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Abstract: Silymarin has been widely used as a hepatoprotective drug in the treatment of various
liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability
after oral administration, and there is a need for the development of intravenous products,
especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled
nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the
physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded
micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The
encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms,
respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious
initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability
and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle
formulation for 30 min to mice, the liver became the most significant organ enriched with the
fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting
capability and are promising nanocarriers for delivering silymarin to the liver.
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1. Introduction

Silymarin (SM) is a flavonolignan mixture derived from the seeds of Silybum marianum L. Gaertn
(milk thistle), with silybin as its main component (70%—-80%) [1]. SM has been widely used as a
hepatoprotective agent for a variety of acute and chronic liver diseases, due to its therapeutic effect
based on its antioxidant [2], anti-inflammatory [3], immunomodulatory [4] and anti-viral activities [5].
Previous reports have shown that the efficacy of oral SM on liver function and chronic hepatitis C virus
(HCV) load was low, due to its low bioavailability, extensive first pass metabolism and short life of
flavonoids [6]. However, intravenous (i.v.) SM was well tolerated and exhibited a substantial antiviral
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effect against in non-responders [7]. Thus, introducing SM as a safe and efficient i.v. formulation is
a major challenge. A few attempts have been made to explore the parenteral administration of SM.
Christodoulou et al. developed a water-soluble silibinin-hydroxypropyl-B-cyclodextrin lyophilized
product, but drug level rapidly decreased in serum and drug distribution in heart, kidney and liver was
similar after i.v. administration (20 mg/kg) to mice [8]. In the work of Yliperttula’s group, 3-sitosterol
-D-glucoside (Sito-G) was added to the liposome formulation to enhance the uptake of SM in HepG2
cells, yet the in vivo performance was not determined [9]. Therefore, further studies on novel drug
delivery system are required for liver-targeting and prolonged therapeutic effect.

Amphiphilic polymers can associate into nanoscaled interpolymeric self-aggregates with a
hydrophobic core and a hydrophilic shell in aqueous media. Among these polymers, hydro-
phobically-modified polysaccharides have attracted much attention due to their biodegradability
and biocompatibility, and their potential application as drug vectors has been widely explored,
especially for delivery of poorly soluble drugs [10-12]. Moreover, self-assembled nanoparticles
with targeting ligands are promising carriers for anti-cancer drugs, which are aimed are providing
enhanced therapeutic efficacy and reduced systematic toxicity [13]. However, the conjugation of
polymers with targeting agents usually involves a complex procedure and induces a decreased yield
of derivatives. Sometimes polysaccharides themselves can act as active agents due to their bioactivity,
and hyaluronic acid is a typical example [14]. Most commonly used polysaccharides include pullulan,
chitosan, cellulose, dextran, heparin and hyaluronan [15]. Other natural polysaccharides are seldom
investigated to develop micelle systems.

Bletilla striata polysaccharide (BSP), as an extract from the tubers of Bletilla striata, is a neutral
water-soluble glucomannan with a backbone of (1 — 4)-linked (3-D-mannose and glucose in a molar
ratio of 3:1. In our previous study [16], fatty acids with different chain lengths were used to modify BSP,
and the BSP hydrophobically modified by stearic acid (hm-BSP) showed a preferable self-assembly
property, as well as, good biocompatibility.

The aim of the present work was to evaluate the potential application of the stearic acid
modified-BSP micelles for liver delivery of SM. SM-loaded nanoparticles based on hm-BSP were
prepared and their morphology, particle size, thermal and crystalline properties characterized, and
their in vitro release studied as well. The HepG2 cell line was applied to evaluate the cytotoxicity and
cell uptake of the obtained nanoparticles, and biodistribution in mice after intravenous administration
of nanoparticle and solution formulations was also observed under an imaging system.

2. Results and Discussion

2.1. Preparation and Characterization of Silymarin-Loaded Nanoparticles

Figure 1 shows the size distribution and morphology of drug-loaded nanoparticles by DLS and
TEM, respectively. SM-hm-BSP nanoparticles were almost spherical in shape under TEM. Their particle
size was around 180 nm when observed under TEM and 200 nm as determined by DLS, which is
mainly due to the different preparation processes of the samples. TEM depicts the size of the samples
in a dried state, whereas, DLS depicts the size in the hydrated state.
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Figure 1. (a) Particle size distribution and (b) TEM image of SM-hm-BSP nanoparticles.
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According to our previous work, the average size of empty nanoparticles was 250 nm [16], which
was smaller than that of the drug-loaded nanoparticles. The reason might be the encapsulation of a
hydrophobic drug leads to a more compact core-shell structure.

