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Abstract: Considering the versatility of oxidation states of rhodium together with the successful
background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged
the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral
rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional
theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the
release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic
reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding
ruthenium one; increasing the endergonic character when dealing with the charged system.
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1. Introduction

During the last three decades, thousands of papers have presented and described the olefin
metathesis catalysis, by experimental synthesis and characterization [1], as well as in the validation of
computational protocols [2-9]. However, neither a general catalyst for any metathesis reaction [10-12]
nor perfect rules are available to predict the behavior of a given catalyst has been achieved [13,14],
bearing the efforts in characterizing the decomposition reactions [15]. However, olefin metathesis has
successfully achieved the goal of organic synthesis that consists of reactions that drive to the formation
of carbon-carbon bonds [16-18], and provides a route to unsaturated molecules. Basically, the area
of ruthenium-catalyzed [19,20] olefin metathesis reactions centers the last industrial applications
during the last decade [21], inspired by the previous discovery first by Grubbs et al. of well-defined
Ru-based catalysts, such as (PCy3),Cl,Ru=CHPh [22], together with the substitution of one phosphine
group by a N-heterocyclic carbene, NHC [23,24], increasing strongly the activity [25,26]. Once a better
understanding of the performance of such catalysts was achieved, a rational design of new more active
catalysts was envisaged [27,28] Despite experimental [29-31] and theoretical [32,33] insights during
the last two decades, demonstrating the mechanism bears a metallacycle as suggested by Chauvin [34],
still there are chances to improve the catalysis in olefin metathesis [35,36], mainly due to the undesired
parallel reactions [37-39], or low capability to deal with water or alcohols as solvents [40,41].

Even though molybdenum [42,43] and basically ruthenium are the metals reference in olefin
metathesis there are several good results bearing tungsten, with several other attempts including
iron [44,45], osmium [46], or rhodium [47-50]. However, none has overcome the performance of
Mo and Ru-based catalysts. To this end, computational techniques are a popular tool to screen
novel catalyst architectures more rapidly and to explore their full potential as efficient catalysts.
In the past, several promising new compounds were proposed by density functional theory (DFT)
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calculations [51,52]. In the present study, DFT calculations are used again to investigate the activation
mechanism of N-heterocyclic carbene (NHC)-Rh based catalysts to understand the effect of replacing
Ru by Rh [53]. To sum up, this study gives insight and at least opens a door towards a proposal of a
new family of olefin metathesis catalysts [54], bearing rhodium as the metal catalyst.

2. Results

Bearing the classical Ru(SIMes)Cl,(=CHPh)PPh; olefin metathesis catalyst, by density functional
theory (DFT) calculations, it was tested the effect of replacing Ru by Rh, affording either the neutral
open-shell duplet or the +1 charged closed shell Rh(SIMes)Cl,(=CHPh)PPhj3 system. To evaluate the
free energy surface of Rh-NHC based catalysts, it was explored the mechanism displayed in Scheme 1,
which basically initially consists of the release of the phosphine group, with the consequent generation
of a 14-electron species II, which binds to an olefin, coordinated cis to the alkylidene [55,56]. The
exchange of the leaving group by an olefin is found to be mainly dissociative [57,58], but with some
alternative associative and concerted mechanisms [59,60]. The next metallacycle intermediate IV is
due to the reaction of the olefin with the alkylidene moiety. The next steps after the metallacycle are
identical by quasi-symmetry with respect to the previous ones.
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Scheme 1. Mechanism of the olefin metathesis for Ru-NHC based complexes.

Figure 1 includes the free energy surface for Rh(SIMes)Cl,(=CHPh)PPhs (both neutral and +1
charged) catalyzed metathesis with vinyl ethers, specifically the energy profile for the first turnover
of this reaction. Although the latter substrate is known to lead to catalytically inactive Fischer-type
carbenes after a single turnover it provides a straightforward reaction with which to study the initiation
kinetics, either experimentally [61,62] or theoretically [54]. However, although the kind of olefin may
not affect the first turnover, it might affect the propagation steps [42,43,54]. In Figure 1 the energy
values are compared to the corresponding Ru(SIMes)Cl,(=CHPh)PPh; analogue. Focusing on the first
turnover, using the neutral [Rh(SIMes)Cl,(=CHPh)PPhs] as a catalyst, Figure 1 gives the result that the
simplest dissociative pathway starts with the initial loss of PPhj ligand in precatalyst I, forming the
catalytically active 14e species II, which is placed 12.6 kcal/mol above I, requiring the overcoming of a
barrier of 22.5 kcal/mol. Bearing a low barrier of 4.9 kcal/mol, the relative low stability of species II
assists the next olefin coordination to the metal center to give the intermediate III, which is practically
isoenergetic with respect to the 14e species II. However, the concerted initiation step that links I
directly to III here turns out to be favored, defining an energy barrier 2.6 kcal/mol lower than the
upper barrier of the dissociative mechanism that corresponds to the transition state I-II.

