorouracil
and hydroxyurea inhibit de novo nucleotide biosynthesis. However, inhibition of de novo pathway
alone is insufficient to produce effective treatment, as such, unutilized nucleotides are salvaged via
pyrimidine synthesis.

UCK2 is an enzyme that catalyzes the phosphorylation of uridine and cytidine nucleotides
to their corresponding uridine monophosphate (UMP) and cytidine monophosphate (CMP) [5].
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Phosphorylation of UMP and CMP are an essential requirement to form 51-triphosphate nucleotides
required for gene synthesis. UCK2 have been reported to be expressed only in the placenta and its
over expression have been implicated in several rapidly proliferating cancer cells [6,7]. Therefore, the
selective expression of UCK2 in cancer cells makes it a potential target for cancer chemotherapy.

Nucleoside analogues are being used to treat different cancer cells via their phosphorylation
catalyzed UCK2. Such nucleoside analogues under investigation in clinical trials either as a single
drug entity or in combination with other cytotoxic agents includes 1-(3-C-ethynyl-beta-D-ribo-
pentofuranosyl)cytosine (ECyd, TAS 106) [8,9] and fluorocyclopentenylcytosine (RX-3117) [10].
These nucleoside analogues depend on UCK2 for phosphorylation to their triphosphate form to exert
their pharmacological activity and once phosphorylated, the nucleoside analogues interfere with the
synthesis of RNA or DNA which are vital cellular processes required for growth and development [6].
Hence, TAS 106 use is accompanied by several serious toxicity issues such as neurotoxicity, neutropenia,
febrile neutropenia, pneumonia, leukopenia, thrombocytopenia, tremor, pain, hyperesthesia, asthenia,
anorexia, nausea, vomiting, myelosuppression, as well as dermatological effects [8,9,11–13].

Low molecular weight natural products are capable of inhibiting enzyme catalytic activity due to
the remarkable complexity of their chemical structures. Some natural anticancer agents used nowadays
exert their pharmacological action by inhibiting a human enzyme, particularly ones involved in
metabolic pathways [14]. Scientists have for long focused only on the design and synthesis of drugs that
are UCK2 dependent, hence, forgetting that bioactive natural products which are capable of reducing
or completely inhibiting enzyme catalytic activity can be used as a chemotherapeutic targeting UCK2
activity. Due to the serious side effects evidenced by these ribonucleoside analogues, effective drugs of
natural origin with less potential side effect to patients would be highly desirable. To date, there has
not been any research on any single natural bioactive compound targeting the UCK2 enzyme and no
inhibitors of this enzyme have been so far reported. In our search for natural bioactive compounds
targeting UCK2, we report here for the first time using in silico visual screening that flavokawain B and
alpinetin inhibit UCK2.

2. Results and Discussion

2.1. Cell Viability Studies

To determine the percentage cell viability of HT 29 cells, the MTT colorimetric assay was used in
this investigation to measure the amount of viable cells after 72 h of incubation. Flavokawain B (FKB)
and alpinetin (APN) inhibit 50% cell proliferation at an IC50 of 29.84 µM (8.47 µg/mL) and 48.58 µM
(13.12 µg/mL), respectively (S1 files) (Figure 1). 5-Fluorouracil (5FU) was used as positive control in
this study. The inhibition of proliferating cells by FKB at a very low concentration has previously been
reported in colon cancer [15,16].
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Figure 1. Percentage cell viability of HT 29 cells treated with 5FU, FKB, and APN. MTT assay was used
to determine the IC50 of the drugs at different concentrations in µM for 72 h.
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2.2. Molecular Docking Studies

2.2.1. Redocking Analysis

Autodock is an effective tool used to obtain unbiased docking of flexible inhibitors in enzyme
active sites [17]. Autodock 4 uses a semiempirical free energy force field to predict the binding free
energies of small molecules to macromolecular targets [18]. In order to validate our data sets using
Autodock 4, a control docking was performed on UCK2 protein in complex with the inhibitor CTP
using a root-mean-square deviation (RMSD) tolerance of 2.0 Å. The results of the redocking study are
shown in Table 1. Autodock 4 successfully redocks the complex with the lowest energy conformation
showing a RMSD of 0.829 Å from the reference structure. The lowest energy docked conformation has
an estimated free binding energy of ´14.27 kcal/mol, intermolecular energy of ´16.66 kcal/mol, and
inhibition constant (Ki) of 34.63 pM. The obtained RMSD of less than 2.0 Å confirmed the validity of
our docking data sets (S2 files).