Table 1 summarizes the characteristics of the SM-hm-BSP nanoparticles. The zeta potential of
the nanoparticles was nearly neutral in water, and the EE of silymarin-loaded nanoparticles was
approximately 80% at a theoretical DL of 10%.

Table 1. Physicochemical properties of SM-hm-BSP nanoparticles.

Sample Diameter (nm) PDI Zeta(mV)?  EE (%) DL (%)
SM-hm-BSP  200.83 + 8.10 025+0.04 —-036+093 7886+0.66 7.31+0.05

2 The zeta potential of micelles in distilled water at 1.50 mg/mL.

DSC thermograms of drug, polymer, physical mixture and drug-loaded nanoparticles are
illustrated in Figure 2. The polymer showed a wide endothermic peak at 80 °C. SM powder showed
a sharp endothermic peak at about 165 °C corresponding to its melting point and then decomposed
above 270 °C, which was also observed by Jia et al. [17]. The peaks of drug and polymer were retained
in the curve of their physical mixture. In contrast, no melting peak corresponding to the fusion of
SM was observed in the curve of drug-loaded nanoparticles, indicating a loss of crystallinity after
encapsulation in the hm-BSP nanocarriers.
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Figure 2. DSC thermograms of (a) SM; (b) hm-BSP; (c) physical mixture and (d) SM-hm-BSP nanoparticles.
To further confirm that SM was successfully loaded into the hm-BSP nanoparticles, XRD patterns

of drug, polymer, the physical mixture and drug-loaded nanoparticles were recorded and are shown
in Figure 3.
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Figure 3. XRD patterns of (a) SM; (b) hm-BSP; (c) physical mixture and (d) SM-hm-BSP nanoparticles.
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It can be observed that the XRD spectra show broad peaks in the hm-BSP. The major peaks of
crystalline SM (at 20 range of 12° to 35°) were detected in diffractograms of SM powder [18], and the
physical mixture as well. However, the specific peaks of SM crystals disappeared in the drug-loaded
nanoparticles, indicating that SM was molecularly dispersed within the nanocarriers. These results
indicate that SM was successfully encapsulated into the nanoparticles as a molecular dispersion [19].

2.2. In Vitro Release Study

The in vitro drug release behavior of SM-hm-BSP nanoparticles was determined in pH 7.4 PBS at
37 + 0.5 °C. As shown in Figure 4, the SM-hm-BSP nanoparticles showed a sustained release pattern
with no obvious initial burst release. It follows a typical drug release from a matrix formulation, in
which the drug release in the beginning is higher than that of later times. The steady release state lasted
for almost one week and up to 95% of the drug was released by the end of the experiment. The slow
drug release may have resulted from the electrostatic interaction between the drug and self-assembled
micelles [20]. The week-long release of silymarin is interesting for a few reasons. First, it is not known
whether the in vitro drug release is reproduced in vivo. Most i.v. administered drug delivery systems
have not been examined for their in vivo drug release properties. Assuming the week-long release
in vivo, however, it presents another related question. Since it is known that nanoparticles will not
circulate in the blood for a week, the usefulness of the week-long drug release remains to be seen. It is
possible, however, that the nanoparticles accumulated in the liver may slowly release the drug over
a period of a week, and this may present a new way of drug delivery to the target for effectiveness
lasting a week or more.
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Figure 4. In vitro drug release profiles from SM-hm-BSP nanoparticles in pH 7.4 PBS.

2.3. Cytotoxicity Test

The cytotoxicity of SM and SM-hm-BSP on HepG2 cells at different intervals was evaluated
through the CCK-8 assay. As shown in Figure 5, the inhibitory effect of free SM and the SM-hm-BSP
nanoparticles on cell proliferation increased over a time period of 72 h. and the cell suppression of
free drug and drug-loaded nanoparticles against HepG2 cell lines exhibited a dose-dependent effect.
Compared to SM solution (ICsy = 7.50 pg/mL), SM-hm-BSP nanoparticles exhibited enhanced growth
inhibition effects on HepG2 cells in almost all concentrations in 72 h, and showed a significantly lower
ICsq value (0.66 pg/mL). These findings indicate that the pharmacological activity of SM was enhanced
after encapsulated into hm-BSP nanoparticles.
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Figure 5. Cont.
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Figure 5. Cell viability of HepG2 cells treated with various concentration of SM and SM-hm-BSP
nanoparticles for (a) 24 h; (b) 48 h and (c) 72 h. (n = 6). * p < 0.05; ** p < 0.01.

