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Abstract: The main step in a successful drug discovery pipeline is the identification of small potent
compounds that selectively bind to the target of interest with high affinity. However, there is still a
shortage of efficient and accurate computational methods with powerful capability to study and hence
predict compound selectivity properties. In this work, we propose an affordable machine learning
method to perform compound selectivity classification and prediction. For this purpose, we have
collected compounds with reported activity and built a selectivity database formed of 153 cathepsin
K and S inhibitors that are considered of medicinal interest. This database has three compound sets,
two K/S and S/K selective ones and one non-selective KS one. We have subjected this database
to the selectivity classification tool ‘Emergent Self-Organizing Maps” for exploring its capability
to differentiate selective cathepsin inhibitors for one target over the other. The method exhibited
good clustering performance for selective ligands with high accuracy (up to 100 %). Among the
possibilites, BAPs and MACCS molecular structural fingerprints were used for such a classification.
The results exhibited the ability of the method for structure-selectivity relationship interpretation and
selectivity markers were identified for the design of further novel inhibitors with high activity and
target selectivity.
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1. Introduction

Cysteine cathepsins play a role in a number of diseases, including cancer, osteoarthritis,
osteoporosis, autoimmune disorders and viral infection [1]. Selectivity is an important consideration
in the design of inhibitors of this class of protease, especially given that many of these feature
an electrophilic warhead, such as a nitrile, that interacts covalently with the active site cysteine.
For instance, gene knockout studies suggest that cathepsins B (Cat B) and L2 (Cat L2) should be
considered as a key anti-targets in optimization of cathepsin L (Cat L) inhibitors [2-4]. Cathepsin S
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(Cat S) is a lysosomal cysteine protease belongs to the papain superfamily, which is expressed in
spleen, antigen presenting cells, such as dendritic cells, B cells, and macrophages [5]. The major
role of Cat S is the processing of the major histocompatibility complex (MHC) class II associated
invariant chain, which is essential for the normal functioning of the immune system. Cat S is thus an
attractive therapeutic target for the treatment of autoimmune disorders. It is also reported that Cat
S is implicated in various diseases such as cancer, Alzheimer’s disease, and neuropathic pain [6,7].
Other cysteine proteases, Cat K and L, play a significant role in numerous important physiological
and pathological processes, such as bone resorption, cancer progression, and atherosclerosis [1,8-10].
Different trials were done for discovery of novel selective Cat S inhibitors, which should be safer
therapeutic agents than nonselective inhibitors by avoiding off-target side effects [11-16]. Cathepsin
K (Cat K) is a cysteine protease that is highly expressed by osteoclasts and has been shown to be
a key enzyme involved in bone resorption [17] secreted in the extracellular acidic lacunae at the
interface of the osteoclast and bone tissue, the enzyme’s primarily role consists of type I collagen
degradation, one of the main constituents of bone matrix. It has been suggested that the inhibition
of Cat K could slow bone resorption and it appears that Cat K represents a promising therapeutic
target for the treatment of osteoporosis [18,19] (Figure 1). For a selectivity study among these targets,
different methods were applied successfully to differentiate between compounds having different
selectivity and were able to distinguish them from inactive database compounds [20]. Valuable
tools called 2D fingerprints that can be obtained from 2D molecular graphs are extensively used
for studying compound similarity and selectivity [21-23]. Two interesting structural fingerprints,
BAPs [24] and MACCS17 [25] fingerprints, were utilized and showed good selectivity in pattern
5 analyses. The self-organizing map (SOM) principle was introduced by Kohonen in 1982 [26] which is
a topographic mapping pattern recognition algorithm based on a neural network design by which
objects of a multi-dimensional space are mapped into a regular predefined grid of units (neurons).
This principle has been used for different tasks in chemistry and chemical biology [27,28]. Noeske et al.,
have applied a SOM algorithm for mapping known ligands according to a topological pharmacophore
descriptor (CATS) and could predict potential cross-target activities [29]. Classification models using
the SOM approach were designed and applied for the classification of compounds as inhibitors and
non-inhibitors [30]. In addition, SOM models were used for a selectivity study of Aurora kinases [31]
and HMG-Co reductase inhibitors from decoys [32]. In this work, a set of selective cathepsin K and
S inhibitors of different potency was grouped and organized in a selectivity database. The goal of
this study was to apply a convenient machine-learning method to study ligand-target selectivity
among closely related targets through identification of potential selectivity markers in pure clusters of
cathepsin inhibitors. This method utilizes SOM-based models using structural descriptors to evaluate
their potential compound selectivity prediction.
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Figure 1. Cont.
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Figure 1. Cathepsin K and S targets. 3D structures with the corresponding 2D binding mode of bound
ligands (E64 and C4P respectively) are shown for both targets (a) K and (b) S, respectively. PDB [33]
codes are 1ATK [34], INQC [35]. The amino acid residues in 2D graph are colo-coded according to
MOE defult scheme, green (hydrophobic), pink (polar, acidic, and/or basic) with arrows indicating the
hydrogen bonding interactions, green arrow (sidechain donor or acceptor) and blue arrow (backbone
donor or acceptor).