Table 1. The lowest energy docked conformation from each ligand.

Ligand Free Binding
Energy *

Inhibition
Constant, Ki

Intermolecular
Energy *

vdW + Hbond +
Desolv Energy *

Electrostatic
Energy *

CTP ´14.27 34.63 pM ´16.66 ´12.59 ´4.07
FKB ´8.47 618.12 nM ´10.26 ´9.96 ´0.30
APN ´8.86 321.38 nM ´9.75 ´9.04 ´0.71

* kcal/mol; CTP: cytosine-51-triphosphate, FKB: flavokawain B, APN: alpinetin.

2.2.2. Docking Analysis of FKB and APN on UCK2 Protein

FKB was estimated to have a lowest binding energy of ´8.47 and intermolecular energy of
´10.26 kcal/mol, and inhibition constant (Ki) of 618.12 nM (Table 1). On the other hand, alpinetin had
´8.86 binding and ´9.75 kcal/mol, intermolecular energy of, and a Ki of 321.38 nM. The intermolecular
hydrogen interactions between the amino acid residues in the catalytic active site of UCK2 and its
inhibitors are tabulated in Table 2.

Table 2. Intermolecular hydrogen interaction between UCK2 protein and its inhibitors.

UCK2 HB with CTP HB with FKB HB with APN

Active Residues (BD ď 3.5 Å, DHA ě 90˝) (BD ď 3.5 Å, DHA ě 90˝) (BD ď 3.5 Å, DHA ě 90˝)
Thr29 Hβwith 31O Oγ1 with 2 H Hαwith 3 O
Ala30 Hαwith Oγ3, HN with Oα2 HN with 3 O
Gly32 HN with Oγ2

Lys33 Hζ2 with Oγ2, HN with Oγ2, Hζ1
with Oα1, Hζ1 with Oβ3 Hζ2 with 4 O Hζ1 with 5 O

Ser31 HN with Oγ2

Ser34 HN with Oγ1, Hαwith Oβ1, Hβ2
with Oγ1 Oγwith 41 H

Asp62 HN with 7 O
Tyr65 Hηwith 91 O Hηwith 10 O
Phe83
Asp84 Oγ1 with 21O, Oγ2 with 31O
Tyr112 Oηwith 4N
His117 Nδ1 with 4N
Glu135 Oε1 with 101 H, 41 H Oε1 with 5 H