It is interesting that SM-hm-BSP nanoparticles had much better anti-cancer cell proliferation
activity than free SM itself. Although drug release from the nanoparticles was slow. SM-hm-BSP
nanoparticles showed a significant inhibition effect on HepG2 cell proliferation compared to the
SM solution. Since hm-BSP itself was proven to be a preferable cytocompatibility material [16],
we assumed that the main reason for the difference in cytotoxicity was that the micelles had a high
affinity for hepatocytes. To confirm this hypothesis, the cellular internalization capacity of HepG2 cells
for free C6 and C6-hm-BSP nanoparticles were further investigated by fluorescence microscopy and
fluorometry, respectively.

2.4. Cell Uptake and Flow Cytometry Study

Figure 6 shows the fluorescence microscopy images of HepG2 cells following incubation with
the free C6 and C6-hm-BSP nanoparticles for 1 h. Cells incubated with the medium (control) showed
almost no fluorescence (Figure 6a), and those with the free C6 solution had a weak fluorescence
(Figure 6b). In contrast, a strong fluorescence was observed in the cells after incubation with the
C6-hm-BSP nanoparticles (Figure 6c), indicating that C6 in C6-hm-BSP nanoparticles had an improved
cellular uptake. The mean fluorescence intensity of the cells treated with the free C6 and C6-hm-BSP
nanoparticles was quantitatively analyzed by a flow cytofluorometer. As shown in Figure 7, the
concentration of C6 in HepG2 cells treated with C6-hm-BSP nanoparticles was 2.4-fold higher than
that in cells incubated with free C6. Thus, hm-BSP nanoparticles achieved an excellent drug delivery
effect, which is in agreement with the earlier results that fatty acid modified glucomannans have the
potential to act as gene delivery vectors [21].

a

Figure 6. Fluorescence images (x200) of HepG2 cells treated with (a) medium; (b) free C6 and
(c) C6-loaded nanoparticles for 1 h. The C6 content in micelle solutions was 0.089 pug/mL.
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Figure 7. Fluorescence intensities of HepG2 cells treated with medium, free C6 and Cé6-loaded
nanoparticles for 1 h. The C6 content in micelle solutions was 0.089 pug/mL.
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2.5. Tissue Distribution Study

As shown in Figure 8a, a nonspecific distribution of a fluorescent signal all over the body was
observed after treatment with DIR solution for 30 min. In contrast, a strong signal was shown only
in the liver region of the live mice after injection with DIR-loaded nanoparticles, suggesting that the
fluorescence probe was mostly accumulated in the liver. The major organs were then removed and
analyzed directly under the imager (Figure 8b). A decreased fluorescence intensity for DIR-loaded
nanoparticles was observed in the lung, heart and kidney, in comparison with that for DIR solution.
However, the fluorescence signal of DIR nanoparticles (2261.4) in the liver was 17.2-fold higher than
that of free DIR (131.4), indicating that hm-BSP nanocarriers could selectively deliver more DIR
molecules into the liver.

2.9X10°

1.9X103

Heart Liver Spleen Lung Kidney

Figure 8. Fluorescence images of (a) mice body; (b) major organs of DIR after i.v. administration of
DIR Solution (1) and DIR-labeled nanoparticles (2) into mice for 30 min.

Taken together, the above results suggest that the hm-BSP nanoparticles will be promising
liver-targeted delivery vectors, especially for hepatoprotective drugs with poor aqueous solubility.
On the other hand, it also provides a reference for the development and application of functionalized
polymers based on natural polysaccharides.

3. Experimental Section

3.1. Materials

Silymarin (>98%) and coumarin 6(C6) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
1,1’-Dioctadecyl-3,3,3’,3'-tetramethylindotricarbocyanine iodide (DIR) was bought from Amyjet
Scientific Inc. (Wuhan, China). N,N’-Dicyclohexylvcarbodiimide (DCC) was acquired from Bioduly
(Nanjing, China) and dimethylaminopyridine (DMAP) was from Kelong Chemical Regent Co.,
Ltd. (Chengdu, China). Phosphoric acid was obtained from Chemical Company (Tianjin, China).
Polyethylene glycol (PEG400) was purchased from Shanghai Chemical Reagent Co., Ltd. (Shanghai,
China). Dialysis tubing (molecular weight cut-off 3.4 kD) was supplied by Greenbird Biological
Technology Co., Ltd. (Shanghai, China). Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal
calf serum (FCS) were obtained from Thermo Fisher Scientific, Inc. (Waltham, MA, USA). The
tetrazolium-8-[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium]
monosodium salt (CCK-8) was purchased from Dojindo Laboratories (Kumamoto, Japan). Methanol
and acetonitrile were of HPLC grade. Phosphate-buffered saline (PBS; 0.01 M, pH 7.2-7.6) and other
reagents were of analytical grade and used as received. Double distilled water was prepared in
our laboratory.