2. Results and Discussion

2.1. Selectivity Database

Standard MACCS and BAPs fingerprints were used as efficient computational tools in SOM-based
techniques to distinguish between compounds having different selectivity profiles. For this purpose,
two previously assembled [36] data sets consisting of compounds having different selectivity profiles
against two papain-like thiol proteases, including cathepsin K and S, were analyzed. The composition
of these compound sets is described in Table 1. The two compound sets designated with a slash
(e.g., K/S and S/K) consist exclusively of 46 and 58 compounds that are at least 50-fold more potent
(i.e., selectivity ratio SR 50) for one target (K or S) over another (S or K), whereas the remaining
compound set (e.g., KS, 49 compounds) only contains compounds with less than a 10-fold potency
difference (SR < 10) for the two targets that are thus considered non-selective. These molecules cover a
broad range of binding activities (PICs5q values between 9.7 and 3.9) and represent different chemical
scaffolds. The compound data sets were collected from reported sources to evaluate the compound
selectivity using a SOM classification approach.
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Table 1. Full description of the selectivity database of cathepsin targets K and S.

Target Set High Selectives Low Selectives
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The types of selectivity sets, K/S, KS, and S/K. In case of K/S set, this means we have 46 compounds which are
selective for cathepsin K over S (with selectivity ratio more than 10) with corresponding two examples of high
and low selective compounds. Regarding the non-selective KS group, the selectivity ratio is between 1 and not
more than 10. The numbers below each molecule represent the selectivity ratio (SR), ex. 235,000 selectivity ratio
for a highly selective ligand and 1099 for a low selectivity one in the case of the K/S set.