O with 101 H O with 7 H

Arg166 Oη12 with 31O, Oη22 with 21O,
Oη22 with 31O

Arg169 Hη22 with Oγ2 Hη22 with 2 O Hη12 with 3O
Arg174 Oη11 with 41O
Arg179

HB: hydrogen bond, BD: bond distance, DHA: D, hydrogen donor; H, hydrogen; A, hydrogen acceptor.
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Figures 2 and 3 show a total of eight hydrogen bond interactions formed between the catalytic
active site of UCK2 protein and flavokawain B as well as alpinetin, respectively. The hydrogen and
oxygen of the 4-methoxy group of flavokawain B form hydrogen bonds with the Oγ atom of Ser-34
and Hζ2 atom of Lys-33, while the 2-hydroxyl group forms a hydrogen bond with the Hη22 atom
of Arg-169. These amino acid residues form the binding site for the γ- and β-phosphate moieties
of ATP. ATP has been shown to adopt a pentacoordinate transition state and produce an anionic
charge upon nucleophilic attack by the 51-oxygen atom at the γ-phosphate moiety of ATP and the
side chains of Lys-33, Arg-169 and Arg-174 are the potential candidates to stabilize this anionic
charge [19]. Apart from the γ- and β-phosphate moieties of ATP, flavokawain B also forms three
important hydrogen bonds with Glu-135 involved in coordination with a magnesium ion (Mg2+).
A Mg2+ is found to play a crucial role in the stabilization of the transition state by its coordination with
the γ- and β-phosphate oxygens of ATP [7,19]. Other hydrogen bonds formed between flavokawain B
and the amino acid side chains of UCK2 protein involve the 2-hydroxyl group and 91 ketone group of
flavokawain B with Oγ1 and the Hη atom of Thr-29 and Tyr-65, respectively.
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Figure 2. In silico redocking of UCK2 protein in complex with inhibitor CTP. (a) Complete x-ray
structure of UCK2 receptor protein shown as a cartoon; (b) Amino acid residues in the active site of
UCK2; (c) Interactions of CTP with UCK2 as identified by in silico docking analysis. CTP shown in
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for oxygen, and phosphorus in orange.
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On the other hand, like flavokawain B, alpinetin also binds to the γ- and β-phosphate moieties
of ATP (S2 files). Three hydrogen bonds are formed with the amino acid side chains of HN, Hζ1 and
Hη12 atom of Ala-30, Lys-33 and Arg-169, respectively. The Oε1 atom and carboxyl group of Glu-135
also form two hydrogen bonds with the 5-hydroxyl group and methoxy group of alpinetin. In addition,
three hydrogen bonds are also formed with the side chain of Thr-29, Tyr-65 and Asp-62. Asp-62
has been known to activate the 51-hydroxyl group of ribonucleosides because it’s the only amino
acid residue that can function as a catalytic base around the 51-hydroxyl group [7,19]. Therefore, the
hydrogen bond between the hydroxyl group of alpinetin and HN atom of Asp-62 may strongly inhibit
the 51-hydroxyl group interaction of ribonucleosides, even if they were phosphorylated. In comparison
to the control feedback inhibitor CTP, the binding mode of UCK2 inhibitors positioned in such a way
that the inhibitors buried themselves deep in the ATP binding pocket surrounded by amino acid side
chains of the ATP binding site (Figure 4).
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It has been shown that ligand binding at both the phosphate donor and acceptor binding
sites competitively inhibit UCK [19]. Therefore, the inhibitors are bound to the site where γ- and
β-phosphate moieties of ATP bind, thus, the inhibition may be competitive. Flavokawain B and
alpinetin are therefore estimated to inhibit UCK2 protein by binding to the catalytic active site of ATP,
thus inhibiting ATP from binding to its active site in the UCK2 protein.

2.3. In Vitro Kinase Activity

The fluorimetric kinase assay is a non-radioactive determination of kinase activity based on the
amount of ADP produced by an enzyme reaction in the presence of ATP, where the amount of ADP
formed is directly proportional to the enzyme activity. To validate our molecular docking result, we
carried out a preliminary kinase activity by measuring the amount of ADP produced by utilizing
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5-fluorouridine as a substrate in the presence of either FKB or APN. Interestingly, both compounds
reduced enzyme activity in a dose-dependent manner (S3 files, Figure 5). A significant reduction in
enzyme activity at a concentration of 25 µM (7.1 µg/mL) and 50 µM (14.2 µg/mL) was observed in
a dose-dependent manner when incubated with FKB. A significant difference was also observed in
a dose-dependent manner compared to DMSO treated control. This shows that the solvent (DMSO)
used as vehicle does not contribute significantly to the enzyme activity since enzyme assays can
tolerate high DMSO concentrations up to 5%–10% [20].
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Figure 5. UCK2 enzyme activity was measured based on the amount of ADP produced from the
enzyme reaction (a) Cell lysate incubated in the presence of FKB (b) Cell lysate incubated in the
presence of APN. Florescence intensity (λex = 450 nm/λem = 590) was monitored using a fluorescence
plate reader. Results were expressed as mean ˘ SD of three independent experiments, * p < 0.05,
** p < 0.01, ns: non-significant when compared to the control.

On the other hand, a significant reduction in enzyme activities was only observed when incubated
with 50 µM (13.5 µg/mL) of APN, but this shows no significant difference compared to DMSO
treated control. Thus, the potent enzyme inhibition of APN is about 2-fold lower compared to that
of FKB at 25 µM. Research has shown that UCK2 also phosphorylates uridine nucleoside analogs
such as 5-fluorouridine. The percentage efficiency of phosphorylation of 5-fluorouridine have been
shown to be more than 100% efficiency when correlated to the efficiency of uridine phosphorylation
catalyzed by UCK2 [6]. The results of the current investigation shown that 5-fluoroudine may have
been phosphorylated by the presence of UCK2 in the untreated cell lysate and the enzyme may have
been inhibited in HT 29 cells treated with either FKB or APN.