3.2. Synthesis of hm-BSP

The hm-BSP derivative was synthesized according to the method reported by Sallustio et al. [22].
Briefly, BSP (0.100 g) was dissolved in DMSO (20 mL). Stearic acid (0.284 g) was activated by the
addition of DCC (0.206 g) and DMAP (0.146 g) and dropped into BSP solution while stirring. The
mixture was continuously stirred for 2 h at 80 °C, and then for 24 h at room temperature. The resulting
solution was further dialyzed (molecular weight cut-off 3.4 kD) against water and freeze-dried to
obtain the final product of hm-BSP.
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3.3. Preparation of Silymarin-Loaded Nanoparticles

SM-loaded nanoparticles were prepared by an ultrasonication dispersion method [23,24]. Briefly,
hm-BSP (25.0 mg) was dispersed in water at a concentration of 2.5 mg/mL, and then slowly treated
dropwise with 0.5 mL drug solution in ethanol (5.0 mg/mL) followed by stirring at room temperature
for 24 h. Subsequently, the mixture was treated by a probe-type Ultrasonic Processor (20-25 kHz,
Ningbo Scientz Biotechnology Co. Ltd., Ningbo, China) at 400 W for 10 min in an ice-water bath.
The period of ultrasound burst was set to 2 s with a pause of 3 s between two ultrasound bursts.
The resultant solution was centrifuged at 3718 x g for 20 min to remove the free drug. Finally,
the supernatant was filtered through a 0.45 pm syringe filter to obtain the solution of drug-loaded
nanoparticles. In addition, the nanoparticles loaded with C6 or DIR were also prepared by the same
procedure for further study.

3.4. Characterization of Silymarin-Loaded Nanoparticles

To observe the morphology of drug-loaded nanoparticles, one drop of sample was deposited on
the carbon-coated 300 mesh copper grid, air-dried and imaged using a JEM-100C transmission electron
microscope (TEM, JEOL, Tokyo, Japan). Particle size and zeta potential measurements were carried
out on a Nicomp 380 ZLS analyzer (PSS Nicomp, Santa Barbara, CA, USA).

Differential scanning calorimetry (DSC) was carried out using a SETSYS-1750 CS Evolution
thermogravimetric analyzer (Setaram, Caluire-et-Cuire, France). Heating curves were recorded at a
scan rate of 10 °C /min from 25 to 450 °C under a dry nitrogen atmosphere.

The crystalline state of SM, hm-BSP, physical mixture and drug-loaded nanoparticles were
measured by an X-ray powder diffraction (XRPD) instrument (D/MARX2200/PC, Rigaku Co., Tokyo,
Japan) using CuK« radiation at 40 mA and 40 kV. Standard runs were performed with a scanning rate
of 0.02° /min over a 26 range of 3-85°.

The drug content was analyzed by a HPLC (Model-L2000, Hitachi, Tokyo, Japan) method [25,26].
The analytical column was a Phenomenex C18 (5 pm, 4.6 x 150 mm). The mobile phase was composed
of methanol, acetonitrile and water (16:34:50, v/v) and the final pH was adjusted to 4.0 with phosphoric
acid, the flow rate was set at 0.8 mL/min and the column temperature at 35 °C. The detection was
performed at 226 nm using an UV-VIS detector (Model: Hitachi L7420).

For determination of drug content inside the nanoparticles, 200 uL of sample was mixed with
10 mL DMSO and sonicated at 500 W for 30 min. The mixtures were then filtered through a 0.22 pm
syringe filter, and the filtrate was used for HPLC analysis. Drug loading (DL) and encapsulation
efficiency (EE) were calculated as follows:

Weight of drug in micelles
Weight of drug — loaded nanoparticles

DL% = x 100%

Weight of drug in micelles
Weight of feeding drug

EE% = x 100%

3.5. In Vitro Dissolution Study

In vitro drug release studies were carried out in triplicate as follows [20]: SM-loaded nanoparticles
(10.0 mg) were introduced into a dialysis bag (molecular weight cut-off 3.4 kD) and then placed in
100 mL of phosphate buffer solution (PBS, pH 7.4) containing 40% (v/v) PEG 400 [27] at 37 + 0.5 °C
with stirring. Samples (each of 2 mL) were withdrawn periodically, and then filtered through a 0.45 pm
syringe filter. After each withdrawal, an equal volume of the dissolution medium was added to
maintain a constant volume. Drug content was determined by the HPLC method described above.
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3.6. Cytotoxicity Test