46

2.2. SOM-Based Selectivity Classification

The self-organizing map (SOM) principle introduced by Kohonen [26] is used widely for
compound classification and clustering. It has been applied to a variety of tasks in chemistry
and chemical biology ever since. In this study, the SOM algorithm was used for clustering and
mapping known selective ligands according to a topological structural descriptor. The selectivity
database was subjected to clustering and mapping onto a two-dimensional grid by the Emergent
Self Organizing Map (SOM) approach. The ESOM method provides a nonlinear two-dimensional
projection of an n-dimensional data space (chemical space), where the local neighborhood is conserved.
This means, the molecules that are located close to each other on the map are also close in the original
high-dimensional space. This selectivity compound library was complemented by the molecules
from the ZINC database [37], a subset of 1000 molecules. This set of decoy ZINC molecules was
randomly selected to challenge the classification method. For sets of selectivity compounds, each
compound is converted into vectors by a fingerprint calculation. Then, the full set of data was
classified using the ESOM classification. Three ESOM groups are constructed—one for classifying
compounds annotated as BAPS FP, one for MACCS FP, and the third one for classifying the combination
of both BAPS and MACCS. The resulting ESOM maps are further clustered to identify distinct
groups of clusters with different selectivity profiles by isolation of clusters that are only composed of
selective ligands (K/S, KS, and S/K) without ZINC compounds as pure selectivity clusters, Figures 2—6.
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The Tables 2-5 were generated for analysis of the performance of the ESOM approach. Each table shows
the number of compounds, number of clusters and the purity of each cluster. In addition, the number
of structural features that are highly frequent in each cluster (=50%) are reported. The challenge
in this work is clustering of compounds based on selectivity patterns with high similarity in their
activity and structures. A successful model is one that could preferentially identify the target-selective
compounds over the inverse selectives and non-selectives to the other targets. In general, Tables 2-5
report the results for clusters having only compounds with selectivity obtained for MACCS, BAPS,
and MACCSBAPS applications, respectively. All fingerprints successfully retrieved target-selective
molecules (only compounds selective for one target) within the whole database. Depending on the
selectivity set, MACCS achieved clustering of up to 25 ones with compounds ranging from 39 to
singletons. BAPS achieved clustering to 26 ones and had consistently compounds ranging from
greater than 27 to singletons, while the MACCSBAPS combination one does not change more than the
previous types. After SOM training with 50% of selectivity database compounds, we projected the rest
of compounds as test sets onto this map and analyzed the resulting distribution patterns. The two
selective sets showed separate localized distributions, while the distribution of the non-selectives
appears to be slightly more focused than the data (Figure 2a,b). Notably, only 6% of the two ligand
classes were clustered together.

Figure 2. Heatmaps of the U-Matrix with the colored clusters of local regions generated with the
P-Matrix. All data points with the same color belong to one cluster, red for K/S selectives, green for
S/K selectives, and blue for KS non-selectives. Data points with different colors belong to different
clusters. All clusters are lying in regions with small distances between the data points, and are
surrounded by regions with large distances. (a) BAPS (b) MACCS and (c) Combined clustering.
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Figure 3. The figure shows mapping of representative BAPS selectivity signatures with high occurrence
to S/K selectives presented by bold black highlighting. BAPS featuers are defined as follow, C-!@O
means a aliphatic carbon atom is connected to oxygen atom in a cyclic structure by single, a-[G7]

is aromatic atom attached to halogen atom, c-!@N is aromatic carbon atom connected to nitrogen atom

in acyclic structure, c-@C is aromatic carbon atom connected to aliphatic carbon in cyclic structure,

and c-@N is aromatic carbon attached to aliphatic nitrogen atom.

KI/S selective cluster #6

O-0< ™

K/S data MACCS features

SR 19402-1419 non-aromatic S-[a]

Potency PKi S 5.46-3.95 non-ring S to ring

Potency PKi K 9.30-7.85 S bonded to Q >=3 atoms|
S
Nin CN

Figure 4. The figure shows mapping of representative MACCS selectivity signatures with high

occurrence to K/S selectives presented by bold black highlighting.
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Figure 5. The figure shows mapping of representative MACCS selectivity signatures with high
occurrence to KS non-selectives presented by bold black highlighting.

S/K selective cluster #8
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S/K data MACCS features
SR 19402-1419 C bonded to >=1 O & >=2 N
Potency PKi S 8.04-7.20 N separated by 2 bonds
Potency PKi K 4.52-4.0 halogens to ring
Oinring

N in aromatic bonds with C
Fluorine atom

N bonded to >=3C

O 4 bonds to N

Figure 6. The figure shows mapping of representative MACCS selectivity signatures with high
occurrence to S/K selectives presented by bold black highlighting.
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Table 1 reveals 26 clusters utilizing the BAPS descriptor with purity ranging between 100% and
50%. Twelve clusters revealed a high density of compounds only belonging to one set (2-15 compounds
per cluster). Notably, seven singlets formed a seven cluster distribution, while in case of using
the MACCS descriptor, a lesser number of clusters (25) with six singlets and 13 pure ones with a
7-2 compound range were revealed. More mixed clusters with purity 93%-50% appeared by using a
descriptor combining both MACCS and BAPS.

