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Abstract: A series of ethanodiazapolycenes were prepared in 87%–89% yields by Friedländer reactions
of three o-aminoarenecarbaldehydes with bicyclo[2.2.2]octane-2,5-dione and their spectral, thermal,
and structural properties were studied. Subsequent attempts to convert them to diazapolycenes have
proved unsuccessful.
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1. Introduction

The polycenes, represented by pentacene (1a) have long been of interest in the area of
semiconductors with potential applications in organic thin-film transistors (OTHFTs) [1–3], and organic
light-emitting diodes [4]. In order to overcome the major drawbacks of pentacene such as its insolubility
at room temperature and rapid degradation [5], continuous efforts have been pursued to prepare
soluble precursors that can be thermally converted to pentacene [6], the introduction of substituent(s)
on the basic skeleton [7–9], and substitution of the benzene moiety by isosteric aromatics such as
thiophene (compound 2) [10], and pyridine (compounds 3 [11] and 4 ([12]) (Figure 1).
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Figure 1. Pentacene and its isosteres. 

Theoretically, introduction of a nitrogen atom significantly decreases the frontier molecular 
orbital energy and hence improves the stability in air and to light [13]. This has led to the synthesis 
of large numbers of N-heteroacenes with pyrazine units in recent years [14,15]. The 1-azapentacenes 
with bis(triisopropylsilyl)ethynyl groups such as 3 in fact showed potential for high-performance 
organic semiconductors with superior structure-activity characteristics that the corresponding 
pentacene derivative, 6,13-bis[(triisopropylsilyl)ethynyl]pentacene [16]. Recently, we reported a 
synthesis and the properties of 5-azapentacene (1b, Figure 1) [17], which might open a new vista for 
the studies on azapolycenes. As part of our ongoing studies on azaaromatics [17–19], we describe 

 

Figure 1. Pentacene and its isosteres.

Theoretically, introduction of a nitrogen atom significantly decreases the frontier molecular orbital
energy and hence improves the stability in air and to light [13]. This has led to the synthesis of large
numbers of N-heteroacenes with pyrazine units in recent years [14,15]. The 1-azapentacenes with
bis(triisopropylsilyl)ethynyl groups such as 3 in fact showed potential for high-performance organic
semiconductors with superior structure-activity characteristics that the corresponding pentacene
derivative, 6,13-bis[(triisopropylsilyl)ethynyl]pentacene [16]. Recently, we reported a synthesis and
the properties of 5-azapentacene (1b, Figure 1) [17], which might open a new vista for the studies on
azapolycenes. As part of our ongoing studies on azaaromatics [17–19], we describe herein a preparation
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of ethano-bridged diazapolycenes as dimeric diazapolycenes and our attempts at the preparation of
the corresponding diazapolycenes.

2. Results and Discussions

2.1. Synthesis

Synthesis of the compounds was straightforward as shown in Scheme 1. The Friedländer
reactions of o-aminoarenecarbaldehydes 5 with diketone 6 afforded the corresponding ethano-bridged
diazapolycenes 7 in 87%–89% yields. The prerequisite starting 2-aminobenzaldehyde (1a) [20],
3-aminonaphthalene-2-carbaldehyde (5b) [21], 3-aminoanthracene-2-carbaldehyde (5c) [17], and
bicyclo[2.2.2]octane-2,5-dione (6) [22] were prepared employing the corresponding previously
reported methods.
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observed for the proton at the peri-position. It should be noted that the ethane bridge protons of 7a 
resonated at δ 2.03 as a singlet, while those of 7b and 7c were multiplets in the range of δ 2.25–2.10 
and δ 2.27–2.23, respectively, reflecting the fact these bridges are rigid at room temperature on the 
NMR time scale. 
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2.2. Attempts to Convert 7 to the Corresponding Diazapolycenes 8

Catalytic dehydrogenation and/or dealkylation [23–26] and vacuum pyrolysis [27–31] of
cyclohexenes have been commonly employed to build up benzene rings, in which the former proceeds
via elimination of alkyl substituent(s) and the latter via retro-Diels-Alder reaction. However, all
attempts, including catalytic dehydrogenation (10% Pd/C in nitrobenzene at 200 ˝C for 8 h) and
vacuum pyrolysis (0.02 mmHg, 600 ˝C, 45–60 min) of the compounds 7 leading to the corresponding
diazapolycenes 8 have been as yet unsuccessful (Scheme 2). It should be noted that vacuum pyrolysis
of 7a,b resulted in sublimation of the compounds which remain unchanged, while 7c decomposed.
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2.3. Spectroscopic Properties