Human hepatoblastoma HepG2 cell lines were cultured in DMEM equilibrated with 90%
humidified atmosphere of 5% CO; in air at 37 °C. The medium was supplemented with 10% FCS and
200 mg/L SM solution. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell cytotoxicity.
HepG2 cells were seeded at a 3 x 10% cells per well in 96-well plates (Costar®, Coring Inc., Coring,
NY, USA) in medium and incubated for 24 h. The medium was then replaced with 100 pL of medium
containing various equivalent concentrations of SM solutions or nanoparticles. The untreated cells
were used as the control. The plates were incubated for another 24 h (or 48 h, 72 h), and cytotoxicity
was measured using CCK-8 kits. The absorbance was measured at a test wavelength of 450 nm using
a microplate reader (Bio-Rad Model 550, Segrate, Italy). The percentage of cell viability (CV %) was
calculated based on the following equation:

A
CV% = —treated . 100%
treated
where Ageat and A onirol Were the absorbance of the treated cells and the control, respectively.
Experiments were carried out in six wells and tested three times.

3.7. Cell Uptake and Flow Cytometry Study

The capacity for cellular internalization of C6-loaded nanoparticles was visualized and quantified
by microscope and fluorometry, respectively. HepG2 cells were seeded at a density of 2 x 10° cells
for each well in a 12-well plate (Costar®) and incubated for 24 h. Then, cells were replenished with
serum-free medium containing free C6 or Cé6-loaded nanoparticles for 1 h. After incubation, cells
were washed with ice-cooled PBS before they were fixed in 70% ethanol. Finally, the fixed cells were
observed under a fluorescence microscope (BX51TF, Olympus, Tokyo, Japan).

To quantify the cellular uptake of the fluorescence probe C6, HepG2 cells were plated at a
density of a 3 x 10* cells per well in 12-well plates. The cells were incubated with free C6 or
C6-hm-BSP nanoparticles in serum-free medium, washed 3 times with pH 7.4 PBS and then harvested
by trypsinization. The intracellular fluorescence intensity was measured with a FACSCalibur flow
cytometer (BD Biosciences, San Francisco, CA, USA). Approximately 1.0 x 10* cells were counted to
determine the trend of micelle uptake by the HepG2 cells.

3.8. Tissue Distribution Study

All animal procedures were conducted in accordance with the Guidelines for the Care and Use
of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee at
Ningxia Medical University.

To understand and compare the biodistribution of free drug and drug-loaded hm-BSP
nanoparticles, a lipophilic dye (DIR) that strongly absorbs the fluorescence in the near
infra-redregion [28] was encapsulated into the hm-BSP nanoparticles. The DIR nanoparticles were
prepared according to the above-mentioned method at a loading capacity of 0.089 ug/mL.

DIR-loaded nanoparticles were injected intravenously into mice via the tail vein. At 30 min after
the injection, mice were imaged using a Kodak® in vivo imaging systemFx Pro (Carestream Health
Inc., Rochester, NY, USA). The images were acquired using epiiluminationat an excitation wavelength
of 730 nm and an emission wavelength of 790 nm. Then, the mice were sacrificed and major organs
were harvested for ex vivo imaging. The free DIR in PBS, which used Cremophor EL to solubilize
at an equivalent concentration, was also injected into mice to compare the biodistribution of the
DIR nanoparticles. Results were analyzed using Kodak® imaging software (Carestream Health Inc.).
All experiments were repeated in three different animals and representative pictures are shown.
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3.9. Data Statistics

All of the results are expressed as the mean and standard deviation. The statistical analysis was
performed by Student’s t-test using SPSS statistics software (SPSS software version 16.0, IBM, Armonk,
NY, USA). The p-value < 0.05 was considered as statistically significant.

4. Conclusions

In the present study, SM was loaded into the nanoassembly of BSP conjugates with stearic acid
and evaluated for the development of hepatic-targeted nanoparticles. The obtained nanoparticles
appeared as spheres with an average size of 200 nm. SM was molecularly encapsulated into the
nanoparticles at a loading efficiency of 78.9% and drug loading of 7.31%. The in vitro dissolution of the
drug-loaded nanoparticles exhibited a typical sustained release profile. Compared to the drug solution,
the developed nanoparticle formulation loaded with the drug improved cytotoxicity and cell uptake
in HepG2 cell lines in vitro. These results suggest that hm-BSP derivatives are potentially effective
nanocarriers for hepatic-targeted drug delivery, and the SM-hm-BSP nanoparticles will provide a
better choice for enhanced clinical efficacy of SM preparations.
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