In accordance, the performance of BAPS in discrimination of different selectivity sets is better
than that of MACCS and the combination form (Table 5). The table indicates the number of clusters,
compounds in each cluster with their types, purity, and the features that prominently appear at
least with 50% more difference in frequency in compounds of the corresponding cluster to the rest
of the database. The SOM was able to discriminate between the three selectivity sets. This result
substantiates earlier findings that both the structural descriptors and the SOM procedure are suited for
clustering compounds according to their selectivity profile. We reason that the ability of the BAPS and
MACCS structural tools to recognize selective cathepsin ligands and successfully distinguish them
from non-selective and inverse-selective compounds should be reflected by bit patterns that differ
between these compound sets.

Table 2. Overall SOM performance against all cathepsins inhibitors.

Number of Clusters (Purity)

FP Error Rate Coverage Correct
Total K/S KS S/K
BAPS 26 11 (6) 8(2) 15 (1) 18 94 76
MACCS 39 7 (4) 16 (10) 9(5) 14 97 86
Combined 25 62) 17 (10) 10 (5) 12 97 86

This shows the overall performance of SOM models. The number in brackets shows the pure cluster of
corresponding data set, for example six pure clusters for K/S from a total 11 clusters using the BAPS fingerprints.
Purity means the indicator of increasing pure clusters for one target set.

Table 3. Analysis of BAPS fingerprint performance.

Cluster# Total K/S KS S/K  Purity % Features

1 27 2 15 10 56 4
2 16 2 11 3 69 8
3 15 15 - - 100 8
4 12 11 - 1 92 4
5 11 - 6 5 55 7
6 8 - - 8 100 10
7 7 6 1 - 86 6
8 6 - 4 2 67 4
9 5 - 5 - 100 8
10 4 4 - - 100 6
11 4 - - 4 100 6
12 4 - - 4 100 7
13 4 - - 4 100 5
14 3 - - 3 100 6
15 2 1 1 - 50 6
16 2 2 - - 100 4
17 2 - - 2 100 6
18 2 - - 2 100 4
19 2 - - 2 100 5
20 1 1 - - 100 5
21 1 - 1 - 100 4
22 1 1 - - 100 5
23 1 - - 1 100 6
24 1 - 1 100 5
25 1 - - 100 3
26 1 - - 1 100 5

The features refer to the structural bits that are frequently occurring in corresponding clusters.
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Table 4. Analysis of MACCS fingerprint performance.

Cluster# Total K/S KS S/K Purity % Features
1 39 2 9 28 72 5
2 30 28 2 - 93 10
3 11 - 1 10 91 15
4 11 - 10 1 91 5
5 7 - 7 - 100 18
6 6 6 - - 100 5
7 6 - 1 5 83 12
8 4 - - 4 100 14
9 4 4 - - 100 2
10 4 - - 4 100 15
11 3 - 3 - 100 12
12 3 - - 3 100 14
13 3 - 3 100 13
14 2 - 2 - 100 14
15 2 2 - - 100 15
16 2 - 2 - 100 10
17 2 1 1 - 50 12
18 2 - 2 - 100 16
19 2 - 2 - 100 10

20 1 - 1 - 100 15
21 1 - - - 100 13
22 1 1 - 1 100 12
23 1 - 1 - 100 10
24 1 - 1 - 100 12
25 1 - - 1 100 13

Table 5. Analysis of combined fingerprint performance.