Once the labile ligand is released and as the entering olefin is bonded to the metal, the still
relatively unstable intermediate III is prone to collapse to the much more stable metallacycle
intermediate IV, lying 10.8 kcal/mol below III. However, the barrier of 12.0 kcal/mol might be
a bottleneck of the first turnover, because such step bears its upper energy point. In contrast, the
upper energy barrier corresponds to the following ring opening of metallacycle IV, which results in
the formation of another coordination intermediate V with a cost of 14.7 kcal/mol from IV. From an
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energetic point of view, intermediate V is 3.9 kcal/mol more stable relative to III, and the next release
of the alkene might be rather facile because it requires just 2.9 kcal /mol, finally leading to the formation
of second 14e species VI, which is interestingly 11.8 kcal /mol lower in energy with respect to the first
14e species II, suggesting that the catalytically active pathway is exothermic.
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Figure 1.  Computed stationary points for the olefin metathesis reaction pathway for
M(SiMes)Cl, (=CHPh)PPh3 with methoxyethene (M = Ru in blue, Rh(0) in red, Rh(+1) in green; energies
in kcal/mol, selected distances in A, the imaginary frequencies characterizing the transition states
structures are given in brackets; for Rh(0) the transition state I-III is also included in red).

The energy profile of the first olefin metathesis reaction turnover for [Rh(SIMes)Cl,
(=CHPh)PPh3]*!. The release of the labile phosphine ligand to form a 14-electron species (II) is
rather expensive, endergonic by 26.4 kcal/mol, apart from the barrier placed even 4.6 kcal/mol higher
in energy. For the charged Rh-based catalyst the concerted step I-IIl is even 2.9 kcal/mol less stable.
Next, the remaining steps for coordination of the olefin (III), formation of the metallacycle (IV), and
next coordination intermediate (V), the release of the benzylidene moiety and finally the formation
of the 14e carbene (VI) follow a decay of energy. Notably, to open the metallacycle IV costs only 0.6
kcal/mol, whereas to go back costs 4.3 kcal/mol. Further, the release of the benzylidene moiety (V)
and finally the formation of the 14e carbene (VI) are slightly complicated since this second 14e species
is formed, overcoming a barrier of 12.5 kcal/mol together with an endergonic loss of 8.2 kcal /mol.

3. Discussion

Figure 2 displays species I for neutral Rh- and Ru-based catalysts, and Figure 3 includes the
sterically crowded transition state I-III together with the corresponding stationary point bearing
ruthenium, pointing out that for Ru, experimentally, this concerted mechanism is not feasible, but
is dissociative [54]. For, Ru the interchange mechanism became favored when increasing the sterical
hindrance of the ylidene ligand, for instance, phenylidene by indenylidene moiety. To unravel the
reason for the preference for the interchange mechanism the geometrical analysis of species I does
not show any difference. Take for instance the calculated percent buried volume (%Vgy,) [63] around
the metal due to the NHC ligand being exactly the same bearing any of both metals (30.8). However,
the specific analysis of the quadrants revealed a slight difference: for both metals, three out of four
quadrants are generously occupied with a less occupied quadrant for Rh (%Vp,, = 26.3, 27.4 for Rh and
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Ru, respectively), which might help the next insertion of the entering olefin, despite the difference not
being significantly different (see also Table S2 and Figure S1 for further details). However, the longer
Rh-Cphenylidene Pond (1.978 and 1857 A for Rh and Ru, respectively) allocates the right environment
around the metal for the exchange of the phosphine by the entering olefin at the same time (see Table S1
for further geometrical details of species I bearing Rh or Ru). Going further into structural details,
this hypothesis is confirmed by a Mayer Bond Order (MBO) analysis [64] of the Rh- and Ru-based
precatalyst I. MBO values reveal a much weaker metal-Cppenylidene bond for Rh (1.058 for Rh vs. 1.792
for Ru), together with a weaker SIMes-metal bond (0.782 for Rh vs. 0.925 for Ru) as well, bearing a
similarly strong M—P bond (0.713 for Rh vs. 0.701 for Ru). Thus, the main structural difference is that
the metal-Cppenylidene bond is much weaker for Rh, with a MBO that defines a simple bond instead of
the double bond that bears the Ru-based precatalyst I. Thus this difference is translated into a larger
flexibility around the rhodium, facilitating the concerted transition state I-III. This rationalizes the
preference for the interchange mechanism rather than the dissociative one for Rh.