1H-NMR spectral data of selected protons are summarized in Table 1. All the proton resonances
were assigned by comparison with previously reported data for related compounds such as
quinoline [32], benzo[g]quinoline [33], and 5-azapentacene [17] and by double quantum H-H COSY
experiments. The resonances of H4 and the proton at the peri-position in the most of the polypyridines
and polyquinolines, are characteristic and have been used as a diagnostic probe for understanding the
structural information. The resonances of H4 were shifted downfield by 0.73 ppm for 7b compared to
7a, and 0.40 ppm for 7c compared to 7b. These values are comparable to those of related compounds
such as quinoline, benzo[g]quinoline, and 5-azapentacene, reflecting increased delocalization of
π-orbitals in the aromatic systems as the number of aromatic rings increases. Similar trends were also
observed for the proton at the peri-position. It should be noted that the ethane bridge protons of 7a
resonated at δ 2.03 as a singlet, while those of 7b and 7c were multiplets in the range of δ 2.25–2.10 and
δ 2.27–2.23, respectively, reflecting the fact these bridges are rigid at room temperature on the NMR
time scale.
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Table 1. 1H-NMR chemical shifts and coupling constants of selected protons.

Compounds H4 H at Peri-Position -CH2CH2-

Quinoline (a) 8.00 (3J = 8.3, 4J = 1.1 Hz) 8.05 (3J = 8.2, 4J = 1.6 Hz)

Benzo[g]quinoline 8.58 (3J = 8.5, 4J = 1 Hz) (b)

8.31 (3J = 8.5 Hz) (c)
8.76 (s) (b)

8.70 (s) (c)

Naphtho[2,3-g]quinoline (d) 8.50 (3J = 7.5, 4J = 1.5 Hz) 8.87 (s)
5-Azapentacene (e) 9.12 (s) 9.26 (s)

7a 7.60 (s) 8.01 (3J = 8.3, 4J = 1.2 Hz) 2.03 (s)
7b 8.33 (s) 8.59 (s) 2.25–2.10 (m)
7c 8.73 (s) 8.85 (s) 2.27–2.23 (m)

(a) Ref. [32]; (b) Taken from 250 MHz 1H-NMR in CDCl3; (c) Ref [33]; (d) Taken from the ChemDraw® computer
program from CambridgeSoft; (e) Ref [17].

UV absorption spectra of 7 were obtained in EtOH (1.0 ˆ 10´6 M) (Figure 2) and the absorption
maxima and extinction coefficients are summarized in Table 2. The absorption bands in the 245–303 and
331–400 nm regions correspond quite closely to the π-π* absorptions. The absorption maxima for
the more linear compounds (7a vs. 7b, 7b vs. 7c) appear shifted towards longer wavelengths (see
Figure 2). These data are consistent with an electronic transition state in which the energy of the
receptor π* orbital is lowered by the increasing delocalization which would be found for the more
conjugated and linear systems. The electronic spectrum of the most linear compound 7c showed π-π*
absorption bands at 303 and 325 nm which are red-shifted compared to the parent compound 7a by
58 and 80 nm, with little effect on the intensity of the absorption compared to 7a. It should be noted
that benzoannulation led an additional absorption band in the region of 350–408 nm, of which 7c
showed the most intense and bathochromic shifted absorption due to the additional benzene ring.
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at 298 K.

The photoluminescence (PL) of the compounds was studied in EtOH (1 ˆ 10´5 mol/L) at room
temperature (Figure 2) and are summarized in Table 2. Excitation of the absorbances at 245, 280,
and 303 nm for 7a, 7b, and 7c, respectively, showed emissions at 400, 465, and 500 nm. The observed
emission wavelength is somewhat dependent on the nature of the conjugated system: The most extended
compound 7c showed a green light emission at 500 nm while 7a showed a purple light emission at
400 nm. The quantum yields were determined by a previously reported method [34,35] employing
quinine sulfate as a standard to give values of 0.38, 0.54, and 0.58 for 7a, 7b, and 7c, respectively.
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Table 2. UV absorption and FL data of compounds 7a, 7b, and 7c.

Compd. λ [nm (logε)] λexcit λemit Quantum Yield (a)

7a 245 (5.49) 331 (5.18) 245 400 0.38
7b 256 (5.20, sh) 280 (5.46) 297 (5.20, sh) 350 (4.61) 370 (4.81) 280 465 0.54
7c 257 (5.39) 303 (5.46) 325 (5.41) 408 (4.85) 303 500 0.58

(a) Values were calculated from the equation given in Ref. [34,35] using quinine sulfate as a reference.