Cluster# Total K/S KS S/K Purity % Features
1 30 28 2 - 93 16
2 29 - 2 20 72 7
3 12 2 7 1 92 6
4 11 - 11 10 91 17
5 8 - 1 5 62 20
6 7 - 3 - 100 7
7 7 7 - 100 19
8 6 - 5 83 15
9 6 - - 6 100 17

10 4 - - 4 100 14
11 4 - 4 - 100 4

12 3 4 - - 100 15
13 3 - 3 - 100 13
14 3 - 3 - 100 18
15 2 3 - - 50 12
16 2 1 1 - 50 14
17 2 - 2 - 100 16
18 2 - 2 - 100 12
19 1 - - 1 100 12
20 1 - 1 - 100 20
21 1 - 1 - 100 12
22 1 - - 1 100 15
23 1 - 1 - 100 22
24 1 - 1 - 100 15
25 1 - - 1 100 10

9of 16
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2.3. Bit Frequency Analysis of Selectivity Clusters

The occurrence of each fingerprint bit was analyzed and computed for all clusters. A feature is
defined as a selectivity marker that only occurs in at least 50% of the ligands in each cluster (Tables 2-5).
The fingerprint frequency profiles revealed that for each target pair, a varying number of MACCS bit
positions were differentially set on in the selectivity sets. For example, pure cluster #3 in the BAPS
results has 15 compounds of target set K/S with eight differential features, but in cluster #6, 10 features
appear in eight compounds selective for S/K. Thus, bit frequency differences between selectivity sets in
different pure clusters were in part substantial, which provided an explanation for the ability of BAPS
and MACCS to distinguish between selective and non-selective compounds. Therefore, the structural
meaning of these differential bit settings by mapping of these selectivity markers to each cluster were
analyzed to identify the chemical meaning of each feature (Figures 3-6).

2.4. Differential Selectivity Features Mapping

The structural features corresponding to preferentially set MACCS and BAPS keys obtained
from frequency analysis of selective clusters were mapped onto the original ligands of these
corresponding clusters. The results of this analysis are shown in Figures 3-6. For example in
Figure 3, characteristic bonded atom structural features including aromatic rings with different direct
substituents (O, halogens, and N atoms) were found and mapped to the corresponding S/K set,
while in Figure 4, different MACCS features have been identified, including aromatic atoms attached
directly to a S atom and the common electrophilic CN group mapped to compounds selective for
K/S. The identified features of MACCS and BAPS combinations can serve as selectivity markers
and are considered characteristic of different types of cathepsin inhibitors ligands. The overall
descriptions of selectivity features are characterized by the presence of aromatic atoms connected
mostly to the heteroatoms O, N, and S, as well as different types of structural linkers between aromatic
ring containing single or multiple amide bonds. Moreover, halogens attached to aliphatic or aromatic
atoms were found in some cases. The nitrile moiety was also described as a selectivity marker in
cathepsin ligands.

2.5. Structure-Selectivity Relationship Analysis of Cathepsin Inhibitors

Based on the SOM results, the structure-selectivity relationships (SSRs) of the selectivity sets of
cathepsin inhibitors, are summarized in Figure 7. Common structural features are presented according
to the structures and fingerprint analyses of cathepsin inhibitors, including substituted heterocyclic
rings with amino, halide, and carbon functionalities. In addition, linkers occur among the aromatic
or hetreroaromatic nuclei have one or multiple amide or ester bonds or both (carbamate). Moreover,
different substituents are formed of alkyl or haloalkyl chains (mainly flouro). One structural fragment
commonly present is the electrophile nitrile moiety that aids in covalent binding of ligands. In addition,
Sulphur-containing fragments like thioether and sulphonamide were found. These structural features
may be helpful in interpretation of ligand selectivity and useful for medicinal chemists to design new
selective inhibitors of cathepsins.