(@) (b)

Figure 3. Transition state I-III for: (a) Rh and (b) Ru (selected distances in A, the imaginary frequencies
characterizing the transition states structures are 36.5i and 32.9i, respectively).

Mechanistically, the +1 charged rhodium catalyst also displays the same relative advantages
with respect to the neutral catalyst, although the neutral is favored due to its exergonicity and
the less difficult phosphine dissociation. It is worth mentioning that all complexes in the above
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studied Rh catalyzed reaction pathways exhibited singlet ground state, as ruthenium homologous
mechanism [50,65-68], but differently with respect to iron [42,43]. However, here the rhodium center
might be disproportionate, or lose one chloride, like Castarlenas et al. have recently demonstrated [53].
For the sake of clarity, the comparison between the neutral Ru and Rh based catalysts in Figure 1 reveals
a promising exergonicity of 2.1 kcal/mol for the latter species. Further, the first olefin metathesis
reaction turnover showed acceptable energetic stability of all involved intermediates together with
reasonable low energy barriers, suggesting that the Rh calculated profile might afford a potentially
active catalyst.

4. Materials and Methods

All the DFT static calculations were performed with the Gaussian09 set of programs [69].
For geometry optimization, the well-established and computationally fast GGA functional BP86 was
used [70,71]. Geometry optimizations were performed without symmetry constraints, while the located
stationary points were characterized as minima or transition state by analytical frequency calculations.
The electronic configuration of the molecular systems was described with the standard split-valence
basis set with a polarization function of Ahlrichs and co-workers for H, C, O, P, and CI (SVP keyword
in Gaussian) [72]. For Ru, we used the small-core, quasi-relativistic Stuttgart/Dresden effective
core potential, with an associated valence basis set contracted (standard SDD keywords in Gaussian
09) [73-75]. Zero point energies and thermal corrections calculated at the BP86 level were added to the
MO6 in solvent energies [76] to approximate free energies in solvent using the triple-C valence plus
polarization basis set for main group atoms (TZVP keyword in Gaussian). Since entropic contribution
calculated within the ideal gas approximation at P = 1 atm is likely exaggerating the expected values for
the dissociative steps in the condensed phase [77-84], all the thermochemical analyses were performed
at P = 1354 atm and T = 298.15 K, as suggested by Martin et al. [85,86]. Solvent effects were included
with the polarizable continuous solvation model PCM using dichloromethane as solvent [87,88]. The
MO06 energy calculations were carried out with the scf=tight, and integral(grid=ultrafinegrid) keywords.
This approach was recently shown to be particularly effective in the modelling of Ru-promoted olefin
metathesis [89], however might not be a reference method for charged rhodium species.

%VBur Calculations: The buried volume calculations were performed with the SambVca package
developed by Cavallo et al. [61]. The radius of the sphere around the metal center was set to 3.5 A,
while for the atoms it was adopted the Bondi radii scaled by 1.17, and a mesh of 0.1 A was used to
scan the sphere for buried voxels. The steric maps were evaluated with a development version of the
SambVca package [90].

5. Conclusions

To sum up, the first turnover of olefin metathesis, using a homogenous, theoretically predicted
neutral Rh-based catalyst with methoxyethene was described by means of DFT calculations.
The reasonable energy barriers along the reaction pathway, together with the slightly higher
exothermicity for Rh makes Rh a potential metal substitute for Ru despite being a precious metal.
However, the upper energy point is 8.2 kcal/mol higher in energy with respect to Ru, and does not
correspond to the phosphine release, but to the closure of the metallacycle. Moreover, the Rh-based
catalyst is appealing to get a new family of catalysts that clearly bear an interchange mechanism for the
direct transformation of the precatayst to the coordination intermediate, without any need to increase
the size of the ylidene ligand, from phenylidene to indenylidene.

Supplementary Materials: The following are available online at www.mdpi.com/1420-3049/21/2/177, Table S1:
Cartesian coordinates, 3D view, and energies of all the species discussed in this work; Table S2 and Figure S1:
Data for %Vpy, analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

SIMes 1,3-Bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene
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