2.4. Structural and Thermal Properties

The crystallinity of the compounds prepared was analyzed by X-ray diffraction (XRD) and the
corresponding X-ray diffractograms are shown in Figure 3. The diffractograms of compounds 7a and
7b showed distinctive peaks, indicating their crystalline nature. Compounds 7a, of which the X-ray
crystal structure has been reported [36], and 7b have more crystalline character comparing to 7c. The
crystallite sizes of 7a and 7b were calculated by employing Scherrer’s equation, Dp = 0.93λ/Lcosθ [37],
where Dp is the averaged particle size of the crystallites, λ is the incident wavelength (1.54056 Å), θ is
the Bragg angle and L is the diffracted full width at half maximum (in radians) caused by crystallization
to give 6.89 and 10.54 nm for 7a and 7b, respectively.
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Figure 3. X-ray diffractograms of compounds 7a, 7b, and 7c in powder state.

The thermal behaviors of the compounds were analyzed by differential scanning calorimetry
(DSC). All the compounds showed a single sharp endothermic peak at the melting transition
temperature (Tm) of 287.3, 397.35, and 409.78 ˝C, respectively. However only compound 7a showed
sharp exothermic peaks as a crystallization temperature (Tc) at 202.74 ˝C (data not shown). It should
be noted that none of the compounds showed a glass transition temperature (Tg).

3. Experimental Section

3.1. General Information

Melting points were determined using a Fischer-Jones melting points apparatus (Fischer Scientific,
Grand Island, NY, USA) and are not corrected. UV spectra were recorded on a V550 spectrophotometer
(JASCO, Oklahoma City, OK, USA). NMR spectra were obtained using a Bruker-250 spectrometer
(Fällanden, Switzerland) or VNS600 FT-NMR (Varian, Australia) operating at 250 MHz or 600 MHz
for 1H-NMR and 62.5 MHz or 150 MHz for 13C-NMR and are reported as parts per million (ppm)
from the internal standard TMS. Chemicals and solvents were commercial reagent grade and used
without further purification. Electrospray ionization (ESI) mass spectrometry (MS) experiments
were performed on a LCQ advantage-trap mass spectrometer (Thermo Finnigan, San Jose, CA, USA).
Elemental analyses were taken on a Hewlett-Packard Model 185B elemental analyzer (Hewlett Packard,
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Littleton, MA, USA). XRD analysis was performed by X-ray diffractometry (MPD for bulk, PANalytical,
Wesybrough, MA, USA) with nickel-filtered CuKα radiation (30 kV, 30 mA) at 2θ angles from 10˝ to
90˝, a scan speed of 10˝/min and a time constant of 1 s. Thermal behaviors of the compounds were
analyzed using differential scanning calorimeter (DSC Q200, TA Instrument, Wilminton, NJ, USA)
with 1~2 mg of sample sealed in alumina in the range of 40–385 ˝C increasing temperature in a rate of
10 ˝C/min. An empty pan was used as a reference, and the DSC baseline, temperature, and enthalpy
were calibrated. High and low resolution FAB-MS data were obtained on a JMS-700 instrument (JEOL,
Peabody, MA, USA).

3.2. Synthesis and Characterization of the Products

6,13-Dihydro-6,13-ethano-5,12-diazapentacene (7a)

To a mixture of 2-aminobenzaldehyde (5a, 0.59 g, 4.9 mmol) and bicyclo[2.2.2]octane-2,5-dione
(6, 0.30 g, 2.18 mmol) in EtOH (15 mL) was added 2 M KOH in EtOH (1 mL). The resulting mixture
was refluxed for 8 h to form a precipitate which was collected and washed with EtOH to give pale
yellow needles (0.60 g, 88%): mp 297–298 ˝C (lit. [36] mp 284–285 ˝C). Spectral data were identical
to those reported previously [36]. 1H-NMR (CDCl3, 250 MHz) δ 8.33 (s, 2H, H7 and H14), 8.01 (d,
J = 8.3 Hz, 2H, H4 and H11), 7.95 (d, J = 7.9 Hz, 2H, H1 and H8), 7.73 (td, J = 8.3, 1.0 Hz, H3 and H10),
7.60 (td, J = 8.0, 1.0 Hz, H2 and H9), 4.80 (s, 2H, H6 and H13), 2.03 (s, 4H). 13C-NMR (62.5 MHz, CDCl3)
δ 25.5, 45.8, 126.3, 127.3, 128.0, 128.6, 129.5, 130.3, 134.2, 146.3, 163.4.

7,16-Dihydro-7,16-ethanobenzo[b]benzo[6,7]quinolino[3,2-i]acridine
(7,16-dihydro-7,16-ethano-6,15-diaza-heptacene, 7b)