3. Materials and Methods

3.1. General Information

The following instruments were issued: Electrothermal IA 9100 series melting point apparatus
(Staffordshire, UK), glass vacuum column, aluminium TLC plates (silica gel 60 F254, Merck Millipore,
Darmstadt, Germany), Bruker Avance 500 MHz Nuclear Magnetic Resonance (NMR) spectrometer
(Billerica, MA, USA). NMR spectra were recorded in CDCl3 (δ 7.26 as internal reference) and reported
in ppm (δ), and coupling constants in Hertz, NMR peak patterns are described as broad (br), singlets
(s), doublets (d), double-doublets (dd) triplets (t) and multiplets (m). GC-MS (Agilent Technologies,
Santa Clara, CA, USA), fluorescence mucriplate reader (BioTek, Winnoski, VT, USA), ELISA microplate
reader (Beckman, Brea, CA, USA). All other chemicals and reagents were of analytical grade and
obtained from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Plant Material

About 6 kg of the rhizomes of Alpinia mutica was collected from the Biodiversity Unit of the
Institute of Bioscience, Universiti Putra Malaysia Serdang. The rhizomes were washed to remove
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extraneous matter, sliced into small pieces, and air-dried at room temperature. The dried rhizome was
then ground into a fine powder using a grinding machine.

3.3. Extraction and Isolation of FKB and APN

Extraction and isolation of FKB and ALP were performed based on the reported procedure [21]
with some modifications. Ground plant material weighing 628.35 g was soaked and allowed to
macerate at room temperature for 72 h sequentially with solvents of increasing polarity, first with
hexane (3.2 L) and then chloroform (3.2 L) for three consecutive times. Each of the solutions obtained
was filtered and concentrated in a rotatory evaporator at a reduced pressure to obtain a crude extract.
The final concentrate was further allowed to dry at room temperature to complete dryness. Each of
the crude fractions, i.e., hexane (18.22 g, 2.90%) and chloroform (24.41 g, 3.88%) was was subjected to
column chromatography for isolation and purification to obtain pure compounds using silica gel as
stationary phase and mixtures of petroleum ether, ethyl acetate and methanol in various proportions
as mobile phases. All the fractions were monitored by TLC, spotted under UV and the major spot
identified by spraying with 10% H2SO4 and heated at 100 ˝C. The purified natural products were
then analyzed by spectroscopic analysis, in particular, 1H- and 13C-NMR spectroscopy as well as
direct infusion mass spectrometry (DIMS). Further washing of the hexane and chloroform fractions
with petroleum ether afforded FKB (melting point 82–84 ˝C; 200 and 226.4 mg, 1.1% and 0.93%,
respectively) while APN was obtained from the chloroform fraction after washing with petroleum
ether (melting point 212–214 ˝C; 32.4 mg, 0.13%). Both FKB and APN (Figure 6) were identified and
matched previously established NMR and mass spectral data (S4 files and S5 files) [22–26].
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3.4. Cell Culture

The HT-29 cell line (ATCC) used in this study was obtained from the MAKNA Cancer
Research Laboratory of the Institute of Bioscience. The cell line was sub-cultured in DMEM
media (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) (PAA, Freibug, Germany)
and 1% 100 IU penicillin and 100 µg/mL streptomycin (Sigma). The starting culture was at
1 ˆ 104 cells/mL and maintained at a temperature of 37 ˝C in a humidified incubator containing
5% CO2. Cultures were continuously maintained by routine trypsinization (0.05% Trypsin-EDTA) of
cells at 70%–80% confluence.

3.5. Drugs

5-Fluorouracil and bioactive compounds isolated from rhizome of Alpinia mutica was used in this
investigation. A stock solution of 5-fluorouracil/bioactive compound was prepared in a concentration
of 400 µM in 50 µL dimethyl sulfoxide (DMSO) and the final concentration of DMSO will be 0.1% (v/v).

3.6. Cell Viability Assay

The effect of bioactive compounds on colorectal cancer was determined by a MTT assay. Briefly,
HT 29 cells were seeded in 96-well microplates at a density of 0.5 ˆ 104 cells/mL. Cells were treated
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after 24 h incubation at different concentrations with FKB, APN or 5FU (400, 200, 100, 50, 25, 12.5, and
6.25 µM) in serial dilution for 72 h. After 72 h incubation, 20 µL of MTT stock solution (5 mg/mL)
was added to each well and 100 µL of DMSO was added to each well after 4 h incubation in the dark.
The amount of purple formazan formed was measured colorimetrically at 570 nm. Cell viability was
expressed as the percentage of amount of viable cells to that of the amount of the total cell population
and the potency of testing drugs to inhibit cell growth by 50% was expressed as IC50. The cell viability
assay was carried out in three independent experiments.