N
0 o o
<> © o Ay
H H H
0

X (F)
NH F
Ny 0:.-0 F )\/
~g~ A ‘s F>‘\0/

Figure 7. Representative selectivity features. Structural features that are commonly found in the
selectivity databases based on SOM and fingerprint analysis.
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2.6. Experimental Validation of Clustering

To validate the accuracy and robustness of the stability prediction of the SOM model, a different
external subset of the ZINC database (1000 compound) [37] was used and merged with the original
selectivity database for searching for selective cathepsin inhibitors. These compounds were selected
based upon their high degree of similarity to selective ligands for searching for novel selective cathepsin
inhibitors. Then, the same protocol was applied by calculation of fingerprint descriptors and utilizing
all data in the SOM approach. The clusters were identified and ZINC molecules were selected from each
selective pure cluster that was close to the reference selectivity ligands. Among these ZINC structures,
five compounds were analyzed based on their chemical structure and mapped with selectivity features.
In accordance, the activity profile of such new found ZINC hits was reported and the corresponding
selectivity ratios were calculated. It was seen that the activity against cathepsin K and S ranges
between 0.2 nM to 8511 nM. In addition, the compounds revealed different degrees of selectivity,
as two compounds are selective for K over S (300, 890), one compound is selective for S over K (25),
and two non-selective compounds (5, 1.5) were found (Figure 8) [37-43].

oN CN
A C

i
F;C. NH F3C. NH

§ S’

! I
ZINC42893657 ZINC58575624 ZINC34802820
ICsp= K 02 nM ICsp= K 8511 nM ICsp= K 02 nM

S 60 nM S 339 nM $ 178 M
KIS = 300 SIK = 25 KIS = 890
Cluster #2 Cluster # 4 Cluster #6

v QL
B
H > F NH
NN
fl\>
NC”N” N
CF

5 Et

ZINC34635639 ZINC36379291

ICso= K 3 nM ICs=K 23 nM
S 16 M S 16 oM

Ks= 5 SK = 15

Cluster # 1 Cluster #5

Figure 8. New cathepsin set. The figure shows retrieved ZINC compounds predicted and taken
from selective clusters. The IC5; of these compounds and clusters are reported with corresponding
calculated selectivity.

Interestingly, the reported activity/selectivity profiles of these novel hits confirmed our method
for addressing ligand selectivity and the success of using two structural fingerprints in defining and
distinguishing cathepsin inhibitors of different selectivity profiles.

3. Materials and Methods

3.1. Selectivity Database

A dataset of 153 selective cathepsin inhibitors exhibiting different selectivity profiles was collected
from the literature and databases [36]. On the basis of systematic compound evaluation, a total of
153 different molecules were organized into three selectivity sets, as described in Table 1. Each set of
selective (K/S & S/K) compounds consists of compounds that were selective for one target over a
closely related one (with at least 50-fold difference in potency), whereas compounds in the non-selective
subset (KS) showed comparable potency against both targets. The number of compounds per set
ranged from 46 to 59 compounds between selective and non-selective compounds (Table 1).
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3.2. Compound Structures and Fingerprint Representation

The molecular structures of the current database were built and cross-checked using the builder in
the MOE software [44]. Each molecule in the database was optimized using the molecular mechanics
force field which implemented in MOE. 2D fingerprint calculations of different structural designs
was performed for all the compounds. These fingerprints are Molecular ACCess System (MACCS),
consisting of 166 bits [25] and Bonded Atom Pairs (BAPS), consisting of 117 bits [24]. The merged
fingerprint (MACCSBAPS) was built by combination of both typical MACCS and BAPS. The output
files were saved and further used as inputs for the SOM application step.