To a mixture of 3-aminonaphthalene-2-carbaldehyde (5b, 280 mg, 1.63 mmol) and
bicyclo[2.2.2]octane-2,5-dione (6, 90 mg, 0.65 mmol) in EtOH (10 mL) was added 2 M KOH in EtOH
(1 mL). The resulting reaction mixture was refluxed for 8 h. Evaporation of the solvent provided pale
yellow crystalline solids (236 mg, 89%), which was purified by flash column chromatography on silica
eluting with EtOAc to give the desired product as pale yellow needles: mp 397.35 ˝C (DSC). 1H-NMR
(CDCl3, 250 MHz) δ 8.60 (s, 2H, H5 and H14), 8.33 (s, 2H, H8 and H17), 8.19 (s, 2H, H9 and H18), 8.03
(overlapped dd, 4H, J = 7.8, 2.8 Hz, H1, H4, H10, H13), 7.50–7.46 (m, 4H, H2, H3, H11, H12), 4.77 (s,
2H, H7 and H16), 2.25–2.10 (m, 4H). 13C-NMR (CDCl3, 62.5 MHz) δ 163.9, 143.6, 133.8, 133.1, 131.8,
130.6, 128.6, 128.2, 126.7, 126.6, 126.4, 126.3, 126.1, 46.7, 25.5. MS (ESI) calcd for C30H20N2 [M + H]+ 409,
found 409. HR-FAB-MS (m/z): [M+] calcd for C30H20N2, 408.16265; found, 408.1629. Anal. calcd for
C30H20N2 C, 88.21; H, 4.94; N, 6.86. Found C, 88.39; H, 4.93.

8,19-Dihydro-8,19-ethanonaphtho[2,3-b]naphtho[21,31:6,7]quinolino[3,2-i]acridine
(8,19-dihydro-8,19-ethano-7,18-diazanonacene, 7c)

A mixture of 3-aminoanthracene-2-carbaldehyde (5c, 360 mg, 1.63 mmol, 2.5 equiv),
bicyclo[2.2.2]octane-2,5-dione (6, 90 mg, 0.65 mmol), and 2 M KOH in EtOH (1 mL) in EtOH (10 mL)
was refluxed for 8 h. Work-up as described above for 7a afforded a pale crystalline solid (291 mg,
88%) as a desired product which was flash-chromatographed on silica eluting with EtOAc. The later
fractions afforded yellow solid: mp 409.78 ˝C (DSC) (dec). 1H-NMR (CDCl3, 250 MHz) δ 8.85 (s, 2H,
H6 and H17), 8.73 (s, 2H, H9 and H20), 8.68 (s, 2H, H10 and H21), 8.59 (s, 2H, H5 and H16), 8.21 (s, 2H,
H11 and H22), 8.03 (dd, 2H, J = 7.8, 1.5 Hz, H4, H14), 8.00 (dd, 2H, J = 7.8, 1.5 Hz, H1, H12), 7.45–7.41
(m, 4H, H2, H3, H13, H14), 4.76 (s, 2H, H8 and H18), 2.27–2.23 (m, 4H). A 13C-NMR spectrum could
not be recorded due to the low solubility in common NMR solvents. MS (ESI) calcd for C38H25N2

[M + H]+ 509, found 509. HR-FAB-MS (m/z): [M+] calcd for C38H24N2, 508.19395; found, 508.1641.
Anal. calcd for C38H24N2-1.5H2O C, 85.21; H, 5.08; N, 5.23. Found C, 85.26; H, 5.07; N, 5.21.
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3.3. Attempted Synthesis of Diazapolycenes 8

Method A: A mixture of 7 (1.0 mmol) and 10% Pd/C (100 mg) in nitrobenzene (10 mL) was heated
200 ˝C for 8 h. After cooling the reaction mixture to room temperature, reaction mixture was filtered
through Celite®. Work up as usual afforded a pale yellow solid, which turned out the starting material
based on TLC as well as 1H-NMR.

Method B: The vacuum pyrolysis (0.02 mmHg, 600 ˝C, 45–60 min) of the compound 7 (1.0 mmol)
did not lead to the corresponding diazapolycenes 8 but instead sublimation of the product occurred
for 7a,b, while 7c was decomposed at 409 ˝C without sublimation.

3.4. Measurement of Quantum Yield (Φ)

The quantum yield of the compounds prepared was measured by using a quinine sulfate solution
(in 0.1 M H2SO4, literature quantum yield 0.577 at 360 nm [34,35]) as the standard and calculated
with the equation of Φ = ΦR ˆ (I/IR) ˆ (ODR/OD) ˆ (n2/nR

2), where Φ is the quantum yield, I is the
measured integrated emission intensity, n is the refractive index, OD is the optical density and the
subscript R refers to the quinine sulfate.

4. Conclusions

The Friedländer reactions of three o-aminoarenecarbaldehydes, namely 2-aminobenzaldehyde,
3-aminonaphthalene-2-carbaldehyde and 3-aminoanthracene-2-carbaldehyde, with bicyclo[2.2.2]-
octane-2,5-dione yielded a series of ethanodiazapolycenes as dimeric azapolycenes in 87%–89% yields
and their spectral, thermal, and structural properties were studied. All attempts to further convert the
products into diazapolycenes by retro-Diels-Alder reaction or vacuum pyrolysis were not successful.
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