3.7. Molecular Docking Simulation Studies

Molecular docking studies were performed using Autodock version 4.2 [18], analyzed and
visualized using Discovery Studio visualizer version 4.5. The X-ray protein crystal structure
(2.6 Å resolution) of human uridine-cytidine kinase 2 in complexed with a feedback inhibitor, CTP
(1UDW.pdb ID) [19] was obtained from the Protein Data Bank (www.pdb.org). The three dimensional
structures of FKB and APN was obtained from National Centre for Biotechnology information
PubChem database [27] in an SDF file format and converted into the PDB file format using DS
visualizer 4.5. Gasteiger charges were added to the ligand and all non-polar hydrogen atoms were
deleted and their charges merged with the carbon atoms. The root of the molecule was detected,
rotatable bonds were defined, and the number of torsions was set to 6. Prior to molecular docking,
all solvent molecules, heteroatoms and the co-crystallized ligand (CTP) were removed from the
structure [28,29] and all missing hydrogen atoms in the protein were added. The grid parameter file
was prepared by setting the grid maps of 40 ˆ 40 ˆ 40 Å grid points in xyz, 0.375 Å spacing, and the
grid box was positioned directly at the center on CTP-binding site of the crystal structure 1UDW (grid
center 11.359 Å, 38.57 Å, and 33.111 Å in xyz-coordinates). Lamarckian genetic algorithm was used to
carry out conformational searching in molecular docking simulation studies [18]. A molecular docking
experiment was performed using 2,500,000 energy evaluations for 100 numbers of GA Runs per ligand
with a population size set at 150.

3.8. Preparation of Cell Lysate

HT 29 cells were collected by trypsinization at 70%–80% confluence and centrifuged at 1000 rpm
for 5 min at 4 ˝C. Supernatant was discarded, re-suspended in ice cold PBS and centrifuge at 1000 rpm
for 5 min. Supernatant was discarded and the cell pellet was re-suspended in an appropriate volume
of ProteoJET mammalian cell lysis reagent (Fermentas, Burlington, ON, Canada) and vortex for 5–10 s.
The cells were allowed to incubate at room temperature on a shaker at approximately 900 rpm for
10 min and centrifuge at 18,000ˆ g for 15 min. The supernatant was carefully collected, aliquots in
PCR tubes and stored at ´80 ˝C until use. Total protein concentration in the cell lysate using Bradford
reagent (Bio-Rad Laboratories, Hercules, CA, USA).

3.9. In Vitro Kinase Activity Assay

The inhibitory activity of bioactive compounds on UCK2 were assayed using a Universal
fluorimetric kinase assay kit (Sigma). A total 80 µL volume of the kinase reaction mixture was
set up containing 20 µL of ADP Buffer, 25 µL of cell lysate/H2O, 20 µL of 12.5, 25, and 50 µM
test drug/DMSO/H2O, 10 µL of 0.5 mM 5-fluorouridine/H2O, and 5 µL of 1 mM ATP/H2O.
The reaction mixture was incubated in a water bath at 37 ˝C for 30 min. 20 µL of the kinase reaction
was added into 96 black well microplate. For each well containing 20 µL kinase reaction, 20 µL
of ADP sensor buffer was added, followed by 10 µL of the ADP sensor solution and the assay
mixture was allowed to incubate for 15 min in the dark at room temperature. Florescent intensity
(λex = 450 nm/λem = 590) was monitored using a fluorescence plate reader. This assay was carried out
in three independent experiments.
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3.10. Statistical Analysis

The results of the experiments are reported as mean ˘ SD for at least three replicate analyses
for each sample. Statistical analysis was performed using GraphPad Prism 5.0. Analyses of
variance are performed using the ANOVA procedure followed by Dunnett’s and Bonferroni’s test for
multiple comparison.

4. Conclusions

In conclusion, we have shown for the first time that flavokawain B and alpinetin act as potential
UCK2 inhibitors in silico. Flavokawain B and alpinetin have shown interesting inhibition of this key
enzyme involved in gene synthesis. This inhibition may provide information supporting their use as
lead candidates for further drug development. Moreover, further studies are currently under way
to determine the molecular mechanism of action by which FKB and ALP inhibit UCK2 from further
phosphorylation of nucleosides during gene replication.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
21/4/417/s1.
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