3.3. SOM and ESOM Neural Networks

SOM has attracted the attention of researchers because of its ability to analyze complex
multidimensional data in an intuitively comprehensible visual manner. The SOM technique can be used
well in compound pattern recognition, combinatorial library comparison, and combinatorial library
design, splitting a dataset into the proper training and test sets before constructing a (Quantitative
Structural-Activity Relationship (QSAR) model and other studies which require the analysis of
distributions of compounds in some chemical space [31]. The ESOM software [26] was used for
performing Kohonen’s SOM. Kohonen’s SOM has the special property of effectively creating a spatially
organized internal representation of various features of input signals and their abstractions. In a SOM,
the neurons are arranged in a two dimensional array to generate a two-dimensional feature map such
that similarity in the data is preserved. In other words, if two input data vectors are similar, they will be
mapped into the same neuron or closely together in the two-dimensional map. Data with similar input
were mapped into the same neuron or neighbor neurons in the two-dimensional map, Figure 9. Herein,
SOM was applied to split the data set into a training set and a test set, and also used as one method to
develop classification models to classify the selectivity of cathepsin inhibitors. To visualize data of
multiple dimensions, a projection from the high-dimensional space onto two dimensions is needed.
There are many algorithms which project a high-dimensional data space into two or three dimensions
like PCA and ICA for linear projections and MDS and Sammon’s mapping for nonlinear projections.
The emergent self-organizing map (ESOM) is a projection onto a grid of neurons, called map. Emergent
SOM (ESOM) is a variation of SOM, which handles a larger number of neurons (at least 4000) and
uses boundless maps [26,45]. It embeds the maps to a finite boundless space such as sphere or toroid.
In the ESOM approach, two visualization methods of the ESOM maps are used, namely, the P-matrix
and the U-matrix and a topological correct ESOM projects a cluster onto a coherent area on the map
(cluster area). Points within the cluster are mapped to the inside of the cluster area. Data points at the
border (Surface) of the cluster are projected to the border of the cluster area. The P-matrix visualizes
the density in the input data space using the Pareto density estimation. In general, it is suitable for
dealing with slowly changing densities and overlapping clusters. The U-matrix visualizes neurons
on an ESOM map by a color coding that represents the sum of distances to all immediate neighbors
normalized by the largest value in the neighboring neurons. Generally, the U-matrix is appropriate for
handling data points which are clearly separated from each other. The ESOM program is available at
http://databionic esom.sourceforge.net/. The original paper by Ultsch describes the general ESOM
training procedure in details. The advantage of SOM/ESOM is that it is able to provide an intuitive
visualization of the similarity of input data [46,47].

Fingerprints vectors

(X1-Xn) Feature mapping Compounds sorting
2D SOM .
Input layer Inner layer P Output layer P PSelectlwtyclusters
maps
Selectivity database High dimensions Distance
and ZINC ligands reduction measurements

Figure 9. Chart for the generation of molecular selectivity SOM maps.
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3.4. Bit Frequency Analysis and Feature Mapping

Fingerprint bits of MACCS and BAPS types were analyzed by calculation of the frequency of
occurrence in each cluster. The feature of at least 50% occurrence was selected and identified as
selectivity markers. This analysis was carried out with an in-house generated perl script.

3.5. Experimental Validation of Clustering

The SOM models was experimentally validated using a 1000 compound subset of the ZINC
database randomly selected, but having more structural similarity to the selectivity database.
The compounds in ZINC was extracted and merged with the selective compounds and utilized
for SOM clustering. The given clusters were analyzed and only mixed clusters formed of ligands
of specific annotation (K/S, KS, or S/K) with ZINC compounds were taken. Five compounds were
selected as nearest neighbors for selectivity database compounds from different clusters and were
searched for their activity profile in web databases supporting biological activity.

4. Conclusions

Cathepsin enzyme targets are of increasing interest due to their involvement in extracellular
proteolytic activities and regulation of intermediates in certain diseases. A special selectivity database
for two cathepsins was built and fully characterized. In this work, emergent SOMs were calculated
using an ESOM algorithm with multiple neurons for selectivity set clustering. Two structural molecular
descriptors, BAPs and MACCS fingerprints, were selected to be utilized in selectivity prediction of
cathepsin K and S inhibitors by the self-organizing map technique. The resulting maps and clusters
have extensively been analyzed. Investigation of the performances of fingerprints and extensive
structure-selectivity relationship analysis of compound clusters led to the extraction of several selective
substructures that are important in interpretation of inhibitor selectivity. These selectivity markers
provided by fingerprint analysis could be very helpful in the lead optimization or the design of new
hits with better activity and selectivity towards cathepsin targets. Finally, successful SOM-based
selectivity clustering was applied and potential cathepsin K and S inhibitors were predicted.
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